
ACCessory: Password Inference using
Accelerometers on Smartphones∗

Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, Joy Zhang
{eowusu, junhan, sauvik, perrig, sky}@cmu.edu

Carnegie Mellon University

ABSTRACT
We show that accelerometer readings are a powerful side channel that
can be used to extract entire sequences of entered text on a smart-
phone touchscreen keyboard. This possibility is a concern for two
main reasons. First, unauthorized access to one’s keystrokes is a se-
rious invasion of privacy as consumers increasingly use smartphones
for sensitive transactions. Second, unlike many other sensors found
on smartphones, the accelerometer does not require special privileges
to access on current smartphone OSes. We show that accelerometer
measurements can be used to extract 6-character passwords in as few
as 4.5 trials (median).

Keywords
Mobile Phone, Sensor Malware, Side-Channel Attack,
Keystroke Inference, Accelerometer

1. INTRODUCTION
Smartphones are ubiquitous. An ever-expanding consumer base

carries their handsets everywhere. However, this rapid growth comes
with new risks. While the proliferation of smartphones equipped
with high-resolution sensors has afforded developers an opportunity
to create highly interactive applications, users now rely on their smart-
phones to performmany privacy-sensitive tasks, such as online finan-
cial transactions and personal communications, that can be eaves-
dropped or exploited. In this paper, we argue that current security
measures in mobile platforms do not adequately address the malware
that exploits these high-resolution sensors.
Current smartphone platforms allow developers access to certain

hardware sensors (e.g., accelerometers) without requiring special priv-
ileges or explicit user consent. The security risks posed by micro-
phones and cameras have been well documented [18, 21]. How-
ever, the security risks of accelerometers have so far been largely
∗This research was supported by CyLab at Carnegie Mellon un-
der grants DAAD19-02-1-0389 and W911NF-09-1-0273, from the
Army Research Office, and by support from NSF under TRUST STC
CCF-0424422, IGERT DGE-0903659, and CNS-1050224, and by a
Google research award. The views and conclusions contained here
are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either express or
implied, of ARO, CMU, Google, NSF or the U.S. Government or
any of its agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotMobile’12, February 28–29, 2012, San Diego, California, USA.
Copyright 2012 ACM 978-1-4503-1207-3 ...$10.00.

ignored. This lack of concern might be because accelerometer val-
ues are perceived as benign. However accelerometers can expose
privacy-sensitive information to malicious applications, as the Touch-
Logger [5] and ACComplice [22] systems demonstrate.
The ability to eavesdrop on activity occurring in the foreground is

clearly a serious security breach that undermines the OS’s process
isolation architecture. As in the work by Cai and Chen [5], we fo-
cus on inferring user keystrokes using only data acquired from the
accelerometer in an Android smartphone device.
Contributions: We show that accelerometer readings are suffi-
cient to extract sequences of entered text on smartphones. We cre-
ate and evaluate a predictive model, trained only on acceleration
measurements, of the security-sensitive task of password entry. We
present findings on the inference accuracy as a function of the sam-
pling frequency of the accelerometer, the on-screen location of the
keypress, and the size of the predicted screen region. Additionally,
we present measures for mitigating this side channel.
ThreatModel: An application running in the background can col-
lect accelerometer output which violates the process isolation archi-
tecture that comprises much of Android OS’s security policy. In fact,
the accelerometer is a side channel that a background application can
exploit. Malware can observe user actions within a sensitive context,
such as account login, to deduce what context was active and subse-
quently infer the user’s interactions.
We assume that the adversary can execute applications on the mo-

bile device without special privileges beyond the permission to send
information over the network. This access may be easily acquired by
emulating a popular application that many users download, which
argues for a legitimate reason to obtain access to network communi-
cation. For example, users may not be concerned about permitting
network connectivity to a game application that uploads high scores
or downloads ad content. In fact, there have been reports of mali-
cious apps that were mere copies of existing apps with virus code
appended [1, 20]. The accelerometer side-channel attack is more in-
sidious since there exists no discernible code that clearly violates the
OEM’s terms of use within the malicious app.
We assume that the OS is not compromised so that the malicious

application simply executes as a standard application. We also as-
sume that the adversary’s application executes in the background and
logs accelerometer readings. Based on the leaked information, the
adversary can infer the foreground context and entered text from the
compromised device through data analysis.

2. BACKGROUND
To investigate the link between cyber security and physical secu-

rity, we transform a seemingly harmless application on Android Mar-
ketplace into a potential spying device. We study these issues using
the accelerometer on Google’s Android OS application architecture.

2.1 Accelerometers
The accelerometer measures the acceleration of the device on the x

Figure 1: These three images are screen captures of the Android data collection application. The user is prompted to select one of two
data collection modes: area or character mode. We analyze area mode data first to inform the subsequent character mode analysis.

(lateral), y (longitudinal), and z (vertical) axes. The most commonly
used accelerometer within smartphones is the LIS311DLH. At 3x3x1
mm, it is a tiny, low power, high performance linear accelerometer.
It senses the forces of acceleration in the x, y, and z planes to a pre-
cision of six decimal places in units of m/s2. Other accelerometers
embedded within Android devices are of a similar resolution. Given
the high resolution of these devices, it is possible to discern patterns
in the acceleration magnitudes for a variety of activities.
Researchers have used accelerometers in a diverse set of appli-

cations. Smart-Its Friends [9] and Are you with me? [11] use ac-
celerometers for device pairing (i.e., to identify when users are hold-
ing their phones together). Activity recognition via acceleration data
has been a well researched topic [4, 12, 14, 17]. Additionally, many
popular smartphone applications utilize accelerometers. Bump al-
lows two users to easily connect and share information by tapping
their smartphones together.1 Smart Alarm Clock identifies an ideal
time for a user to wake up by monitoring his or her sleep cycle.2

2.2 Android Platform
On the Android platform, each application runs as a dedicated

Linux process, and each process has its own virtual machine. This
isolation architecture sandboxes one application from all others. For
additional security controls, the Android platform maintains a list of
protected device features. An application that needs to access one
of these protected features (e.g., sending a SMS) or interact with
another application must declare its intentions by specifying the cor-
responding “permission” in an Android Manifest file. Users are then
notified about the permissions requested by the application at install
time. The desired security goal for this isolation architecture is that
no application can adversely affect other applications or the user.3
However, the accelerometer is not considered a “protected fea-

ture.” Consequently, applications do not require user permissions to
access the sensory outputs of the accelerometer. Further, the user
need not be made aware of an application’s solicitation of the ac-
celerometer. The fact that no special permissions are needed to ac-
cess accelerometer data indicates that acceleration readings are per-
ceived to abide by the isolation architecture’s policy that no applica-
tion can infer information that is not specifically permitted. Yet, as
we show in this paper, accelerometer readings can potentially reveal
highly sensitive information.

3. IMPLEMENTATION
1The Bump app sends motion sensor data to a server where a match-
ing algorithm pairs phones experiencing the same “bump” motion.
http://bu.mp/faq
2The Smart Alarm Clock app tracks body movements during sleep
via the accelerometer to calculate the optimal time to wake an indi-
vidual. http://blog.smart-alarm-clock.com/
3Android Security Architecture. http://developer.android.
com/guide/topics/security/security.html

We present a principled machine learning approach for extract-
ing text entered into a smartphone via accelerometer measurements.
This attack is a multi-step process involving keypress segmentation,
probabilistic keypress classification, and finally sorting keystroke se-
quences by maximum likelihood. In this paper, we focus on describ-
ing the latter two steps of the attack because key segmentation from
an acceleration stream is relatively straightforward using root-mean-
square anomalies for spike detection. Using this simple method, we
were able to obtain 94-96 percent segmentation accuracy and esti-
mate that we can diminish the error further by using more sophis-
ticated segmentation techniques. Thus, assuming segmented key-
presses, we present how to identify the affected region of the touch-
screen and map the predicted region to an on-screen keyboard. Then,
we present the use of a probabilistic error model constructed on train-
ing data to sort keystroke sequences by maximum likelihood.
One major challenge we face in this attack is that an error at any

step in the process cascades, ultimately corrupting predictive accu-
racy. To test the feasibility of this attack, we implement a virtual
testbed application to obtain ground truth acceleration streams corre-
sponding to key presses at specific screen regions, and analyze these
streams for predictive precision, recall, and accuracy.

3.1 Application Design
We implement an Android application for collecting accelerations

while a user types. The application is compliant with the Android
developer terms of use in that our application does not do anything
explicitly unauthorized. The application only requires network ac-
cess for offloading the collected data.
Our application has two collection modes: area and character.

The area mode interface is completely populated by a 10x6 array of
buttons. The buttons are similar in size to the buttons found on the
standard Android OS soft keyboard. We develop the area mode data
collection screen for two main purposes: (i) to evaluate the infer-
ence accuracy at varying levels of granularity to gain insight about
the amount of information noisy accelerometer data streams reveal
about keystrokes; and (ii) to quantify our intuition that certain re-
gions of the screen leak more information about keystrokes given a
typing style. The character mode interface consists of a QWERTY
keyboard arranged similarly to the Android soft keyboard screen.
The character mode is the testbed for our keystroke reconstruction
attack. Figure 1 shows screen captures of the data collection appli-
cation.
As the application runs, a new record is appended to a log file for

every updated accelerometer reading. Each record includes a times-
tamp, acceleration measurement, and a label unique to the pressed
key, if any. The accelerometer readings are triaxial4 and are mea-
sured in units of meters per second squared (m/s2). We monitor

4On smartphones running Android, the coordinate axes are defined
relative to the screen in its default orientation. For this discussion,
we define the x-axis, y-axis, and z-axis as the axis along the short
side, along the long side, and going through the screen, respectively.

key-pressed and key-released touch events as they are dispatched by
each button to establish the ground truth for our subsequent analyses.
As our test data consists of acceleration readings that are logged

while users complete simulated typing tasks, we implement an evolv-
ing color-coded scheme as a measure of progress for the user and to
ensure that every region of the screen receives a sufficient number of
samples: a button will turn green after the first press, blue after five
presses, and black after ten presses.

3.2 Data Analysis
At a high level, our data analysis consists of three main phases:

preprocessing, feature subset selection, and classification. We per-
form classification for area and charactermode separately–analyzing
area mode data first to inform subsequent character mode analysis.
Data Collection: Keypress data for both experiments was col-
lected from 4 participants using the HTC ADR6300 handset model.
Participants were between the ages of 18 and 30, and were all regu-
lar smartphone users. For the area mode inference experiment, we
collected data for about 1300 keypresses, where each one of the 60
screen areas received approximately 20 positive samples. Before
each data collection run, participants were instructed to press keys in
any order until all of the keys received at least one press. Testing was
done using k-fold cross-validation. For the charactermode inference
experiment, we collected training data for about 2700 keypresses–
again, ensuring that all keys received a similar number of positive
samples. Participants were instructed to either enter sentences or to
press keys in any order until all keys had received at least one press.
For testing, we logged data for 99 6-character passwords.
In practice, one would need to account for differences in typing

styles; however, addressing this is beyond the scope of our present
research. To ensure consistency across tests, we instructed all partic-
ipants to: (i) hold the device in the landscape orientation using both
hands and (ii) enter text using thumbs. We discuss several sources of
variability, including typing styles, in more detail in §5.
Preprocessing: Since the Android platform dictates when an ap-
plication receives updates for acceleration measurements, we use lin-
ear interpolation to obtain consistent sampling intervals throughout
the dataset. Interpolation also provides data smoothing which mit-
igates baseline signal noise in the data by suppressing moment-to-
moment spikes. We find that the average sampling rate of our de-
vices’ accelerometer is about 50Hz and continue our analyses with
this baseline sampling rate. Preprocessing the raw acceleration mea-
surements generates a modified dataset M = {xi,yi,zi,mi}si=1 where
s is the number of samples in our dataset, xi, yi, zi represent the accel-
eration along the respective axes, and mi is the Euclidean magnitude
of the acceleration.
Feature Selection: For each preprocessed acceleration stream, we
generate the set of 46 features detailed in Table 1. The first eleven
features in Table 1 summarize the acceleration stream information
for each dimension separately, and thus comprise 44 features in total.
The last two features, total time and window size, are summarized
meta-information about the key stream–the duration of the stream
and the number of samples in the stream, respectively.
We chose these features partially based on the results of prior

work [2, 5] that deals with triaxial accelerometer feature extraction
and partially based on insights gained from exploratory observations
of the data. To ensure the selection of an optimal set of features
for our classification task we employ the Wrapper feature subset se-
lector [10]. The Wrapper algorithm is coupled with a classification
algorithm and exhaustively searches through the feature space for the
set of features that maximizes a pre-specified “evaluation measure”–
in our case, the “evaluation measure” is the cumulative classification
accuracy of our model. Because we execute Wrapper for multiple
classification tasks we omit a final list of selected features as these
vary by the task domain.

Feature Description D/M
RMS The Root-Mean-Square value D
RMSE The Root-Mean-Square error D
Min The minimum value D
Max The maximum value D
AvgDeltas The average sample-by-sample change D
NumMax The number of local peaks D
NumMin The number of local crests D
TTP The average time from a sample to a peak D
TTC The average time from a sample to a crest D
RCR The RMS cross rate D
SMA The Signal Magnitude Area D
Total Time The Total Time of the window M
Window Size The number of samples in the window M

Table 1: This table contains the list of features used to summarize
acceleration stream values by window. Dimensional features (D)
are calculated separately for each dimension (x, y, z) as well as
the Euclidean magnitude of acceleration (m). Meta features (M)
describe the window features of the acceleration stream and are
calculated only once per feature vector.

It is worth noting that our analysis took on two forms: “contin-
uous” and “aggregate.” In the continuous form, we employ feature
extraction for each sample of each acceleration stream and treat the
analysis as a sequence classification problem. In the aggregate form,
we treat each acceleration stream corresponding to a keypress as a
single entity and extract features that describe the entity as a whole.
Empirically, we find that the aggregate form yielded substantially
better results. We therefore advance this discussion with only aggre-
gate features in mind.
Classification: At the highest level we want to identify which ac-
celeration streams correspond to specific touch events. We take as
input a feature vector, F , and output a prediction label, P, that corre-
sponds to the ground truth label, G. For all instances where P = G
we consider our model to have accurately “classified” the instance.
For the area mode analysis, we formulate the task of identifying
keystrokes as a hierarchical classification problem. We recursively
partition each area of the screen into two parts, and then classify in-
dividual keys within each new subarea. We can calculate the per-key
accuracy of each subdivision by taking the cumulative product of the
accuracies for each subdivision and the final per-key classification of
any given subarea. To ensure optimal accuracy at every division, we
perform a new feature subset selection at each division. We perform
these divisions at the 1/2, 1/4, and 1/8 granularities and compared
the per-key accuracy findings to discern the optimal scheme for max-
imum classification accuracy.
We find that the Random Forest [8] classification algorithm yields

the best results among a variety of candidates, including a multilayer
perceptron artificial neural network, sequential minimal optimization
trained Support Vector Machine [15], and C4.5 decision tree [16].
The Random Forest algorithm creates a set of n C4.5 decision trees,
training each with a random subsample of the given dataset. A split at
each node in a C4.5 trees is determined by looking at c randomly se-
lected features of the given feature space. A classification for a given
instance (in our case, the feature vector of an acceleration stream, F)
is made by pushing the instance down every tree in the forest and
counting the label of the training instance that the testing instance
matches as the “vote” for a particular tree. The votes are then tal-
lied, and the most frequent vote among the trees is considered the
prediction of the forest. We suspect that Random Forests performed
well because of the propensity for significant variability of feature
values between instances of the same label. Random Forests create
multiple trees based on a varying subset of features, making it more
robust than most other classifiers to intraclass variability.

1 2 4 8 60
20

40

60

80

100

In
fe
re
nc
e
A
cc
ur
ac
y

Screen Areas
Figure 2: Inference accuracy by screen region granularity. The
screen surface is partitioned into successively smaller blocks and
evaluated for classification accuracy.

Figure 3: This heat map shows the relative prediction accuracies
for each region on the device screen, where darker shades imply
greater predictive accuracy.

4. EVALUATION

4.1 Study 1: Area Mode Inference
In this study, we logged accelerometer data for about 1300 key

presses. We recorded approximately 20 samples for each screen re-
gion. Below, we report on the results of our hierarchical classifica-
tion model.
Hierarchical Classification: The results of our hierarchical clas-
sification scheme are summarized in Figure 2. The classification
accuracies reported for each recursive screen region split are ob-
tained by averaging the results over ten runs of stratified 5-fold cross-
validation. Notice that we obtain high fidelity classification accura-
cies for large screen region splits (e.g., 93% for halves) that tapers
off as we increase the granularity of our predictions. By multiplying
the successive division probability, we empirically find that splitting
the screen into eighths and then classifying individual region keys
yields the greatest average individual key accuracy of approximately
24.5%.
Figure 3 shows a heat map of the relative predictive accuracies of

our model across the surface of the device screen. Darker shades
in the heat map imply greater predictive accuracy for a specific key
region. We can see that, for the two-handed typing style, our model
obtains relatively high accuracy along the diagonal regions of the
screen, with other regions of high accuracy concentrated in the center
area of the screen. From this figure, we know which areas of the
screen yield the highest predictive accuracy, which helps inform a
probabilistic ranking of keystroke sequences.
Error Localization: Figure 4 shows the distribution of classifi-
cation errors in units of “key distance” from the ground truth. We
define a unit of key distance as the level of adjacency of one key to
another. For example, if a key b is directly adjacent to another key a,
we say that b is 1 key distance away from a. However, any key c that
is adjacent to b but not a is said to have a key distance of 2 from a. We
can see from Figure 4 that the vast majority of our model’s predic-
tions are concentrated within an error of 0 or 1 key distance (80%).
Furthermore, 91%, 96%, and 99% of our predictions are within 2, 3,

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

Pe
rc
en
tP
re
di
ct
ed
K
ey
s

Distance from True Key
Figure 4: This histogram shows the distribution of distances of
the predicted screen region from the actual screen region. Notice
that mispredictions are localized.

0 50 100 150 200
0

5

10

15

20

In
fe
re
nc
e
A
cc
ur
ac
y

Sampling Frequency (Hz)
Figure 5: Inference accuracy by accelerometer sampling fre-
quency. Note that these values are not best case estimates, as we
do not optimize our model for predictive accuracy in this analy-
sis.

and 4 keys, respectively. Thus, we conclude that most of our model’s
mispredictions are localized around the ground truth. This localiza-
tion informs a probability distribution of likely mispredictions that
we exploit to rank-order keystroke sequence predictions.
Sampling Rate: Figure 5 shows how the predictive accuracy of
our model varies in relation to the simulated resampling frequency of
our dataset. We observe that as the sampling rate increases to 100Hz,
we obtain significantly higher individual key accuracies. This find-
ing informs a potential resolution to the security concerns raised by
our findings: by enforcing a low sampling rate on the accelerom-
eter for untrusted applications or background applications, one can
substantially mitigate the predictive accuracy of keystroke inference
models.

4.2 Study 2: Character Mode Inference
In a second study, we logged acceleration readings during simu-

lated password entry tasks. We then performed data analysis using
the approach described in §3.2 to probabilistically generate a ranked
list of the entered text.
Data Set: We collected the dataset with measurements logged
from the character mode screen. We collected a training set con-
sisting of about 2700 keypresses. The training dataset is evenly
split between pangram tests (where we instruct participants to en-
ter sentences containing all letters of the alphabet), and coverage
tests (where we instruct participants to randomly touch keys until
all keys have received at least one press) collected from three partic-
ipants. The testing dataset consist of 99 6-character passwords col-
lected from the remaining participant. The passwords are based on a
public list of common passwords leaked from several databases.5
Prediction Ranking: The translation model produces a condi-
tional probability mass distribution, P(Pi|Gj), of predicted keys P by
actual keys G–a matrix containing the frequency of the actual keys
pressed for every prediction made by the model during training. We

5http://blog.jimmyr.com/Password_analysis_of_
databases_that_were_hacked_28_2009.php

0

10

20

30

40

50

60
Pe
rc
en
tP
as
sw
or
ds
U
nc
ov
er
ed

Median Rank

x̃= 22
x̃= 24 x̃= 26

x̃= 27

x̃= 212
x̃= 214

x̃= 215

25 210 215

Figure 6: The percentage of passwords cracked plotted against
the median number of trials required to extract those passwords.

utilize the probability mass distributions to generate a ranked list of
candidate passwords by running a maximum likelihood search for
the most probable classification errors for each keystroke sequence.
We operationalize the term “trial” as a single attempt at cracking

a password. Thus, in the case of our attack, a trial would refer to
traversing down a single step of the rank-ordered list produced by
our maximum likelihood search. As evident in Figure 6, our model
is able to correctly deduce 6 of the 99 passwords in a median 4.5
trials. Compare these results to the assumed case, that accelerometer
data provides little information about texts entered on the phone and
therefore does not violate the process isolation property. A brute
force attack on a 6 character length password takes approximately
228 trials on average. The model presented here cracked 59 of 99
passwords in approximately 215 median trials. From these results we
conclude that accelerometers can be used to significantly reduce the
search space for text entered on smartphones, resulting in the ability
to extract sensitive information, such as account passwords, from the
user.

5. DISCUSSION
Given that the data collection presented in this report is controlled,

the question remains: How feasible would an accelerometer attack be
in a real world setting? We discuss how our model can be extended
to handle several sources of uncertainty present during keystroke in-
ference, as well as a few potential mitigation strategies.
Sources of Variability: A real-world implementation of this at-
tack would have to address several sources of variability such as
different hand sizes, typing styles, screen sizes, and keyboard user
interfaces. Nevertheless, we do not claim that our models are gen-
eralizable to address these issues. Individual calibration will likely
always be a necessity, but we believe our model can be extended to
address these and other sources of variability given the appropriate
training data.
In general, though there certainly exists subtle variabilities, most

people enter text on smartphones in a similar fashion. We observe
several categories of typing styles. For example, some people prefer
to hold a phone with one hand while using the index finger of the
other hand to enter text, while others prefer to hold a phone with both
hands and enter text using their thumbs. Typing style also depends
on whether the phone is held in a portrait or landscape orientation. A
sample of the acceleration measurements can be used to identify the
holding style of the user. This enables the adversary to switch to the
appropriate translation model.
Some variables can be identified directly by the running applica-

tion (e.g., the screen size and keyboard UI). In the case of variability
that is not easily identified from the acceleration measurements or by
the application, the adversary can train the model separately for each
configuration and use the results of the model that produces the most
sensible output. We make simplifying assumptions because the goal

of our work is to show that such attacks are feasible due to the nature
of information leaked by accelerometers.
Real-World Threat: Major websites typically limit the number
of retries for entering a password. Our results indicate that a small
fraction of passwords can be cracked in a limited number of trials
(e.g., 1 of 99 passwords was cracked in 1 attempt and 6 of 99 in 4.5
median attempts). Attackers can perform this attack in a scalable
manner where cracking just 1% of passwords can be lucrative.
Our model makes no assumptions about the text being entered–

it simply maps sensor data to screen locations to keys. This attack
can be used to extract other types of text, such as text messages and
e-mail, where a perfect translation is not necessary to produce an
approximate text representation and enable the extraction of sensitive
information. Furthermore, the structured form of natural-language
text makes it vulnerable to further analysis (e.g., analysis that uses
a dictionary-backed sequencing model, such as the n-gram language
model, to further disambiguate the entered text.
There do exist simpler methods for attackers to obtain sensitive

information from smartphones. We discuss some of these threats in
§1 and §6. However, the accelerometer is a particularly interesting
case since it presents a physical side channel that cannot be easily
shielded or detected. It is prudent to consider an adversary with more
resources that is willing to invest the extra time needed to develop a
robust eavesdropping application with these stealthy properties. Our
model represents a proof-of-concept design to demonstrate that this
is a real threat.
Mitigation Strategies: Several counter measures can be taken to
defend against accelerometer-based side-channel attacks. OEMs can
take steps to increase the accountability of application publishers in
addition to increasing the likelihood that device owners identify sus-
picious apps. The first step is to force every application to declare
their intention to access the accelerometer and other motion sensors.
The next step is to inform users about applications that request poten-
tially dangerous combinations of permissions (in our case, network
access and fine-grained accelerometer data).
Furthermore, design solutions exist that complicate keystroke in-

ference. Enforcing a limit on the sampling frequency can certainly
help to mitigate the attack. As shown from §4.1, inference accuracy
drops significantly at lower sampling frequencies, thus reducing the
effectiveness of a keystroke inference attack. This approach, how-
ever, poses potential problems for legitimate applications requiring
fine-grained acceleration data. Another approach is to prevent back-
ground applications from accessing fine-grained accelerometer read-
ings, e.g., by reducing the sampling rate to 2 samples per second.
Other design solutions include varying the keyboard layout during
sensitive tasks such as password entry (e.g., altering the placement
of individual keys, or the entire keyboard) or to automatically initi-
ate the phone vibrator at random intervals during text entry. These
strategies would provide protections at the expense of usability.

6. RELATEDWORK
We discuss related research in the areas of mobile sensor malware,

keystroke inference, and accelerometers.
Researchers have studied malicious code on mobile devices that

learn information about the device owner using other embedded sen-
sors. For example, Schlegel et al. exploited an application that can
access the smartphone’s microphone to eavesdrop on sensitive com-
munications such as speech, the destination caller during tone dial-
ing, or menu selections based on sound emanations [18]. Xu et al.
considered malicious applications that used the camera on smart-
phones [21]. Cai, Machiraju, and Chen studied privacy risks that
stem from mobile phone sensors, but they only considered micro-
phone, camera, and GPS data, not accelerometer data [6].
Several researchers have studied the extraction of entered text from

PC and laptop keyboards–e.g., based on sound [3, 23] and inter-

keystroke timing observations [19]. (sp)iPhone uses motion sensors
in the iPhone 4 to infer keystrokes of nearby laptop users [13].
Researchers have used accelerometers to infer other types of infor-

mation about a device owner. Chang et al. used accelerometers em-
bedded in television remote controls (as well button press sequence
features) to distinguish between household members [7]. Liu et al.
developed uWave–software that uses triaxial accelerometer data on
mobile phones for highly accurate gesture recognition [12]. Our
prior work, ACComplice, uses accelerometers on smartphones to in-
fer the location of a moving vehicle within several minutes of drive
time [22].
The most closely related work is TouchLogger, which also pro-

poses to infer keystrokes based on accelerometer readings [5]. While
a promising first step, it remains unclear how powerful accelerome-
ters readings really are, due to TouchLogger’s lack of sequencing
inference, and the coarse level of granularity by only distinguish-
ing amongst 10 large screen areas. We evaluate this side channel
at the granularity needed to make inferences about entered text on
standard smartphone keyboards–Touchlogger distinguishes only 10
keys whereas ACCessory distinguishes 29-60 categories. Addition-
ally, we evaluate the efficacy of inferring a sequence of keys instead
of the per-key accuracy and present an approach for mitigating errors
during keystroke sequencing.

7. CONCLUSION
Aswe demonstrate in this paper, accelerometer readings are highly

security sensitive. We show how a background application can use
the accelerometer as a side channel to spy on keystroke informa-
tion during sensitive operations such as account login. We are able
to break 6 of 99 six-character passwords in as few as 4.5 attempts
(median). Allowing for more attempts, we successfully break 59 of
99 passwords using only accelerometer measurements logged dur-
ing text entry. Given our results, it is clear that future versions of
mobile devices need to restrict access to accelerometer information
as strictly as access to microphone and camera sensors’ information.

8. REFERENCES
[1] Android Hit by Rogue App Malware. BBC:

http://www.bbc.co.uk/news/technology-12633923,
March 2011.

[2] Felicity R Allen, Eliathamby Ambikairajah, Nigel H Lovell,
and Branko G Celler. Classification of a Known Sequence of
Motions and Postures from Accelerometry Data using
Adapted Gaussian Mixture Models. In Physiological
Measurement, volume 27, 2006.

[3] Dmitri Asonov and Rakesh Agrawal. Keyboard Acoustic
Emanations. In Proceedings of IEEE Symposium on Security
and Privacy, 2004.

[4] Ling Bao and Stephen Intille. Activity Recognition from
User-Annotated Acceleration Data. In Pervasive Computing,
volume 3001 of Lecture Notes in Computer Science, pages
1–17. Springer Berlin / Heidelberg, 2004.

[5] Liang Cai and Hao Chen. TouchLogger: Inferring Keystrokes
on Touch Screen from Smartphone Motion. In USENIX
Workshop on Hot Topics in Security (HotSec), 2011.

[6] Liang Cai, Sridhar Machiraju, and Hao Chen. Defending
Against Sensor-Sniffing Attacks on Mobile Phones. In
Proceedings of ACM Workshop on Networking, Systems, and
Applications for Mobile Handhelds (MobiHeld), 2009.

[7] Keng hao Chang, Jeffrey Hightower, and Branislav Kveton.
Inferring Identity using Accelerometers in Television Remote
Controls. In Proceedings of the International Conference on
Pervasive Computing, 2009.

[8] Tin Kam Ho. C4.5 Decision Forests. In Proceedings of the 3rd
International Conference on Document Analysis and
Recognition, 1995.

[9] Lars Erik Holmquist, Friedemann Mattern, Bernt Schiele,
Petteri Alahuhta, Michael Beigl, and Hans-W. Gellersen.
Smart-Its Friends: A Technique for Users to Easily Establish
Connections between Smart Artefacts. In Proceedings of
Ubicomp, 2001.

[10] Ron Kohavi and George H. John. Wrappers for Feature Subset
Selection. In Artifical Intelligence, volume 97, pages 273–324,
1997.

[11] Jonathan Lester, Blake Hannaford, and Gaetano Borriello.
“Are You with Me?” - Using Accelerometers to Determine If
Two Devices Are Carried by the Same Person. In Pervasive
Computing, volume 3001 of Lecture Notes in Computer
Science, pages 33–50. Springer Berlin / Heidelberg, 2004.

[12] Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu
Vasudevan. uWave: Accelerometer-Based Personalized
Gesture Recognition and Its Applications. Pervasive and
Mobile Computing, 5(6):657 – 675, 2009.

[13] Philip Marquardt, Arunabh Verma, Henry Carter, and Patrick
Traynor. (sp)iPhone: Decoding Vibrations From Nearby
Keyboards Using Mobile Phone Accelerometers. In
Proceedings of ACM Conference on Computer and
Communications Security, CCS, 2011.

[14] Uwe Maurer, Anthony Rowe, Asim Smailagic, and Daniel P.
Siewiorek. eWatch: A Wearable Sensor and Notification
Platform. In IEEE Workshop on Wearable and Implantable
Body Sensor Networks, 2006.

[15] John Platt. Sequential Minimal Optimization: A Fast
Algorithm for Training Support Vector Machines. Technical
report, Microsoft Research, 1998.

[16] J. Ross Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers Inc., 1993.

[17] Nishkam Ravi, Nikhil D, Preetham Mysore, and Michael L.
Littman. Activity Recognition from Accelerometer Data. In
Proceedings of Conference on Innovative Applications of
Artificial Intelligence (IAAI), pages 1541–1546, 2005.

[18] Roman Schlegel, Kehuan Zhang, Xiaoyong Zhou, Mehool
Intwala, Apu Kapadia, and XiaoFeng Wang. Soundcomber: A
Stealthy and Context-Aware Sound Trojan for Smartphones. In
Proceedings of Network and Distributed System Security
Symposium (NDSS), February 2011.

[19] Dawn Xiaodong Song, David Wagner, Song David, and
Xuqing Tian. Timing Analysis of Keystrokes and Timing
Attacks on SSH, 2001.

[20] Vanja Svajcer. Malicious cloned games attack Google Android
Market. Naked Security:
http://nakedsecurity.sophos.com/2011/12/12/

malicious-cloned-games-attack-google-android-market/,
December 2011.

[21] Nan Xu, Fan Zhang, Yisha Luo, Weijia Jia, Dong Xuan, and
Jin Teng. Stealthy Video Capturer: A New Video-Based
Spyware in 3G Smartphones. In Proceedings of ACM
Conference on Wireless Network Security (WiSec), 2009.

[22] Jun Han; Emmanuel Owusu; Thanh-Le Nguyen; Adrian
Perrig; Joy Zhang. ACComplice: Location Inference using
Accelerometers on Smartphones. In Proceedings of the
International Conference on Communication Systems and
Networks (COMSNETS), January 2012.

[23] Li Zhuang, Feng Zhou, and J. D. Tygar. Keyboard Acoustic
Emanations Revisited. In Proceedings of ACM Conference on
Computer and Communication Security (CCS), November
2005.

