
A Hierarchical Adaptive Probabilistic Approach
for Zero Hour Phish Detection

Guang Xiang, Bryan A. Pendleton, Jason Hong, and Carolyn P. Rose

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA

Abstract. Phishing attacks are a significant threat to users of the Inter-
net, causing tremendous economic loss every year. In combating phish,
industry relies heavily on manual verification to achieve a low false pos-
itive rate, which, however, tends to be slow in responding to the huge
volume of unique phishing URLs created by toolkits. Our goal here is
to combine the best aspects of human verified blacklists and heuristic-
based methods, i.e., the low false positive rate of the former and the
broad and fast coverage of the latter. To this end, we present the de-
sign and evaluation of a hierarchical blacklist-enhanced phish detection
framework. The key insight behind our detection algorithm is to leverage
existing human-verified blacklists and apply the shingling technique, a
popular near-duplicate detection algorithm used by search engines, to de-
tect phish in a probabilistic fashion with very high accuracy. To achieve
an extremely low false positive rate, we use a filtering module in our lay-
ered system, harnessing the power of search engines via information re-
trieval techniques to correct false positives. Comprehensive experiments
over a diverse spectrum of data sources show that our method achieves
0% false positive rate (FP) with a true positive rate (TP) of 67.15%
using search-oriented filtering, and 0.03% FP and 73.53% TP without
the filtering module. With incremental model building capability via a
sliding window mechanism, our approach is able to adapt quickly to new
phishing variants, and is thus more responsive to the evolving attacks.

1 Introduction

Phishing is a social engineering attack, in which criminals build replicas of target
websites and lure unsuspecting victims to disclose their sensitive information
like passwords, personal identification numbers (PINs), etc. Exact numbers of
direct damages done by phishing are hard to assess, in large part due to lack
of data from organizations hit by phishing attacks. Estimates have ranged from
a low of $61 million [15] to a high of $3.2 billion [1]. A significant proportion
of those losses were caused by one particularly infamous group, known as the
“rock phish gang”, which uses phish toolkits to create a large number of unique
phishing URLs, putting additional pressure on the timeliness and accuracy of
blacklist-based anti-phishing techniques.

Generally, phish detection methods fall into two categories, i.e., those that
perform URL matching via human verified blacklists and those that make use
of heuristics via machine learning (ML) techniques. While the former has a very
low false positive rate, human-verified blacklists do not generalize well to future
unseen cases. For example, Sheng et al [21] showed that zero hour protection
offered by major blacklist-based toolbars only has a true positive rate (TP)
between 15% and 40%. Furthermore, human-verified blacklists can be slow to
respond to new phishing attacks, and updating blacklists usually involves enor-
mous human effort. For example, Phishtank [2] statistics in March 2009 show
that it took on average 10 hours to verify that a URL was a phish. Finally,
human-verified blacklists can be easily overwhelmed by automatically generated
URLs. On the other hand, heuristic-based approaches enjoy the flexibility of
being able to recognize new phish, but often lead to a relatively higher false pos-
itive rate. Concerns over liability for false positives have been a major barrier
to deploying these technologies [20]. To underscore this point, Sheng et al [21]
evaluated eight popular toolbars including Microsoft Internet Explorer, Firefox,
Google Chrome, Norton 360, etc., all of which employ some level of human ver-
ification to achieve an extremely low FP in spite of the amount of human labor
required, again primarily due to concerns over liability for false positives.

The goal of our work is to combine the best aspects of human verified black-
lists and heuristics-based methods, and develop a reliable and robust method
that is able to adaptively generalize to new attacks with reasonable TP while
maintaining a close to zero FP. Our approach exploits the fact that a large num-
ber of current phishing attacks are created with toolkits, which tend to have a
high similarity in terms of content. Our detection engine analyzes the content
of phishing webpages on manually-verified URL blacklists via n-grams, and em-
ploys the shingling technique to identify near-duplicate phish in a probabilistic
fashion. We also use a filtering module, which uses information retrieval (IR)
techniques querying search engines to further scrutinize the legitimacy of a po-
tential phish in an effort to control false positives. Our whole system is constantly
updated by a sliding window upon the arrival of new phishing data, and is thus
capable of adapting quickly to new phishing variants, while still maintaining a
reasonable level of runtime performance. Under the optimal experimental setup,
our method achieves a TP of 67.15% with 0% FP using search oriented filtering,
and a TP of 73.53% and a FP of 0.03% without the filtering module, much better
than blacklist-based methods in TP while comparable in FP. For applications
like anti-phishing where FP is of paramount importance, a slightly lower TP is
acceptable. Furthermore, we do not expect our approach to be used alone, but
rather reside in the first part of a pipeline augmenting the existing system such
as the commercial blacklists, thus fabricating a superior integrated solution.

We do not claim that our approach will solve the phishing problem. Rather,
our specific claim is that we can augment existing blacklists in a very conservative
manner using probabilistic techniques, with a very low FP, if not zero, and a
reasonably good TP. Capable of identifying a fair amount of phishing attacks
with no sacrifice on FP and considerably reducing the human effort involved

in manual verification, our approach significantly complements the prevalent
blacklist-based methods, leveraging the manual labor that is already being used
in verifying phishing sites. The major contributions of this paper are three fold.

1. We present the design of a novel hierarchical, content-based approach that
leverages existing human-verified blacklists, by making use of shingling and
information retrieval techniques to detect phish.

2. We demonstrate that with incremental model building via a sliding window
mechanism, our approach is able to adapt quickly to the constantly evolving
zero-hour phish attacks. Also, we only need the most recent 30 days’ worth
of data to achieve the same TP as using two months’ worth of data, thus
balancing accuracy with runtime efficiency.

3. By harnessing URL blacklists in a probabilistic fashion, we are able to lever-
age our approach to improve the coverage and timeliness of human-verified
blacklists using considerably less human effort than existing techniques, with-
out having to sacrifice the false positive rate. With only two weeks’ worth
of phish, our method achieves a TP of 65.02% with 0% FP using search
oriented-filtering, and a TP of 71.23% and a FP of 0.03% without filtering.

2 Related Work

2.1 Methods for Automatic Phish Detection

A variety of techniques have been proposed for automatically detecting phishing
web pages, and we will introduce some representative work in this section.

One camp exploits URL signatures to detect phish. Garera et al [13] identified
a set of fine-grained heuristics from URLs, and combined them with other fea-
tures to detect phish. Applying a logistic regression model on 18 features yielded
an average TP of 95.8% and FP of 1.2% over a repository of 2508 URLs. Though
interesting, this method has high variance in that URLs could be manipulated
with little cost, causing the heuristics to fail.

Researchers have also devised a number of phish heuristics examining the
content of web pages. Abu-Nimeh et al [8] adopted the bag-of-words strategy
and used a list of words frequently found on phishing sites as features to detect
phish, which is not expressive and easy to defeat by attackers. In [16], Ludl et
al came up with a total of 18 properties solely based on the HTML and URL.
The J48 decision tree algorithm was applied on these features and achieved a
TP of 83.09% and a FP of 0.43% over a corpus with 4149 good pages and 680
phishing pages. However, heuristics purely based on DOM and URL are rather
limited and may fail in capturing artfully designed phishing patterns. Zhang et
al [23] proposed CANTINA, a content-based method using a linear classifier on
top of eight features, achieving 89% TP and 1% FP on 100 phishing URLs and
100 legitimate URLs.

Another line of research focuses on discovering the intended phish brand to
catch phish. Pan et al [18] proposed a method to extract the webpage identity
from key parts of the HTML via the χ2 test, and compiled a list of features based

upon the extracted identity. Trained with support vector machines (SVM), their
features had an average FP of about 12%. However, its assumption that the dis-
tribution of the identity words usually deviates from that of the ordinary words
is questionable, which is indicated by their high false positive rate. Even in DOM
objects, the most frequent term often does not coincide with the web identity.
More recently, Xiang et al [22] proposed a hybrid detection model that recognizes
phish by discovering the inconsistency between a webpage’s true identity and its
claimed identity via search engine and information extraction techniques. Their
full integrated system achieved a TP of 90.06% and a FP of 1.95%.

Though the work in [23][22] also involve search engines, in this paper, we
only resort to search engines in a postprocessing step to filter potential false
positives in this paper while our core technique is the detection algorithm that
exploits semantic similarity among the phishing attacks via the shingling tech-
nique. The only possible false positives generated in the detection phase are
those well-known websites targeted by phishers, which guarantees the efficacy of
our searching-based FP filtering method.

In addition to the past work above, anti-phishing toolbars are also available,
many of which exploit human-verified blacklists to assure close-to-zero FP, such
as NetCraft, Firefox 3, McAfee SiteAdvisor, etc.

Our goal in this paper is subtly different from the research above, in that
we want to see how high our TP can be while maintaining close to 0% FP. As
we noted in the introduction, industry has not adopted many of those heuristics
above due to concerns about poor user experience for false positives as well
as reasons of liability. Thus, our work here deliberately takes a conservative
approach, though as we will show, we still get a reasonably good TP.

2.2 Toolkits for Creating Phishing Sites

In recent years, an increasingly large number of phishing webpages were auto-
matically created by toolkits, which substantially increases the scale of attacks
that criminals can attempt, while also countering current human-verified black-
lists. For example, Cova et al [11] identified 584 phishing kits during a period of
two months starting in April 2008, all of which were written in PHP. An analysis
of rock-phishing sites by Moore et al [17] from February to April in 2007 reveals
that 52.6% of all Phishtank reports were rock phish. One key observation of
the rock phish is that their content is highly similar due to the way they are
created, which is the property that our framework is based on. It is possible that
criminals may modify their toolkits to include randomization to circumvent our
detection mechanisms, and we discuss this issue towards the end of this paper.

3 A Multi-layered Phish Detection Algorithm

3.1 System Architecture

The overall architecture of our framework is shown in Fig.1. The first stage
of processing involves filtering using domain whitelists, directly passing known

benign webpages. The detection engine employs a technique based on shingling
to classify the remaining webpages, forwarding potential phish to the FP filter
for further examination, which interacts with search engines to correct false
positives. New phish from blacklists are added into our training set via a sliding
window to update the detection model with the latest phishing patterns.

Fig. 1. System architecture. An incoming webpage is first checked against a small
domain whitelist (1). If the page is not on the whitelist, our detection engine (2)
compares the content of the webpage against the content of existing phish using
the shingling algorithm. If a page is flagged as a potential phish, we check for false
positives, resorting to search engines (3) if needed for additional verification. We
use a sliding window (4) in the back-end to incrementally building the machine
learning model as new phishing signatures arrive.

3.2 Shingling-based Probabilistic Matching

The essence of our detection algorithm is to do “soft” matching of a given web
page against known phishing pages. The intuition here is that many phishing web
pages are created by toolkits, and thus have many semantic similarities in terms
of page content. Our detection method manipulates this semantic uniformity
via soft matching, which allows more flexibility than the rigid URL matching
adopted by major blacklist-based methods. Our early evaluations using exact
matching with hash codes of page content turned out to be reasonably effective,
but also brittle and easy to defeat. As such, we want to make our system robust
to simple changes, thus raising the bar for criminals.

Shingling [10], a technique for identifying duplicate documents, examines the
webpage content on a finer-grained level via the notion of n-gram, and measures

the inter-page similarity based on these basic units. N-grams are subsequences of
n contiguous tokens. For example, suppose we have sample text connect with
the eBay community. This text has 3-grams {connect with the, with the
eBay, the eBay community}. Shingling employs a metric named resemblance
to calculate the percent of common n-grams between two webpages. More for-
mally, let q and d represent a webpage being examined and a phishing page
in the blacklist respectively. Let D represent the set of all training phish, and
S(p) denote the set of unique n-grams in p. The similarity metric resemblance
r(q, d) is then defined as r(q, d) = |S(q)∩S(d)|/|S(q)∪S(d)|. Our soft matching
approach first generates the set of n-grams for each d ∈ D. We then compute
r(q, d) ∀d ∈ D for a query page q, and fire an alarm whenever r(q, d) exceeds a
threshold t. We choose the optimal t via cross validation.

3.3 Search Engine Enhanced Filtering

As we will show later, shingling is effective in comparing a given web page against
known phish. However, a potential problem is with false positives. More specif-
ically, phishing web pages usually imitate legitimate web pages, which means
that if there are no safeguards in place, shingling by itself is likely to label those
target legitimate cases as phish as well. In addition to using domain whitelists
to filter false positives, we propose a filtering algorithm leveraging the power
of search engines via information retrieval techniques. This module, based on
one heuristic in CANTINA [23], compensates for the incompleteness of domain
whitelists, and is able to minimize FP even for less popular phishing target sites.

Our filtering module is triggered when the detection engine recognizes a
candidate phish, and works by executing in Google queries composed of K top
keywords chosen from the page content plus the webpage domain keyword 1

and examining the presence of the page domain in the top N search results.
The final prediction is restored to “legitimate” if the top N entries subsume
the page domain, and thus we no longer incorrectly label such sites as phish.
The validity of this filtering algorithm is partially attributed to the fact that
legitimate websites are very likely to be indexed by major search engines, while
phishing sites are not, due to their short-lived nature and few in-coming links.

We currently use K = 5, N = 30 according to the tuning result in [23][22].
Candidate query terms on the page are ranked by the TF-IDF scoring function
widely used in IR, which selects the terms that are most representative of the
webpage content. The rationale is that search engines use TF-IDF when they
match queries to documents in such a way that terms with high TF-IDF scores
are the ones that have more influence over retrieval and ranking of documents.

3.4 Incremental Model Building via Sliding Window

To take the latest phishing signatures into our database and to improve the
runtime performance of our whole system, we utilize a sliding window of the
1 The domain keyword is the segment in the domain representing the brand name,

which is usually the non-country code second-level domain or the third-level domain.

most recent phish from phish blacklists and incrementally build the detection
model with those phishing web sites. In our evaluation, we show that discarding
older data as the sliding window moves actually has little impact on accuracy.

Furthermore, a positive side effect of using a sliding window is that the
time complexity of shingling is reduced from O(|D|) to O(|Dwin|), where Dwin

represents all phishing data covered by the current sliding window win. Asymp-
totically, |Dwin| can be deemed as a large constant, and in light of this shrunk
magnitude, we refrain from trading accuracy in exchange of speed via approx-
imated algorithms as used in many applications [14]. For example, this sliding
window could reduce a year’s worth of phish to just a month’s worth, achieving
×12 runtime speedup without significantly sacrificing detection performance.

4 Experiment

4.1 Domain Whitelists

An enormous percentage of phishing frauds target well-known financial entities
like eBay, Paypal, etc., by imitating their sites, and it is of practical value to
pass those legitimate websites without feeding them to our detection engine. To
reduce false positives and improve runtime performance, we quickly eliminate
these known good sites through a whitelist. specifically, we collected known good
domains from two sources. Google safe browsing provides a publicly-available
database [3] with legitimate domains, and we obtained a total of 2758 unique
domains from this whitelist after duplicate removal. Millersmiles [4] maintains
an archive of the most common spam targets such as ebay, and we extracted 428
unique domains out of 732 entries after mapping organization names to domains
and removing duplicates. In total, we had 3069 unique domains in our whitelist.

4.2 Webpage Corpus

Phishing sites are usually ephemeral, and most pages do not last more than a few
days typically because they are taken down by the attackers themselves to avoid
tracking, or taken down by legitimate authorities [21]. To study our approach
over a larger corpus, we downloaded phishing pages when they were still alive and
ran experiment offline. Our downloader employed Internet Explorer to render the
webpages and execute Javascript, so that the DOM of the downloaded copy truly
corresponds to the page content and thus gets around phishing obfuscations.

Our collection consists of phishing cases from PhishTank, and good webpages
from seven sources. To eliminate the influence of language heterogeneity on our
content-based methods, we only downloaded English webpages.

For phishing instances, we used the verified phishing URLs from the phish
feed of Phishtank [5], a large community-based anti-phishing service with 38, 324
active accounts and 527, 930 verified phish [2] by the end of March 2010. We
started downloading the feed in late February of 2009 and collected a total
of 1175 phishing webpages from February 27, 2009 to April 2, 2009. All seven

legitimate corpus were downloaded after April 2, the details of which are given in
Table 1. Note that the open directory project is the most comprehensive human-
edited directory of the Web maintained by a vast community of volunteers, and
by using this corpus, we want to verify that our algorithm achieves a very low
FP on the low-profile and less popular sites.

Table 1. Legitimate collection with a total of 3336 web pages.

Source Size Crawling Method

Top 100 English sites from Alexa.com 958 Crawling homepages to a limited depth

Misc login pages 831 Using Google’s “inurl” operator and
searching for keywords like “signin”

3Sharp [19] 87 Downloading good webpages that still
existed at the time of downloading

Generic bank category [6] 878 Crawling the bank homepages for a varying
on Yahoo directory number of steps within the same domains

Other categories of Yahoo directory 330 Same as the generic bank category

The most common phishing targets 69 Saving login pages of those sites

The open directory project [7] 183 Downloading “least popular” pages with
zero pagerank

4.3 Test Methodology

For notational convenience, we define in Table 2 the free variables in our context.
Our experiment here focused on tuning these variables to optimize our results.
To simulate a more realistic scenario, we processed data in chronological order
in all of our experiments. In assessing TP, we move the sliding window of length
L step by step along the time line and apply our detection algorithm to the web-
pages at each time point Ti using a shingling model built on the phishing data
with time labels falling in window [Ti−L, Ti−1]. The FP is tested in a slightly
different manner. In [12], Fetterly et al discovered through large-scale web crawl-
ing that webpage content was fairly stable over time, and based on that finding,
we did not download the same set of legitimate pages at each time point but
rather downloaded only once the whole set at a time later than all the phishing
timestamps. Sliding windows of different sizes L are used similarly. Under all
cases, four whitelist combinations are exercised with our detection algorithm,
i.e., millersmiles, Google, none, and both whitelists.

4.4 Experimental Results

Shingling Parameter Tuning Figure 2 shows the validation performance un-
der different values for n and t. For all n-grams in the evaluation, the TP mono-
tonically decreased as we raised the resemblance bar higher. With a resemblance
of 65%, shingling achieved over 66% TP under all shingle lengths, manifesting

Table 2. Definition of symbols.

Variable Explanation Variable Explanation

G granularity of time L sliding window length

W whitelist n n-gram

r resemblance t resemblance threshold

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Threshold

52

54

56

58

60

62

64

66

68

70

T
ru

e
 p

o
si

ti
v
e
 r

a
te

 (
%

)

3-gram
5-gram
6-gram
8-gram

(a) TP under various r thresholds

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Threshold

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fa
ls

e
 p

o
si

ti
v
e
 r

a
te

 (
%

)

3-gram
5-gram
6-gram
8-gram

(b) FP under various r thresholds

Fig. 2. Shingling parameter tuning (L = 60, G = day, W = millersmiles, no
TF-IDF FP filtering). A tradeoff between TF and FP is an important factor in
choosing t in the final model. As t is increased, the rate of detection drops and
FP picks up. TP tops at 69.53% and FP reaches a culmination of 0.1199% under
n = 3, t = 0.65. The other three FP curves n = 5, 6, 8 perfectly coincide.

the considerable similarity in content among phish due to rock phish. Although
FP worsens as t and n decrease, we still stick to n = 3, t = 0.65 in the remaining
evaluation of our experiment, hoping for the best TP performance and counting
on the TF-IDF filtering algorithm to control false positives. The tuning results
under all other configurations of G, L and W exhibit the same pattern, and we
do not report them here.

Evaluation of True Positive Rate Figure 3 suggests that even with only
one day’s worth of training phish, our algorithm is able to detect around 45%
phishing attacks, demonstrating the efficacy of our method and also proving the
conjecture that mainstream phishing attacks are created by toolkits.

Another finding is that when using search engines to filter false positives (the
right plot in Fig.3 and Fig.4), TP dropped as a side effect. An explanation is that
some phishing URLs (2%/1% with a 1-day/1-hour sliding window) are actually
returned among the top 30 entries when querying TF-IDF ranked terms plus the
domain keyword on Google and are thus mistakenly filtered as legitimate.

Real-time application of our algorithm does not suffer from this false filtering
problem as much as observed in our offline experiment. A semi-formal explana-

0 10 20 30 40 50 60
Window size (day)

40

45

50

55

60

65

70

T
ru

e
 p

o
si

ti
v
e
 r

a
te

 (
%

)

Millersmiles
Google
None
Both

(a) TP without TF-IDF filter

0 10 20 30 40 50 60
Window size (day)

40

45

50

55

60

65

70

T
ru

e
 p

o
si

ti
v
e
 r

a
te

 (
%

)

Millersmiles (TF-IDF)
Google (TF-IDF)
None (TF-IDF)
Both (TF-IDF)

(b) TP with TF-IDF filter

Fig. 3. TP under various L (G = day) and W . Our approach achieves about
45% (no FP filtering) and 43% (with FP filtering) TP in all cases with only 1
day’s worth of training phish, and around 69% (no FP filtering) and 64% TP
(with FP filtering) with a 60-day window. FP filtering hurts TP, and a whitelist
with only popular phishing targets beats a more comprehensive whitelist.

tion for this finding has two main points. First, when a new phish just comes
out of attackers’ workshop, few, if any, links point to that phishing site. As such,
search engines are unlikely to return its domain as a top result; second, search
engines might index the phish as time progresses when more links out in the web
begin referring to it, however, the phish may have already become unavailable
due to the short-lived nature of phishing activity and no harm will be done to
the users even if it is incorrectly passed as a good page. The usefulness of this
FP filtering module will become more evident when we embark on the analysis
of FP in the following section.

Figures 3 and 4 suggest that the TPs under millersmiles whitelist are uni-
versally better than those under Google whitelist. Examining both whitelists
reveals that millersmiles only contains a core group of the most spammed do-
mains while the Google whitelist has many more less popular domains. None of
the phishing domains in our corpus appear in the millersmiles whitelist, however,
some do show up in the Google whitelist, among which is “free.fr”, occurring 6
times in our phishing set. Those phish were thus erroneously filtered, lowering
the TP inadvertently. This observation delivers a message about the use of do-
main whitelists, i.e., the quality of whitelists does impact TP and the optimal
usage is to adopt a small core whitelist covering a group of popular spam target
sites. Our detection method performed convincingly better with respect to TP
when the model is iteratively built on a hourly basis.

Evaluation of False Positive Rate Figure 5 shows the FPs under different
sliding window sizes and whitelists with no TF-IDF filtering. All four curves
in both plots start with zero FPs, when L is minimum, and gradually escalate

0 200 400 600 800 1000 1200 1400
Window size (hour)

10

20

30

40

50

60

70

80

T
ru

e
 p

o
si

ti
v
e
 r

a
te

 (
%

)

Millersmiles
Google
None
Both

(a) TP without TF-IDF filter

0 200 400 600 800 1000 1200 1400
Window size (hour)

10

20

30

40

50

60

70

80

T
ru

e
 p

o
si

ti
v
e
 r

a
te

 (
%

)

Millersmiles (TF-IDF)
Google (TF-IDF)
None (TF-IDF)
Both (TF-IDF)

(b) TP with TF-IDF filter

Fig. 4. TP under various L (G = hour) and W . Under all whitelists, TP bottoms
around 16% in all cases with a 1-hour window and peaks around 74% with a
1440-hour window without FP filtering; with FP filtering, TP bottoms around
15% with a 1-hour window and peaks around 67% with a 1440-hour window.

as more training phish are added to the model. Domain whitelists prove to be
effective in suppressing false positives, with FPs of 0.1199%, 0.06%, 0.5396%,
0.03% for millersmiles, Google, none and both whitelists under both a 60-day
window (left) and a 1440-hour window (right). With TF-IDF filtering, FPs are
all zero under all circumstances, and we do not explicitly show the plots here.

Granularity of Time Unit for Window Size A comparison of TPs with day
and hour based L (Table 4 in the appendix) shows that under sliding windows
of identical time length, hour-level incremental model building outperformed
day-level building, indicating the superior responsiveness of hourly updating.
The largest gaps occurred at a window length of 1 day (24 hours), amounting
to TPs of 9.95%, 9.78%, 9.95%, 9.78% with no FP filtering and 8.68%, 8.51%,
8.68%, 8.51% with FP filtering under four whitelist configurations. This disparity
gradually diminished as L increased, which is reasonable in that as more and
more phish are absorbed into the training set by the growing window, the tiny
amount of shift in time relative to the window size no longer has as large of an
impact as before. Surprisingly, simply with a 24-hour window, our algorithm was
able to achieve over 50% TP under all whitelists and filtering setups.

As expected, the FPs under two time units in Table 5 in the appendix are
identical except for one cell, since all legitimate pages in our web collection were
downloaded after the phishing ones and regardless of time measurement (day or
hour), the sliding window with the same length in terms of time actually covered
roughly the same set of training phish. Interestingly, the FP filtering module suc-
cessfully removed all the false positives, leading to zero FP under all experiment
settings, at the cost of slight degradation on TP. Note that the evaluation of
FP in our experiment is sound and thorough partially in that our legitimate

0 10 20 30 40 50 60
Window size (day)

0.0

0.1

0.2

0.3

0.4

0.5

Fa
ls

e
 p

o
si

ti
v
e
 r

a
te

 (
%

)

Millersmiles
Google
None
Both

(a) FP vs window size (in number of days)

0 200 400 600 800 1000 1200 1400
Window size (hour)

0.0

0.1

0.2

0.3

0.4

0.5

Fa
ls

e
 p

o
si

ti
v
e
 r

a
te

 (
%

)

Millersmiles
Google
None
Both

(b) FP vs window size (in number of
hours)

Fig. 5. FP under various L and W with no TF-IDF filtering. Under all whitelists,
FP escalates with the growth of the sliding window size. FPs are zero when using
TF-IDF to filter false positives under all settings and are not plotted here.

corpus contains a diverse variety of data including those categories that are the
worst case scenarios for phish detection. As a result, the experimental result of-
fers conservative statistics that are more meaningful to the actual adoption and
deployment of our system. As suggested by the statistics in Table 4 and Table 5,
another feature of our system is that it offers an adjustable range of performance
depending on a user or provider’s willingness to accept false positives.

Evaluation against Toolbars In [23], Zhang et al proposed CANTINA, a
content-based method, which performed competitively against two state-of-the-
art toolbars, SpoofGuard and Netcraft. We implemented an offline version of
CANTINA, and evaluated our algorithms with CANTINA on the same corpus.

Table 3 shows that our algorithm outperformed CANTINA significantly on
FP, though its TP was inferior to CANTINA. Since the goal of our work is to
achieve a high TP on the basis of maintaining a close-to-zero FP, we can accept
this slight degradation on TP in exchange of a dramatic improvement on FP.
All real-world anti-phishing applications call for an extremely low FP, and thus
our solution is more effective and practical.

Table 3. Experiment reveals that our approach beats CANTINA significantly on
FP with some degradation on TP, indicating that our method is more practical
and effective in real-world scenarios. A combination of millersmiles and Google
whitelists was used here.

No FP filter With FP filter CANTINA

TP(%) 73.53 67.15 76.25

FP(%) 0.03 0.0 1.14

5 Discussion

In this section, we briefly discuss the merits and limitations of our current ap-
proach, and offer some ideas on how to address these problems.

5.1 Domain Whitelist and URL Blacklist

Domain whitelists have been shown in our experiment to be able to reduce FP.
However, using whitelists has risks too. For example, phishing sites hosted on
certain legal domains on our whitelists will be wrongly filtered as legitimate
cases, as shown in Sect. 4.4. However, we can always reduce this impact by
only using a core list of most targeted legal domains, whose defence systems are
usually superb, and therefore, it will be extremely difficult for attackers to evade
being detected by planting phishing sites into such legitimate domains.

Though our approach makes use of whitelists in the first step of the pipeline,
it does not rely solely on them to achieve an acceptable FP. As suggested in
Sect. 4.4, by only utilizing a small whitelist and mostly relying on the search
engine-based filtering to slash false positives, our approach does not suffer from
the incompleteness of whitelists and thus is scalable and realistic.

Currently, URL blacklists cannot detect new attacks unless the phishing
URLs remain the same, which is unlikely due to the phishing nature of con-
stantly avoiding tracking. Our work in this paper demonstrates a way to aug-
ment existing blacklists with conservative probabilistic strategies, and therefore
we did not conduct an experiment specifically using traditional blacklists only.

5.2 Blacklist-based Soft Matching

Obtaining new phishing patterns in a timely fashion is critical to signature-based
anti-phishing methods, and our approach addresses this problem by means of
a sliding window that incrementally and constantly adds verified phish from
blacklists into our database. Though the first few cases of new attacks are initially
able to evade our detection, we only need to identify a few new phishing instances
to update our model, subsequently being able to block the rest of the large
volume of phishing attacks built by toolkits while maintaining a nearly zero FP.

This design philosophy emphasizes the adaptiveness and responsiveness of
a usable phish detection system, and is a significant improvement over the tra-
ditional blacklist-based methods that are generally unable to cope with a high
volume of unique phish URLs. To enlarge the range of phishing variants covered,
our approach can be easily generalized to other phish feed like the APWG feed
with the assistance of the whole anti-phishing community.

We could further exploit the dynamic aspects of phishing blacklists to im-
prove our approach. For instance, we could prioritize our phish database by
putting the phishing attacks with the most matches in a recent period of time
in the top position for future comparison. In addition, although we currently
focus on English websites, the general idea of our approach and the pattern of
toolkit-based phishing attacks carry over to non-English sites, and our approach
could be modified slightly to accommodate that change.

5.3 Effectiveness of TF-IDF Filtering

Our TF-IDF filter module has been shown to be effective by its extremely low
number of FPs (see Sect. 4.4). Considering the fact that phishing activity always
targets well-known brands due to its lucrative nature, false positives tend to be
raised almost entirely on those popular target sites, which are very likely, if not
almost certainly, to be indexed by major search engines. Accordingly, querying
TF-IDF ranked terms plus the domain keyword will return the page domain as a
top result with a high probability, thus successfully removing the false positive.

On the other hand, true phishing attacks are not as likely to be filtered
by this module, thanks to the very nature that phishing sites rarely last long
enough to be included in a web index. This will be difficult for phishers to change,
because creating indexable, long-lived sites implies either access to stable hosting
infrastructure, or that hacked sites will be able to go undiscovered for significant
lengths of time. We believe the former is going to be too risky or expensive
for phishers to engage widely in, and the latter is already being addressed by
existing take-down approaches.

5.4 Legitimate Corpus

Our legitimate webpage collection mainly focuses on popular sites, commonly
spammed sites, webpages with characteristics similar to phish (such as login
forms), etc., and by appraising our idea on these hard cases, we actually pro-
vide worst case performance statistics, which is more beneficial for the real-life
application and deployment that follow.

Our data set is by no means representative of what users experience during
their everyday browsing. In [9], Bennouas et al proposed a random web crawl
model and found through large-scale experiments that the in-degree, out-degree
and pagerank of webpages follow power laws. Given the profit-driven nature of
phishing activity, it is unlikely that the gigantic number of low-profile and less
popular sites resemble the phishing pages with respect to the content, and not
using those data in our experiment has no impact on the experiment result.

5.5 Runtime Performance

On a machine with 1.73 GHz CPU and 2.00G RAM running Windows XP,
our detection algorithm took about 229.11 milliseconds on average to check
each web page with a standard deviation of 220.99 milliseconds. Filtering via
whitelists took roughly 0.18 milliseconds per URL. The phish detection phase
via the shingling algorithm in our pipeline is essentially an parallel problem, and
it should scale well because our phish database can be easily distributed into
multiple computers and the process of matching page content probabilistically
via database scanning can be easily parallelized.

We have two points of discussion here. First, we have not done many op-
timizations to our system for performance. Second, our approach is an embar-
rassingly parallel problem, one that scales well without a lot of effort, simply by

adding more computers. As such, existing blacklist services, ISPs, and takedown
services could easily use our approach to improve their ability and timeliness in
detecting phishing sites. The main limiting factor in terms of runtime perfor-
mace is bandwidth. The TF-IDF filter in our system queries Google to verify
the legitimacy of a webpage, which involves a round-trip traffic overhead on the
web. However, this filter is only triggered when a page is sufficiently similar to
an existing phishing signature, and considering the fact that the vast majority
of the pages will not in any way resemble phishing attacks, the query frequency
should be low enough. Moreover, caching search results on the client side is of
paramount importance to speed up the performance, and may to a certain extent
alleviate the network traffic problem.

5.6 How Phishers may Respond

We do not claim that our approach will solve the phishing problem. Rather, our
specific claim is that we can augment existing blacklists in a very conservative
manner using probabilistic techniques, with good results in terms of TPs and
FPs. Taking a wider perspective, criminals will inevitably come up with coun-
termeasures to the specifics of any deployed technique. What we offer here is a
new way of thinking about how to effectively combine human-verification with
ML and IR techniques, to increase the effectiveness of existing blacklists.

Phishers could try to penetrate our method by HTML obfuscation tricks
such as injecting garbage text to the DOM with tiny or invisible fonts, back-
ground color, 100% transparency, multiple i-frames. These are, however, more of
an implementation issue than a design one, and we can easily peel off those spe-
cial effects and extract intentionally separated text by manipulating the DOM in
the preprocessing step. Our system also cannot detect Flash-based phishing, and
would require other techniques to detect these. The use of other types of pop-
ular obfuscation techniques such as doorway pages, chains of redirections, URL
cloaking and so on is also futile in front of our algorithm. The reason is that
no matter how many irrelevant intermediate steps attackers try to involve, web
users will land in the actual phishing webpage eventually, and our content-based
detection idea still applies. As a matter of fact, such tricks in hope of obfuscating
online customers and anti-phishing algorithms turn out to be beneficial to our
method in that search engines are even less likely to crawl those phishing sites
given such gimmicks, and our search-oriented filtering module is thus more un-
likely to incorrectly filter the corresponding phishing attacks as legitimate cases.
These kinds of tricks could also be new features for machine learning algorithms
as well, again since few legitimate sites would use such techniques.

Another likely countermeasure that criminals would attempt is to have toolk-
its include some element of randomization, making it harder to do soft matching.
This, however, is not hard to cope with. If the randomization is in the invisible
part of the DOM, our argument in the beginning of the previous paragraph still
applies, and we can easily extract the real content. Should the random elements
be added to the web page content, we could tune the resemblance threshold t ac-
cordingly and still achieve a reasonable detection rate. On the other hand, there

is a limit on how much random noise attackers could add before web users start
feeling suspicious about the legitimacy of the web pages. Furthermore, restrict-
ing people’s awareness while hindering probabilistic matching simultaneously by
adding noise is not an easy task, which would make the process of designing
phish toolkits very difficult and thus significantly limits the vast production of
phishing attacks, rendering the cost-benefit undesirable for the criminals.

It is very hard for attackers to elevate the FP of our approach, since the design
of legitimate webpages and the crawling process of search engines are beyond
their control. It is even harder to trick search engines to give their phishing
sites higher rankings, due to the scrutiny of search engines, short-lived nature of
phishing behavior and negligible popularity scores of the phishing sites.

6 Conclusion

In this paper, we presented a system that combined human-verified blacklists
with information retrieval and machine learning techniques, yielding a proba-
bilistic phish detection framework that can quickly adapt to new attacks with
reasonably good true positive rates and close to zero false positive rates.

Our system exploits the high similarity among phishing web pages, a result
of the wide use of toolkits by criminals. We applied shingling, a well-known tech-
nique used by search engines for web page duplication detection, to label a given
web page as being similar (or dissimilar) from known phish taken from black-
lists. To minimize false positives, we used two whitelists of legitimate domains,
as well as a filtering module which uses the well-known TF-IDF algorithm and
search engine queries, to further examine the legitimacy of potential phish.

We conducted extensive experiments using phish from Phishtank and legit-
imate web pages from seven different sources. These experiments showed that
our proposed method had a TP of 73.53% and a FP of 0.03% without TF-IDF
filtering, and a TP of 67.15% and zero FP with TF-IDF filtering under the
optimal setting. Moreover, our approach is able to adapt quickly to zero-hour
attacks by incrementally building the model via a sliding window with a few
new phishing instances out of a huge magnitude of phishing attacks created by
toolkits, thus providing a feasible framework for industry to vastly improve the
existing limited blacklists without increasing their false positives. This sliding
window mechanism also leads to good balance between accuracy and runtime
efficiency: with only two weeks’ worth of training phish, our method had a TP
of 65.02% with 0% FP using search oriented-filtering, and a TP of 71.23% and
a FP of 0.03% without FP filtering.

Acknowledgements This work has been supported by NSF grants CCF-
0524189 and DGE-0903659. Additional support has been provided ARO re-
search grant DAAD19-02-1-0389 to Carnegie Mellon University’s CyLab, and
the CMU/Portugal Information and Communication Technologies Institute.

References

1. http://www.gartner.com/it/page.jsp?id=565125

2. http://www.phishtank.com/stats.php

3. http://sb.google.com/safebrowsing/update?version=goog-white-domain:1:

1

4. http://www.millersmiles.co.uk/scams.php

5. http://data.phishtank.com/data/online-valid/

6. http://dir.yahoo.com/Business_and_Economy/Shopping_and_Services/

Financial_Services/Banking/Banks/

7. http://rdf.dmoz.org/

8. Abu-Nimeh, S., Nappa, D., Wang, X., Nair, S.: A comparison of machine learning
techniques for phishing detection. In: Proceedings of the anti-phishing working
groups (APWG) 2nd annual eCrime researchers summit. pp. 60–69 (2007)

9. Bennouas, T., de Montgolfier, F.: Random web crawls. In: Proceedings of the 16th
international conference on World Wide Web (WWW’07). pp. 451–460 (2007)

10. Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of
the web. In: Proceedings of the sixth international conference on World Wide Web.
pp. 1157–1166 (1997)

11. Cova, M., Kruegel, C., Vigna, G.: There is no free phish: An analysis of ’free’
and live phishing kits. In: Proceedings of the 2nd USENIX Workshop on Offensive
Technologies (WOOT’08) (2008)

12. Fetterly, D., Manasse, M., Najork, M.: On the evolution of clusters of near-
duplicate web pages. In: Proceedings of the First Conference on Latin American
Web Congress. pp. 37–45 (2003)

13. Garera, S., Provos, N., Chew, M., Rubin, A.D.: A framework for detection and
measurement of phishing attacks. In: Proceedings of the 2007 ACM Workshop on
Recurring Malcode. pp. 1–8 (2007)

14. Henzinger, M.: Combinatorial algorithms for web search engines: three success sto-
ries. In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms. pp. 1022–1026 (2007)

15. Herley, C., Florncio, D.: A profitless endeavor: phishing as tragedy of the commons.
In: Proceedings of the 2008 workshop on New security paradigms. pp. 59–70 (2009)

16. Ludl, C., McAllister, S., Kirda, E., Kruegel, C.: On the effectiveness of techniques
to detect phishing sites. Lecture Notes in Computer Science (LNCS) 4579, 20–39
(2007)

17. Moore, T., Clayton, R.: Examining the impact of website take-down on phishing.
In: Proceedings of the Anti-phishing Working Groups (APWG) 2nd annual eCrime
Researchers Summit. pp. 1–13 (2007)

18. Pan, Y., Ding, X.: Anomaly based web phishing page detection. In: Proceedings
of the 22nd Annual Computer Security Applications Conference (ACSAC’06). pp.
381–392 (2006)

19. 3sharp report: Gone phishing: Evaluating anti-phishing tools for windows.
Tech. rep. (September 2006), http://www.3sharp.com/projects/antiphishing/
gone-phishing.pdf

20. Sheng, S., Kumaraguru, P., Acquisti, A., Cranor, L., Hong, J.: Improving phish-
ing countermeasures: An analysis of expert interviews. In: Proceedings of the 4th
APWG eCrime Researchers Summit (2009)

21. Sheng, S., Wardman, B., Warner, G., Cranor, L., Hong, J., Zhang, C.: An empirical
analysis of phishing blacklists. In: Proceedings of the 6th Conference on Email and
Anti-Spam (2009)

22. Xiang, G., Hong, J.: A hybrid phish detection approach by identity discovery and
keywords retrieval. In: Proceedings of the 18th International Conference on World
Wide Web (WWW’09). pp. 571–580 (2009)

23. Zhang, Y., Hong, J., Cranor, L.: Cantina: a content-based approach to detecting
phishing web sites. In: Proceedings of the 16th International Conference on World
Wide Web (WWW’07). pp. 639–648 (2007)

Appendix: Detailed Results under Various Settings

Table 4. TP (%) under day/hour-measured sliding window. Under all settings,
shingling with hour-level incremental model building is more responsive to phish-
ing attacks, attaining higher TPs under all L values. Our approach achieved
almost optimal TP with only 1 month’s worth of training phish.

No TF-IDF filtering
Window size (day) Window size (hour)

Whitelist 1 2 7 14 30 60 24 48 168 336 720 1440
Millersmiles 45.28 53.19 63.91 67.4 69.53 69.53 55.23 61.62 69.11 71.83 74.13 74.13
Google 44.94 52.68 63.32 66.81 68.94 68.94 54.72 61.11 68.51 71.23 73.53 73.53
None 45.28 53.19 63.91 67.4 69.53 69.53 55.23 61.62 69.11 71.83 74.13 74.13
Both 44.94 52.68 63.32 66.81 68.94 68.94 54.72 61.11 68.51 71.23 73.53 73.53

With TF-IDF filtering
Window size (day) Window size (hour)

Whitelist 1 2 7 14 30 60 24 48 168 336 720 1440
Millersmiles 43.66 50.55 59.66 62.13 64.17 64.17 52.34 57.79 63.83 65.62 67.74 67.74
Google 43.32 50.04 59.06 61.53 63.57 63.57 51.83 57.28 63.23 65.02 67.15 67.15
None 43.66 50.55 59.66 62.13 64.17 64.17 52.34 57.79 63.83 65.62 67.74 67.74
Both 43.32 50.04 59.06 61.53 63.57 63.57 51.83 57.28 63.23 65.02 67.15 67.15

Table 5. FP (%) under day/hour-measured sliding window. Whitelists lessen
the FPs, reaching 0.1199%, 0.06%, 0.5396%, 0.03% respectively with the
millersmiles, Google, none and both whitelists at L = 60 days or L = 1440 hours.
The search engine oriented filtering step significantly significantly improves the
FPs , downsizing FP values in all settings to zero.

No TF-IDF filtering
Window size (day) Window size (hour)

Whitelist 1 2 7 14 30 60 24 48 168 336 720 1440
Millersmiles 0.00 0.00 0.03 0.1199 0.1199 0.1199 0.00 0.00 0.03 0.1199 0.1199 0.1199
Google 0.00 0.00 0.03 0.06 0.06 0.06 0.00 0.00 0.03 0.06 0.06 0.06
None 0.00 0.00 0.2098 0.4496 0.5096 0.5396 0.00 0.00 0.2098 0.3597 0.5096 0.5396
Both 0.00 0.00 0.03 0.03 0.03 0.03 0.00 0.00 0.03 0.03 0.03 0.03

With TF-IDF filtering
Window size (day) Window size (hour)

Whitelist 1 2 7 14 30 60 24 48 168 336 720 1440
Millersmiles 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Google 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
None 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Both 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

