
An Architecture for

Privacy-Sensitive Ubiquitous Computing
Jason I. Hong

Group for User Interface Research
Computer Science Division

University of California at Berkeley
Berkeley, CA, 94720-1776 USA

jasonh@cs.berkeley.edu

James A. Landay
DUB Group

Computer Science and Engineering
University of Washington

Seattle, WA 98105-4615 USA

landay@cs.washington.edu

ABSTRACT

Privacy is the most often-cited criticism of ubiquitous computing,
and may be the greatest barrier to its long-term success. However,
developers currently have little support in designing software
architectures and in creating interactions that are effective in
helping end-users manage their privacy. To address this problem,
we present Confab, a toolkit for facilitating the development of
privacy-sensitive ubiquitous computing applications. The
requirements for Confab were gathered through an analysis of
privacy needs for both end-users and application developers.
Confab provides basic support for building ubiquitous computing
applications, providing a framework as well as several
customizable privacy mechanisms. Confab also comes with
extensions for managing location privacy. Combined, these
features allow application developers and end-users to support a
spectrum of trust levels and privacy needs.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques –

Software libraries. D.2.11 [Software Engineering]: Software

Architectures – Domain-specific architectures. H.1.2 [Models

and Principles]: User/Machine Systems – Human factors. H.5.2

[Information Interfaces and Presentation]: User Interfaces –

User-centered design. K.4.1 [Computers and Society]: Public
Policy Issues – Privacy.

General Terms

Design, Security, Human Factors

Keywords

Ubiquitous computing, privacy, toolkit, Confab, location

1. INTRODUCTION
Westin defined information privacy as “the claim of individuals,
groups or institutions to determine for themselves when, how, and
to what extent information about them is communicated to others”
[70]. While many people believe that ubiquitous computing holds
great promise, privacy is easily its most often-cited criticism.

Numerous interviews (e.g. [8, 35, 43]), essays (e.g. [21, 67, 69]),
books (e.g. [11, 28]), and negative media coverage (e.g. [64, 71])
have described people’s concerns about the strong potential for
abuse, general unease over a potential lack of control, and desire
for privacy-sensitive systems. These concerns suggest that privacy
may be the greatest barrier to the long-term success of ubiquitous
computing.

The large majority of previous work on privacy has tended to
focus on providing anonymity or on keeping personal information
and messages secret from hackers, governments, and faceless
corporations. While anonymity and secrecy are clearly important,
they only address a relatively narrow aspect of privacy and do not
cover the many situations in everyday life where people do want
to share information with others. For example, one could imagine
sharing one’s location information with friends to facilitate micro-
coordination of arrivals at a meeting place, or sharing simple
notions of activity to convey a sense of presence to co-workers
and friends. It is important to note here that the parties that are
receiving such information already know one’s identity, are not
adversaries in the traditional sense, and that the privacy risks may
be as simple as wanting to avoid undesired social obligations or
potentially embarrassing situations.

The point is that, rather than being a single monolithic concept,
privacy is a fluid and malleable notion with a range of trust levels
and needs. Our focus here is in empowering people with choice
and informed consent, so that they can share the right information,
with the right people and services, in the right situations. As
Weiser noted, “The problem, while often couched in terms of
privacy, is really one of control. If the computational system is
invisible as well as extensive, it becomes hard to know what is
controlling what, what is connected to what, where information is
flowing, how it is being used…and what are the consequences of
any given action” [69].

However, the problem is that it is still difficult to design and
implement privacy-sensitive ubicomp applications. Previous
work, such as the PARCTab system [61], the Context Toolkit
[20], and iROS [42], provide support for building ubicomp
applications, but do not provide features for managing privacy.
Consequently, system developers have little guidance or
programming support in creating architectures and user interfaces
that are effective in helping end-users manage their privacy. The
result is that privacy is done in an ad hoc manner and often as an
afterthought, if at all, leading to applications that end-users may
ultimately reject because they are uncomfortable using them or
find them intrusive.

Based on an analysis we performed of end-user privacy needs and
developer privacy needs, we have developed Confab, a toolkit

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MobiSYS’04, June 6–9, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-793-1/04/0006…$5.00.

facilitating the construction of privacy-sensitive ubicomp
applications. Confab is tailored for context-aware computing [62],
an aspect of ubiquitous computing in which sensors and other
data sources are leveraged to provide computing systems with an
increased awareness of a user’s physical and social environment.
From a software architecture perspective, Confab provides a
framework and an extendable suite of privacy mechanisms that
allow developers and end-users to support a spectrum of trust
levels and privacy needs. This framework is designed such that
personal information is captured, stored, and processed on the
end-user’s computer as much as possible. Afterwards, end-users
can choose what information to share with others. This approach
provides end-users with greater control over disclosures than
previous approaches. This constraint can also be relaxed in
situations with greater trust or fewer privacy concerns, such that
capture, storage, and processing are done on other computers.

From an end-user perspective, Confab facilitates the creation of
three basic interaction patterns for privacy-sensitive applications
[33]: optimistic, where an application shares personal information
and detects abuses by default; pessimistic, where it is more
important for an application to prevent abuses; and mixed-

initiative, where decisions to share information are made
interactively by end-users.

It should be noted that Confab is not intended to provide perfect
privacy, if there is even such a thing. There are many social and
organizational issues that simply cannot be managed by
technological means alone. Ultimately, privacy will have to be
managed through a combination of technology, legislation,
corporate policy, and social norms [50]. What Confab does
provide is a more solid technical foundation for privacy-sensitive
ubiquitous computing than previous approaches, making it easier
for developers to build privacy-sensitive applications for an
intended community of users and for companies to offer their
services while minimizing the risk to people’s privacy. As an
analogy, a web design tool can be used to create good as well as
bad web sites, but a useful tool will be oriented to make it easier
to create good ones.

The rest of this paper is organized as follows. First, we examine
the requirements for a toolkit for privacy-sensitive applications.
We continue with a description of Confab’s architecture and how
it supports those requirements, including some specific
mechanisms for managing location privacy built within Confab’s
framework. Then, we describe our evaluation with three
applications we have built on top of Confab. We wrap up with a
comparison to related work, a brief discussion of future work, and
conclusions.

2. SYSTEM REQUIREMENTS
The primary metric of success for any toolkit is if it can be used to
create a useful and non-trivial subset of the full design space of
applications in a manner that is faster, is higher quality, or has
more useful features than without it. In this section, we explore
the targeted design space, looking at the requirements we gathered
by analyzing end-user and application developer needs.

2.1 End-User Needs
The end-user needs for Confab were gathered through scenario-
based interviews on location-enhanced applications we performed
with twenty people of various ages and computer expertise;

extended analysis of freeform comments we performed on a
previous survey of 130 people on ubicomp privacy preferences
[49]; analysis of research papers [8, 14, 32, 35, 37, 38, 43, 49] on
hypothetical and actual usage of emerging ubicomp systems
where privacy was an issue, as well as postings on a message
board [1] by nurses working in hospitals using locator systems;
analysis of several proposed and existing privacy protection laws
[2, 22, 27]; and analysis of several different design guidelines for
privacy-sensitive systems [5, 9, 55], in particular the fair
information practices [48, 70] and asymmetric information flows
[41]. A full discussion of the results of our analysis are beyond
the scope of this paper. Instead, we provide a summary of six
major themes, as shown in Table 1.

End-user requirements

• Clear value proposition
• Simple and appropriate control and feedback
• Plausible deniability
• Limited retention of data
• Decentralized control
• Special exceptions for emergencies

Table 1. Summary of end-user requirements.

First, applications need an upfront value proposition that makes it
clear what benefits are offered and what personal information is
needed to offer those benefits. This need was most pronounced in
the early active badge systems [68] and in the nurse message
board [1], where a lack of a clear value proposition led to
resentment and sometimes outright rejection of a system.

Second, people want simple control over and feedback about who
can see what information about them [1, 14, 35, 37, 38]. For
example, the PARCTab system provided no feedback about what
information was being revealed to others [38, 61]. There were
serious concerns that a co-worker or boss could monitor a user’s
location by making repeated queries about the user’s location
without that user knowing. Previous research has focused on
flexible, yet complex access control mechanisms; however, our
surveys and interviews suggest that in many cases, simple access
control and basic notifications are sufficient. Access control can
be used to select who can view personal information, with
notifications providing social visibility to prevent abuses. For
example, Alice is less likely to repeatedly query Bob’s location if
she knows that Bob can see each of her requests.

There are also concerns about continuous versus discrete flows of
information. Many of our interviewees said they would be
comfortable with co-workers getting snapshots of their current
location, but would be less comfortable continuously sharing their
location information, as that could be used to monitor them.

Third, people expressed a strong desire for plausible deniability.
Our survey and interviews, as well previous work on ubicomp in
the home [37], have suggested a social need to avoid potentially
embarrassing situations, undesired intrusions, and unwanted
social obligations. For example, it is not uncommon for an
individual to answer with a white lie when asked on the phone
what they are doing. Cell phones are a good example of a system
that provides plausible deniability. If a person does not answer a
call, it could be for technical reasons—such as being outside of a
cell, not having the phone with them, or that the phone is off—or
for social reasons, such as being busy or not wanting to talk to the

caller right now. By default, it does “the right thing” without the
end-user having to take any special action.

Fourth, some of our interviewees were concerned over long-term
retention of personal information, as it opens up the possibility for
extensive data mining. Limited data retention is also an issue
explicitly espoused by data protection laws [2, 22, 27].

Fifth, people are concerned about systems that centralize data [8,
38]. While there are many advantages to centralized architectures,
it also means that sensitive data is stored on a computer that end-
users have little practical control over. For example, while a
visible effort was made to create written privacy policies about
how location information was used in the PARCTab system [61],
users still had the perception that if the research team or upper-
level managers wanted to examine the data, there was little they
could do about it [38]. Similar debates have emerged over the
deployment of E911 in the United States.

Sixth, people expressed the desire for special exceptions for
emergencies. In crisis situations, safety far outweighs privacy
needs. This sentiment was universal across all of our interviewees.
Our interviews also noted that E911 made sense if it transmitted
location information only when making the call, and not at any
other time. Trusted proxies are sometimes used to handle these
kinds of situations. For example, MedicAlert [3] is a paid service
that stores personal medical records and forwards it to emergency
responders in the case of medical emergencies.

2.2 Application Developer Needs
The application developer needs for Confab were gathered by
identifying privacy functions common in several networked as
well as ubicomp applications. We examined research prototypes
and emerging commercial applications, limiting the scope to what
we call personal ubiquitous computing, systems where data starts
with the end-user and can optionally be disclosed to others in a
limited manner. We also chose to focus more on location than on
other forms of contextual information, since a sizeable number of
this type of application is emerging in the market, and thus has a
clearer path to widespread use. We were also influenced by the
Geopriv working group’s requirements for location privacy [18]
and our previous work on asymmetric information flows [41].

The genres of applications we have examined include messaging
systems, such as cell phones, instant messenger, SMS, and
messaging within [52] and between homes [37]; guides for
exploration and navigation [4, 54]; finders for finding people,
places, or things [7, 31]; group awareness displays [20, 31];
augmented-reality games [25, 29]; contextual tagging and
retrieval, including personal memory aids [12, 46, 59], associating
topical information with places [13, 24, 56, 62]; situational real-
time information (such as local weather or traffic); and enhanced
safety for individuals and emergency responders [26, 51].

From a systems standpoint, there are several basic features that
need to be supported, including acquiring context data from a
variety of sources, refining and storing that context data, and
retrieving and using context data. This last issue, retrieving and
using, can be done either through push transactions (e.g., you
send your location in an E911 call) or pull transactions (e.g., a
friend requests your location). For each of these types, there is
also a need for continuous sharing, where personal data is
constantly forwarded to another party (e.g., continuously sharing

health information with your doctor), as well as for discrete
disclosures that happen intermittently or one time only. These are
basic features that are mostly supported by other systems aiding
the development of ubicomp applications (e.g. [20, 61]).

From a privacy standpoint, we have identified six common
features that need to be supported (see Table 2). The first is
support for the three basic interaction patterns for privacy-
sensitive applications: pessimistic, optimistic, and mixed-initiative
[33]. In pessimistic applications, end-users set up preferences
beforehand, placing strict requirements on when personal
information can flow to others. In contrast, optimistic applications
[57] are designed to allow greater access to personal information
but make it easier to detect abuses after the fact with logs and
notifications. For example, AT&T mMode’s Find Friends [7]
provides a notification each time a friend requests your location.
Optimistic access control is useful in cases where openness and
availability are more important than complete protection.
Optimistic access control is also easier to use, since it is difficult
for people to predict all of the possible usage scenarios they might
find themselves in, and thus all of the necessary permissions. In
mixed-initiative control, end-users are interrupted when someone
requests their personal information and must make a decision then
and there. An example is choosing whether or not to answer a
phone call given the identity of the caller.

The second is support for tagging personal information as it flows
to others, as described by Geopriv [18] and by Korba and Kenny
[45]. Personal information can be marked with preferences about,
for example, whether it should be forwarded to others or how long
it should be retained. These tags can be thought of as applying
Digital Rights Management for privacy purposes, and can be used
as a fingerprint to help with tracking and auditing as well.

The third privacy need is mechanisms for controlling the access,
flow, and retention of personal information, i.e. the quantity of
personal information disclosed to others. These include
restrictions based on identity, location (e.g., only allow inquirers
in the same building as me to see my location), and time (e.g., co-
workers can see my location between 9AM and 5PM), as well as
invisible mode, a common feature in instant messenger clients
where no information is disclosed.

The fourth necessary feature is granular control over the precision
of disclosures, i.e. the quality of disclosures. One could choose to
disclose one’s location as “123 Main Street” or “Atlanta”, or
one’s activity as “writing a paper” or “busy” depending on who is
requesting the information and on the current situation.

The fifth common privacy feature is logs, both for clients and
servers. On the client side, logs that are summarized in a compact

Application Developer requirements

• Support for optimistic, pessimistic, and mixed-
initiative applications

• Tagging of personal information
• Mechanisms to control the access, flow, and

retention of personal information (quantity)
• Mechanisms to control the precision of personal

information disclosed (quality)
• Logging

Table 2. Summary of developer requirements.

form make it easier for end-users to understand who is accessing
what data. On the server side, logs make it easier for service
providers to audit their activities to ensure that they are handling
their customers’ personal information properly. On both sides,
logs also make it possible to apply machine learning techniques to
detect unusual access patterns that might indicate abuses of
someone’s personal information.

2.3 Summary of Requirements
We have organized the end-user and application developer
requirements into four high-level requirements below.

• A decentralized architecture, where as much personal
information about an end-user is captured, stored, and
processed on local devices owned by that end-user

• A range of mechanisms for control and feedback by end-
users over the access, flow, and retention of personal
information, to support the development of pessimistic,
optimistic, and mixed-initiative applications.

• A level of plausible deniability built in

• Special exceptions for emergencies

It is important to note here that the requirements presented above
are intended to support a range of privacy policies rather than all
being used in a single application. Different communities have
different trust relationships. There is a spectrum of privacy needs,
and ubiquitous computing applications should be tailored to those
needs [41].

3. CONFAB SYSTEM ARCHITECTURE
Confab provides a framework for ubiquitous computing
applications, where personal information is captured, stored, and
processed on the end-user’s computer as much as possible. This
gives end-users a greater amount of control and choice than
previous systems over what personal information is disclosed to
others. In this section, we describe this framework, the built-in
privacy mechanisms for Confab, as well as specific extensions for
location privacy built within this framework. We describe these
features with respect to the Confab’s data model and
programming model.

An important issue to address here is whether this kind of
architecture is feasible, especially the capture of personal
information in a privacy-sensitive manner. We believe that there
will be a useful and non-trivial subset of ubicomp applications
built along these lines, for two reasons. First, over the past few
years, the research community has been moving from centralized
location-tracking architectures (e.g., [68]) to decentralized
location-support ones (e.g., [58, 63]) for reasons of scalability and
privacy. We believe that future research will continue this trend in
providing privacy protection in the physical sensor layer for other
forms of personal contextual information. Second, there is already
a large market for personal items in which sensors can be cheaply
embedded, for example PDAs, home security systems, and cars.
Although Confab could be used in cases where data is initially
captured by others (e.g., smart rooms or surveillance cameras), we
do not explicitly address those cases.

3.1 Usage Scenario
In this section, we describe two scenarios to help illustrate what
kinds of applications we want to support and roughly how they
would work within Confab.

Scenario 1 – Find Friend

Alice’s workplace has set up a new server that employees can use
to share their location information with one another. Employees
can choose to share their location information by uploading
updates to the server at the level they desire, for example at the
room level, at the floor level, or just “in” or “out”. To help allay
privacy concerns, the server is also set up to provide notifications
to a person whenever their location is queried, and to accept
queries only if the requestor is physically in the same building.

Scenario 2 – Mobile Tour Guide

Alice is visiting Boston for the first time and wants to know more
about the local area. She already owns a location-enabled device,
so all she needs to do is find a service that offers an interactive
location-enhanced tour guide and link her device to it. She
searches online and finds a service named Bob that offers such
tour guides for a number of major cities. She decides to download
it and try it out.

When starting the application, Alice discovers that Bob offers
three levels of service. If Alice chooses to share her location at the
city level, Bob can tell her how long the lines are at major venues
such as museums, and what calendar events there are. If she
shares her location at the neighborhood level, Bob can also tell
her what interesting shops there are and nearby points of interest.
If she shares it at the street level, Bob can offer Alice all of the
features described above, as well as real-time maps and a route
finder that can help her navigate. The application also states that
Bob will retain her location data for up to 3 months, and at the
neighborhood level sends updates of her location to Bob every 10
minutes when the application is running.

Since this is her first time using the service, and since she has not
heard of Bob before, Alice decides to share her location
information at the neighborhood level.

3.2 Confab’s Data Model
Confab’s data model is used to represent contextual information,
such as one’s location or activity. People, places, things, and
services (entities) are assigned infospaces, network-addressable

Figure 1. An infospace (represented by clouds) contains
contextual data about a person, place, or thing.
Infospaces contain tuples (squares) that describe
individual pieces of contextual data, for example Alice’s
location or PDA-1138’s owner. Infospaces are contained
by Infospace servers (rounded rectangles).

logical storage units that store context data about those entities
(see Figure 1). For example, a person’s infospace might have
static information, such as their name and email address, as well
as dynamic information, such as their location and activity.

Sources of context data, such as sensors, can populate infospaces
to make their data available for use and retrieval. Applications
retrieve and manipulate infospace data to accomplish context-
aware tasks. Infospaces also provide an abstraction with which to
model and control access to context data about an entity. For
example, individuals can specify privacy preferences for how their
infospace handles access control and flow (described in greater
detail below).

Infospaces are managed by infospace servers, which can be either
distributed across a network or managed centrally, analogous to
how a person could choose to have their personal web site hosted
on their home machine or by an ISP. Here, we focus on the case
where infospaces represent contextual information about
individuals and are hosted on devices owned by those individuals.

The basic unit of storage in an infospace is the context tuple.
Tuples are used to represent intrinsic context, that is an attribute
about an entity (e.g., a person’s age), as well as extrinsic context,
which is a relationship between two entities (e.g., a person is in a
room). Tuples are also used to represent static pieces of contextual
information (e.g., an email address), as well as dynamic
contextual information (e.g., a person’s location). These different
kinds of contextual information are summarized in Table 3.

Attributes of interest common to all tuples are datatype, a textual
name describing the relationship of a tuple to the containing
infospace’s entity (for example, location or activity); dataformat,
a string that describes the meaning of the data (for example,
temperature could be Farenheit or Celsius); an optional entity-link
denoting the address of an infospace for an entity described by the
tuple; and one or more values, each identified by name (see
Figure 2 for an example). Infospaces can store tuples containing
arbitrary data, many of which may describe other entities related
to the original infospace. Such tuples’ entity-link attributes refer
to the infospace of the other entity. For instance, the infospace for
a specific room may contain numerous tuples of type ‘occupant’,
each with values denoting a name and email of an occupant of the
room and an entity-link referring to the infospace that hold tuples
on behalf of that occupant.

Each tuple can also optionally have a privacy tag which describes
hints provided by the end-user on how that tuple should be used
when it flows to a computer outside of the end-user’s direct
control. The current implementation of privacy tags provides hints
on when a tuple should be deleted, to help enforce limited data
retention. End-users can have their tuples tagged with a
TimeToLive, which specifies how long data should be retained
before being deleted; MaxNumSightings, which specifies the
maximum number of previous values that should be retained (for
example, a value of 5 means only retain the last five places I was
at); Notify, which specifies an address to send notifications of
second use to; and GarbageCollect, which specifies additional
hints on when the data should be deleted, for example, when the
current holder of the tuple has left the area.

By default, when a tuple of any datatype is requested, its value is
“UNKNOWN”, regardless of whether it actually exists or not.
Requests can see correct tuple values only if they have been
granted access. This approach provides some level of plausible

deniability, as a datatype might be unknown due to technical
failures, lack of actual data, restricted access, or because the
person is in invisible mode.

Infospace servers, infospaces, and context tuples are currently
implemented using standard web technologies. Infospace servers
are built on top of web servers, simplifying deployment and
providing a clear mental model for programmers and end-users.
Individual infospaces are named via URLs, and can be thought of
as web-based tuplespaces with specialized constraints. Context
tuples are currently represented as data-centric XML documents.
That is, context tuples consist only of XML tags and XML
attributes, with no text between tags.

 Intrinsic Extrinsic

Static Name, age,
email address

A room is part of a
building

Dynamic Activity, temperature A person is in a
specific room

Table 3. Confab supports different kinds of context data.
Static context data does not change or changes very
slowly, whereas dynamic context data changes often.
Intrinsic context data represents information about that
entity itself, whereas extrinsic context data represents
information about an entity in relationship to another entity.

<ContextTuple dataformat=“edu.school.building”
 datatype=“location”
 description=“location of an entity”
 entity-link=“http://myhost.com/~jdoe”
 entity-name=“John Doe”
 timestamp-created=“2003.Feb.13 16:06 PST”>

 <Values>
 <Value value=“523” />
 </Values>

 <Sources>
 <Source datatype=“location”
 link=“http://localhost/map.jsp”
 source=“Location Simulator”
 timestamp=“2003.Feb.13 16:06 PST”
 value=“523” />
 </Sources>

 <PrivacyTags>
 <Notify value=“mailto:addr@mail.net” />
 <TimeToLive value=“1 day” />
 <MaxNumSightings value=“5” />
 <GarbageCollect>
 <Where requestor-location=
 “not edu.school.building” />
 </GarbageCollect>
 </PrivacyTags>

</ContextTuple>

Figure 2. An example tuple. Tuples contain metadata
describing the tuple (e.g., dataformat and datatype), one or
more values, one or more sources describing the history of
the data and how it was transformed, and an optional
privacy tag that describes an end-user’s privacy
preferences. In this example, the privacy tag specifies a
notification address, a maximum time to live, the maximum
number of past values that should be retained, and an
additional request to delete the data if the requestor is not
in the specified location.

3.3 Confab’s Programming Model
From a high-level perspective, Confab is a hybrid blackboard and
dataflow architecture. Personal information is stored in infospaces
that are running in computers owned by end-users, with data
flowing between these computers in a controlled fashion. In this
section, we describe how developers can make use of three
different pieces of functionality—operators, service descriptions,
and active properties—to build applications.

Methods and Operators

Infospaces support two general kinds of methods, in and out. In-
methods affect what data is stored within an infospace, and
include add and remove. Out-methods govern any data leaving an
infospace, and include query, subscribe, unsubscribe, and notify.

Each infospace also contains operators for manipulating tuples.
Operators are chainable pieces of code that can be added to an
existing infospace to extend and customize it to what is needed
without having to modify the main body of code. Confab supports
three different kinds of operators: in, out, and on. In-operators are
run on all tuples coming in through in-methods. An example in-
operator is one that checks the infospace’s access control policies
to make sure that this is a tuple that is allowed to be added. Out-

operators are run on all tuples going out through out-methods. An
example out-operator is one that blocks all outgoing tuples if the
user is in invisible mode. On-operators are operators that run
periodically, such as garbage collection. Table 4 shows a full list
of operators provided in Confab by default.

Operator Type Description

In Enforce access policies (a)
 Enforce privacy tags (b)
 Notify on incoming data (c)

Out Enforce access policies (d)
 Enforce privacy tags (e)
 Notify on outgoing data (f)
 Invisible mode (g)
 Add privacy tag (h)
 Interactive (i)

On Garbage collector (j)
 Periodic report (k)
 Coalesce

Table 4. Confab provides several built-in operators.
Operators can be added or removed to customize what
personal information a tuple contains and how it flows to
others.

The two Enforce Access Policies operators (in- and out-) let end-
users specify access policies for their infospace. Several different
conditions can be specified for authorization, including who is
requesting the data, what data they are requesting, how old the
data is, what Internet domain or IP address they are requesting
from, as well as the current date and time.

The two Enforce Privacy Tags operators are used to put the
preferences specified in privacy tags into action. The out-operator
version makes sure that data that should not leave an infospace
does not, while the in-operator version does the same with
incoming data. Together, a set of infospaces can provide peer
enforcement of privacy tags, helping to ensure that data is
managed properly (see Figure 3). Assuming that tuples are
digitally signed, peers can also detect if privacy tags have been

altered, thus detecting that an infospace is not handling personal
information properly. However, this feature is not yet
implemented in the current implementation of Confab.

The Notify operators are used to send short messages to give end-
users feedback about who is requesting information and when.
Notify operators can currently be configured to send messages
either through email or via instant messenger.

The Invisible mode operator can be used to block all outgoing
tuples and return the value of “UNKNOWN” to all queries. The
Invisible mode operator can also be configured to return some
pre-specified value, allowing users to make “white lies”. The Add
Privacy Tag operator is used to add end-user or application
defined privacy tags on outgoing tuples.

The Interactive operator can be used to give end-users control
over disclosures. In the current implementation, when a request
comes in and the Interactive operator is active, a simple GUI is
displayed, giving the end-user several options, including
disclosing the requested information just this once, ignoring it, or
denying access permanently. An example of this user interface is
shown in Figure 6.

The Garbage Collector operator is run periodically to delete data
that have privacy tags that specify that they should be deleted. The
Periodic Report operator sends an email to the owner of an
infospace, providing a periodic summary of who has requested
what (e.g., every day, week, or month). The Coalesce operator is
used to delete tuples with repeated values. For example, suppose a
user has a sensor that updates her infospace with her current
location information every minute. If she has not moved for an
hour, there will be sixty tuples with the exact same location value.
Here, the Coalesce operator sorts all of the location tuples by time
and deletes tuples with duplicate values, keeping only those
needed to determine when she entered and exited a location.

Operators are loaded through a configuration file on startup, and
are executed according to the order in which they were added.
Each operator also has a filter that checks whether or not it should
be run on a specific tuple. When an in- or out-method is called, a
chain of the appropriate operators is assembled and then run on
the set of incoming or outgoing tuples.

Figure 3. An example of peer enforcement. (1) Alice shares
her location data with Bob. This data has been tagged to be
deleted in seven days. Suppose seven days have passed,
and that Bob passes the data on to Carol. If this is an
accidental disclosure, then (2) his infospace prevents this
from occurring. If this is intentional, then (3) Carol can
detect that Bob has passed on data that he should not
have, and (4) notifies Alice.

Note that peer enforcement and automatic deletion of old data can
be trusted to execute on computers that an end-user has control
over, but not necessarily on computers owned by others. Short of
a trusted computing base, there is no way of forcing others to
delete data. Privacy tags let end-users provide a hint saying what
their privacy preferences are, and relies on social, legal, and
market mechanisms that others will do the right thing. In cases
where there is a strong level of trust, this will suffice and can help
prevent accidental disclosures. In cases where there is not a great
deal of trust, other mechanisms, such as passing on coarser-
grained data or anonymity, should be used.

Service Descriptions

Applications can publish service descriptions that describe the
application, as well as various options that end-users can choose

from. For example, Scenario 2 described a mobile tour guide
service that offered different kinds of information depending on
the precision of information Alice was willing to share.

Confab provides support for applications to specify these different
options, as shown in Figure 4. These service descriptions provide
basic information about the service, for example the name of the
service and a URL for more information. Service descriptions can
also contain options that describe what features that option offers,
what datatypes and dataformats are needed from the end-user, and
how often the information will be queried.

When a client application first makes a request to an infospace, it
sends its service description. If the infospace has seen this service
description before, it simply uses the previously stored
configuration associated with that description, which specifies
whether to allow access and what option to use. If the infospace
has not seen this service description before or the previous
settings have expired, a default GUI is displayed which lets end-
users choose whether to allow access, what option they want, and
how long the settings should last. This approach gives service
providers a way of giving end-users flexibility over what features
they are interested in using as well as what privacy tradeoffs they
are willing to make.

Active Properties

To simplify the task of querying for and maintaining context state
in applications, Confab provides an active properties object for
clients (see Figure 5). Queries can be placed in an active
properties instance and be periodically executed to get up-to-date
values. Last known values are also automatically stored, to
provide a level of fault-tolerance should the requestor or requestee
be temporarily disconnected.

Active properties supports three different kinds of properties:
OnDemandQuery, which makes a request for new data whenever
its value is checked; PeriodicQuery, which periodically checks for
new data; and Subscription, which periodically receives new data
from an infospace. After initial setup, clients can simply query the
active properties using the property name (e.g., “alice.location”)
to retrieve the last-known value.

Summary

In summary, Confab’s data model and programming model
provide application developers with a framework and a suite of
mechanisms for building privacy-sensitive applications. Operators
are used within an end-user’s infospace to help control the flow of
personal information, and can be customized to fit specific end-
user needs. Service descriptions are used by applications to
describe what kinds of personal information are needed, as well as
at what granularity and at what rate. Active properties are used by
applications to automatically query and maintain contextual
information about entities, simplifying programming for clients.

3.4 Extensions for Location Privacy
Since location-enhanced applications are a rapidly emerging area
of ubiquitous computing, Confab currently comes with specific
extensions for capturing and processing location information. In
this section, we describe the Place Lab sensor source and the
MiniGIS operator for processing location information.

Place Lab [63] uses the wide deployment of 802.11b WiFi access
points for determining one’s location in a privacy-sensitive

<Service name="Tourguide"
 description="Tourguide for cities"

 keywords="Tourism, Location"
 provider="Bob Inc"
 url="http://bob.com/tourguide"
 version="1.0">

<Option name="1"
 dataformat="city"
 datatype="location"
 method="get"
 offer="Events, Museum lines"
 rate="15 minutes"
 timespan="current" />

<Option name="2"
 dataformat="zipcode"
 datatype="location"
 method="get"
 offer="Stores, Recommendations"
 rate="30 seconds"
 timespan="current" />

<Option name="3"
 dataformat="latlon"
 datatype="location"
 method="get"
 offer="Route Finder, Real-time map"
 rate="30 seconds"
 timespan="current" />

</Service>

Figure 4. Confab’s service descriptions allow services to
give end-users various choices when using a service. This
example shows the service description for a mobile tour
guide service. The first option (where name=”1”) provides
information about events and the length of museum lines in
the city. To do this, the service needs the end-user’s
current location at the city level every 15 minutes.

Figure 5. Clients can maintain a list of properties they are
interested in through an Active Properties object, which will
automatically issue queries and maintain last known values.

manner. The key observation here is that many developed areas
have wireless hotspot coverage so dense that cells overlap. By
keeping a local cache of a Place Lab directory, which maps the
unique MAC address of a wireless hotspot to a physical latitude
and longitude, mobile computers and PDAs equipped with WiFi
can determine their location to within a city block.

This approach can be done without any special equipment other
than a WiFi card, and also works indoors and in urban canyons,
places where GPS does not always work effectively. Furthermore,
since wireless hotspots can be detected passively, computers can
determine their location without divulging any information to any
third parties or other entities.

Place Lab is currently implemented as a sensor source within
Confab, adding a tuple representing the user’s current latitude and
longitude into the user’s infospace every 60 seconds. Our current
working database of WiFi access points for the San Francisco Bay
Area (including the cities of San Francisco, Oakland, Berkeley,
Palo Alto, and San Jose) has roughly 60000 nodes contained in
about 4 megabytes of data, making it feasible to store on PDAs
and laptops.

The MiniGIS operator transforms location information from one
datatype to another locally on one’s computer, for example from
the latitude and longitude “37.7,-122.68” to the city name “San
Francisco”. This is useful for two reasons. The first is because
latitude and longitude are difficult to comprehend and need to be
put in a format semantically meaningful to people. The second is
that MiniGIS does this transformation locally without disclosing
any information to equivalent network services (such as
Microsoft’s MapPoint1).

MiniGIS currently has several built-in location datatypes,
including latitude and longitude, place name (“Soda Hall”), city
name, ZIP Code, region name (“California”) and region code
(“CA”), as well as country name (“United States”) and country
code (“USA”). MiniGIS can also be used to return the distance
between two latitude and longitude pairs, as well as query for
nearest locations, such as nearest places and cities.

MiniGIS is built from public data sources from the USGS2 and
GeoNET3, and has roughly 30 megabytes of data. We have also
been manually collecting data for place names using a GPS
system, gathering the names of local cafes, landmarks, and other
points of interest.

3.5 Implementation
Confab is implemented in Java 2 v1.5, and is currently comprised
of 550 classes and approximately 55,000 physical lines of code
(not including comments and boilerplate). Confab uses HTTP for
network communication and is built on top of the Tomcat web
server, making extensive use of Java servlets. XPath is used as the
query language for matching and retrieving XML tuples, with
Jaxen as the specific XPath engine.

The Place Lab sensor source is comprised of 10 classes and 1700
lines of code. MiniGIS is comprised of 15 classes and 3300 lines

1 http://mappoint.msn.com
2 http://geonames.usgs.gov/stategaz/index.html
3 http://earth-info.nima.mil/gns/html/

of code. Both Place Lab and MiniGIS make use of the MySQL
open source database.

Confab also comes with a microphone source, which is used to
estimate activity level, as well as several web-based simulators for
faking location and activity data using a web browser.

4. EVALUATION
In this section, we describe the implementation of three
applications we have built on top of Confab.

App #1 – Lemming Location-Enhanced Instant Messenger

Using Confab, we have built Lemming, a new location-enhanced
instant messenger client that provides two features in addition to
standard clients. The first new feature is the ability to request a
user’s current location (see Figure 6). When a location request is
received, the end-user can choose “Never allow” to never allow
the requestor to see her location, “Ignore for now” to ignore this
current request (the default), “Just this once” to allow the request
just this once, or “Allow if…” to always allow requests under
certain conditions, such as from 9AM to 5PM or only between
Monday and Friday.

Figure 6. Lemming is a location-enhanced messenger that
lets users query each other for their current location
information. This screenshot shows the UI that lets a
requestee choose whether or not to disclose their current
location. The large “1” on the side represents that this is a
one-time disclosure rather than a continuous disclosure of
location information.

Figure 7. This location-enhanced messenger lets users set
an away message describing their current location, which
automatically updates as they move around.

From a software architecture perspective, when a location request
is received, the end-user’s instant messenger client issues a query
to her infospace for her current location. Currently, Confab does
not provide mechanisms for authentication, relying instead on the
application itself to manage it. The infospace checks if there is a
context tuple representing location information, and then checks
the age of the tuple to see if it can be considered “current” (by
default, this is set to twenty minutes).

At this point, the tuple flows through the out-operators defined in
the infospace. The three operators of interest here are the Enforce
Access Policies, Interactive, and MiniGIS operators. The Enforce
Access Policies operator checks if there is an existing policy
associated with the requestor and applies that policy if it exists.
The Interactive operator also checks if there is an existing policy,
and if there is not, brings up the user interface shown in Figure 6,
letting end-users set a policy. Lastly, the MiniGIS operator runs,
transforming the data from “latitude and longitude” into “place”.

The second new feature is the ability to automatically display
one’s current location as an away message that automatically
updates itself as one’s location changes (see Figure 7). The
Lemming instant messenger client sets up a query to get the
nearest “place” every 60 seconds, and then displays this place as
the away message. Lemming currently defines three place
descriptions based on the user’s distance to that place: “at”, if the
distance is less than 10 meters; “near”, if the distance is less than
100 meters; and “nearest to” if the distance is greater than 100
meters.

Lemming uses the Hamsam library for cross-platform instant
messaging4. Lemming is roughly 2500 lines of code across 23
classes. It took about 5 weeks to build, with the majority of the
effort and code devoted to the GUI. Here, Confab provides
support for acquiring location information, storing location
information and privacy preferences, making location queries,
automatically updating location information for the away
message, and MiniGIS for processing location information.

App #2 – Location-Enhanced Web Proxy

We have also built a location-enhanced web proxy that can
automatically fill in fields on web sites (see Figure 8). When the
proxy is started, it loads up a configuration file that describes
which URLs to look for, which HTML input fields to modify, and
what values to insert in those fields. Some possible values include
one’s current city, state, ZIP Code, and latitude and longitude.

Users can run this proxy locally on their computer and set their
web browser to use this proxy. Whenever the proxy detects one of
the pre-defined URLs, it modifies the HTML, inserting the current
location information and highlighting the modified fields in blue.
To help protect the privacy of the user, the proxy is restricted to
accept connections only from localhost.

The location-enhanced web proxy is roughly 800 lines of code,
added to an existing base of 800 lines of code from an open-
source web proxy. It took about one week to build. Here, Confab
provides support for making location queries for one’s current
location, automatically updating one’s location, as well as
MiniGIS for processing location information.

4 http://hamsam.sourceforge.net/

App #3 – BEARS Emergency Response Service

One emerging application for location-enhanced phones is
Enhanced 911. E911 lets users share their location with
dispatchers when making emergency calls on mobile phones.
One’s location is only transmitted to dispatchers when the call is
actually made. While there are many advantages to E911, one
downside is that it is a discrete push system. There are no easy
ways of getting a person’s current or last-known location in
known emergencies, for example, an earthquake, a building fire,
or a kidnapping.

BEARS is a system we are developing to handle these cases.
There are two tensions to balance here. On the one hand, we want
location information to be highly available in the case of
emergencies. On the other, emergencies are rather rare, and so we
also want some guarantees that location information will be used
exclusively for emergencies and for no other purposes.

Figure 8. The location-enhanced web proxy can
automatically fill in fields requesting location information on
web pages. The page on the left is from MapQuest
(http://mapquest.com), with latitude and longitude
automatically filled in. The page on the right is a store finder
from StarBucks (http://starbucks.com), with city,
state/province, and postal code automatically filled in.

End-UserEnd-User

Location

Building

BEARS

Service

Building

BEARS

Service

Link

Link

1

2

Link

Trusted

BEARS

Third-Party

Trusted

BEARS

Third-Party

Location
3

4

End-UserEnd-User

Location

Building

BEARS

Service

Building

BEARS

Service

Link

Link

1

2

Link

Trusted

BEARS

Third-Party

Trusted

BEARS

Third-Party

Location
3

4

Figure 9. An example setup of the BEARS emergency
response service. First, an end-user obtains their location
(1) and shares it with a trusted third-party (2). The end-user
gets a link (3) that can be sent to others, in this case to a
building (4). If there is an emergency, responders can
traverse all known links, getting up-to-date information
about who is in the building (with the trusted third-party
notifying data sharers what has happened).

BEARS works by having a trusted third-party store one’s location
information in case of emergencies. This third party can be a
friend or even a paid service whose business model is predicated
on providing location information only in the event of
emergencies. Such services already exist with respect to one’s
medical information, the best known of which is MedicAlert [3].
These services would have a significant market incentive to use
location information only for stated purposes and possibly a legal
obligation as well.

Figure 9 shows an example of how BEARS can be used in
buildings to keep track of who is in the building and where they
are for emergency response purposes. First, an end-user obtains
his location. He periodically sends his location to the trusted third
party, which gives him one or more named links back to this data.
The end-user can then share this link with others, such as a
building. In case of emergencies, the link can be traversed, with
last-known location information being retrieved from the third
party, with the third party also notifying end-users that their
information has been discloesd. This approach allows emergency
responders to get critical location information, provides a level of
redundancy should the user’s device or location systems fail or if
the end-user is incapacitated, and provides a basic level of
privacy.

The BEARS client is roughly 200 lines of code and took about 2
days to create. The reason for its small size is that there is no GUI.
Here, Confab provides support for making continuous location
queries, as well as making updates to both the trusted third-party
and to the building server.

We have also used Confab to build prototypes of applications that
have minimal privacy concerns. One that is currently in progress
is emergency response support to help firefighters on scene. Our
prototype uses sensors and PDAs to automatically gather and
disseminate information about the fire and about that firefighter to
other nearby firefighters [40]. Another is a distributed querying
system for supporting database operations, such as join or project,
for streaming data and across multiple infospaces [36].

5. RELATED WORK
There has been a great deal of work at providing programming
support for various aspects of ubiquitous context-aware
computing. This includes the PARCTab system [61], Cooltown
[44], the Context Toolkit [20], Contextors [17], Limbo [19],
Sentient Computing [6], Stick-E notes [56], MUSE [15],
SpeakEasy [23], Solar [16], XWeb [53], GAIA [60], one.world
[30], and iRoom [42]. Confab builds on this previous work, with
the key difference being that Confab’s architecture and
mechanisms are focused on helping application developers and
end-users manage personal privacy.

Confab is closest in terms of data model and programming model
to the PARCTab system [61] and iRoom [42]. In many ways,
Confab’s data model can be thought of as a logical evolution of
the PARCTab’s Dynamic Environments. Dynamic Environments
are centralized data stores associated with relatively large places,
such as buildings. Each Dynamic Environment contains personal
information about people, places, and things within its purview.
As people move from place to place, they also switch which
Dynamic Environment they are using. The key differences Confab
makes are decentralization of data so that personal information is

stored and processed on the end-user’s computer as much as
possible, a greater range of mechanisms for privacy in both the
data model and in the programming model, and
compartmentalized extensibility thru operators.

The iRoom is a suite of software to support interactive
workspaces at the room level. Central to this is the EventHeap, a
shared tuplespace for the room in which input devices can place
events and output devices can receive events. This level of
indirection encourages looser coupling between application
components and fosters greater overall robustness. Confab uses a
similar approach with its infospaces, separating sources of data
(such as sensors) from the services and applications that use them,
with little or no knowledge of each other. Like the EventHeap,
Confab also has a thin API with few methods. The main
difference between the EventHeap and Confab is that Confab is
specialized for building privacy-sensitive systems. Confab also
looks at supporting multiple infospaces to represent people,
places, and things, rather than just one tuplespace to represent all
events and information within a place. Again, Confab takes a
decentralized approach, placing information about end-users on
their computers as much as possible.

There has also been some previous work on using digital rights
management in managing personal information. Langheinrich
[47] described pawS, a privacy awareness system for ubicomp
that lets deployed systems announce P3P policies of what data is
being collected, and offers database support for enforcing those
policies. Similarly, IBM has also introduced an Enterprise
Privacy Authorization Language [39] that lets developers describe
privacy policies and attach those privacy policies to the data as it
flows through a company. The privacy tags in Confab are similar
in spirit to these ideas, while also introducing further digital rights
management ideas, such as using location as a parameter,
enforcing a maximum number of past sightings, and peer
enforcement.

Confab also builds on the work by Spreitzer and Theimer [65],
who describe an architecture for providing location information.
In their architecture, each user owns a User Agent that collects
and controls all personal information pertaining to its user, and
any request for such information must be routed through the User
Agent which enforces predetermined access policies. Confab takes
this same basic approach and extends it with a wider range of
privacy mechanisms, including notifications, tags, logging, and
interactive requests, to support the development of pessimistic,
optimistic, and mixed-initiative type applications.

There has been a great deal of work in providing levels of
anonymity in networked systems. One system of note here is
Gruteser and Grunwald’s work on spatial and temporal cloaking
[34], in which a trusted proxy is used to adjust the resolution of
location reported to services based on the density of users in a
region. Since many users report their location through the proxy,
user density is known. Thus, the proxy can provide k-anonymity,
that is hiding one’s precise location by returning an area that has
k-1 other people. Sweeney [66] has proposed a general approach
for doing k-anonymity for static database tables, aggregating data
together into buckets to reduce identifiability. Another approach
is to use mixes to make it harder to do traffic analysis (e.g. [10]).
Confab currently does not have any built-in support for managing
anonymity or for defeating traffic analysis, but could support
these approaches in its architecture. Confab also provides support

for application in which anonymity is not useful, for example,
situations with family, friends, co-workers, and paid services.

In summary, while there have been many toolkits and
infrastructures providing programming support and abstractions
for sensors, and while there have been many individual techniques
for managing privacy, Confab is the first to provide an extendable
design that provides software architecture support for building
privacy-sensitive ubicomp applications that are optimistic,
pessimistic, and mixed-initiative. Confab provides reusable
mechanisms for both application developers and for end-users in
managing personal information, as well as mechanisms and
abstractions for developers designing privacy-sensitive ubicomp
systems.

6. FUTURE WORK
We plan on building more ubicomp applications on top of
Confab, and are currently in the process of evaluating the
applications described above with real users to assess how well
people can understand the basic model of what the system knows
about them and where their information is flowing, the privacy
implications in sharing personal information, and the overall ease
of interaction.

7. CONCLUSIONS
We presented an extensive analysis of end-user needs and
application developer needs for privacy-sensitive systems. The
end-user needs were gathered through scenario-based interviews
we did on location-enhanced applications, and by an analysis of
surveys, research papers, message boards, proposed and existing
privacy protection laws, and design guidelines for privacy-
sensitive systems. The application developer needs were gathered
through an analysis of research and commercial ubicomp
applications.

These needs led to the high-level requirements of (1) a
decentralized architecture, (2) a range of control and feedback
mechanisms for building pessimistic, optimistic, and mixed-
initiative applications, (3) plausible deniability built in, and (4)
exceptions for emergencies.

To address these needs, we developed Confab, a toolkit for
building privacy-sensitive ubicomp applications for a spectrum of
trust levels and privacy needs. From a software architecture
perspective, Confab provides a framework and an extendable suite
of mechanisms that application developers and end-users can use
for managing privacy. This framework was designed such that
personal information is captured, stored, and processed on the
end-user’s computer as much as possible. This provides end-users
with a greater amount of choice and control than previous systems
over what information they wish to share with others.

We also illustrated how Confab was used to support the
implementation of three privacy-sensitive ubicomp applications,
including a location-enhanced instant messenger, a location-
enhanced web proxy, and an emergency response application.

8. ACKNOWLEDGMENTS
Thanks to Leendert Van Doorn (our shepherd) and our reviewers
for valuable comments and suggestions. Chris Beckmann, Jeff
Heer, and Alan Newberger designed and implemented the liquid

distributed querying system on top of Confab. Jennifer Ng worked
on the end-user interviews and on transcribing audio notes, and
worked with Eric Chung and Madhu Prabaker in collecting place
names and WiFi data around the San Francisco Bay Area. Special
thanks to Gregory Abowd, Gaetano Boriello, John Canny, Anind
Dey, Xiaodong Jiang, Scott Lederer, Bill Schilit, Doug Tygar, and
Terry Winograd, as well as the participants in many privacy
workshops for feedback on refining the ideas in this paper. This
work has been supported in part by NSF (IIS-0205644), DARPA
(N66001-99-2-8913), an Intel fellowship, a Siebel Scholar
fellowship, and PARC.

9. REFERENCES
[1] AllNurses.com. http://allnurses.com/
[2] Directive 95/46/EC.

http://europa.eu.int/ISPO/legal/en/dataprot/directiv/directiv.h
tml

[3] MedicAlert. http://www.medicalert.org
[4] Abowd, G.D., C.G. Atkeson, J. Hong, S. Long, R. Kooper,

and M. Pinkerton, Cyberguide: A Mobile Context-Aware

Tour Guide. Baltzer/ACM Wireless Networks 1997. 3(5): p.
421-433.

[5] Adams, A. Multimedia Information Changes the Whole
Privacy Ball Game. In Proceedings of Computers, Freedom,

and Privacy. Toronto, Canada: ACM Press. pp. 25-32 2000.
[6] Addlesee, M., R. Curwen, S.H. Newman, P. Steggles, A.

Ward, and A. Hopper, Implementing a Sentient Computing

System. IEEE Computer 2001. 34(8): p. 50-56.
[7] AT&T, AT&T Wireless mMode - Find Friends.

http://www.attwireless.com/mmode/features/findit/FindFrien
ds/

[8] Barkhuus, L. and A.K. Dey. Location-based services for
mobile telephony: a study of users' privacy concerns. In
Proceedings of INTERACT 2003, 9th IFIP TC13

International Conference on Human-Computer Interaction.
pp. To appear 2003.

[9] Bellotti, V. and A. Sellen. Design for Privacy in Ubiquitous
Computing Environments. In Proceedings of The Third

European Conference on Computer Supported Cooperative

Work (ECSCW'93). Milan, Italy: Kluwer Academic
Publishers 1993.

[10] Beresford, A. and F. Stajano, Location Privacy in Pervasive
Computing, IEEE Pervasive Computing, vol. 2(1): pp. 46-
55, 2003.

[11] Brin, D., The Transparent Society. Reading, MA: Perseus
Books, 1998.

[12] Brown, P.J. and G.J.F. Jones, Context-aware Retrieval:
Exploring a New Environment for Information Retrieval and
Information Filtering. Personal and Ubiquitous Computing

2001. 5(4): p. 253-263.
[13] Burrell, J., G.K. Gay, K. Kubo, and N. Farina. Context-

Aware Computing: A Test Case. In Proceedings of Ubicomp

2002. Göteborg, Sweden. pp. 1-15 2002.
[14] Cadiz, J. and A. Gupta, Privacy Interfaces for Collaboration.

Technical Report MSR-TR-2001-82, Microsoft Research,
Redmond, WA 2001.

[15] Castro, P. and R. Muntz, Managing Context for Smart

Spaces. IEEE Personal Communications 2000. 5(5).
[16] Chen, G. and D. Kotz. Context Aggregation and

Dissemination in Ubiquitous Computing Systems. In

Proceedings of Fourth IEEE Workshop on Mobile

Computing Systems and Applications. pp. 105-114 2002.
[17] Crowley, J.L., J. Coutaz, G. Rey, and P. Reignier. Perceptual

Components for Context Aware Computing. In Proceedings
of Ubicomp 2002. Göteborg, Sweden. pp. 117-134 2002.

[18] Cuellar, J., J. John B. Morris, D. Mulligan, J. Peterson, and
J. Polk, Geopriv requirements (Internet Draft). 2003, IETF.
http://www.ietf.org/internet-drafts/draft-ietf-geopriv-reqs-
04.txt

[19] Davies, N., S.P. Wade, A. Friday, and G.S. Blair. Limbo: A
tuple space based platform for adaptive mobile applications.
In Proceedings of The International Conference on Open

Distributed processing / Distributed Platforms

(ICODP/ICDP '97). pp. 291-302 1997.
[20] Dey, A.K., D. Salber, and G.D. Abowd, A Conceptual

Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications. Human-

Computer Interaction (HCI) Journal 2001. 16(2-3): p. 97-
166.

[21] Doheny-Farina, S., The Last Link: Default = Offline, Or
Why Ubicomp Scares Me, Computer-mediated

Communication, vol. 1(6): pp. 18-20, 1994.
[22] Edwards, J., Location Privacy Protection Act of 2001.

http://www.techlawjournal.com/cong107/privacy/location/s1
164is.asp

[23] Edwards, W.K., M.W. Newman, J.Z. Sedivy, T.F. Smith, and
S. Izadi. Challenge: Recombinant Computing and the
Speakeasy Approach. In Proceedings of Eighth ACM

International Conference on Mobile Computing and

Networking (MobiCom 2002). pp. 279-286 2002.
[24] Espinoza, F., P. Persson, A. Sandin, H. Nyström, E.

Cacciatore, and M. Bylund. GeoNotes: Social and
Navigational Aspects of Location-Based Information
Systems. In Proceedings of Ubicomp 2001. Atlanta, GA. pp.
2-17 2001.

[25] Falk, J., P. Ljungstrand, S. Björk, and R. Hansson. Pirates:
Proximity-Triggered Interaction in a Multi-Player Game. In
Proceedings of Human Factors in Computing Systems: CHI

2001 (Extended Abstracts). pp. 119-120 2001.
[26] Federal Communications Commission, Enhanced 911.

http://www.fcc.gov/911/enhanced/
[27] Frelinghuysen, R., Wireless Privacy Protection Act of 2003.

http://www.theorator.com/bills108/hr71.html
[28] Garfinkel, S., Database Nation: The Death of Privacy in the

21st Century: O'Reilly & Associates, 2001.
[29] Geocaching. http://www.geocaching.com/
[30] Grimm, R., J. Davis, E. Lemar, A. Macbeth, S. Swanson, T.

Anderson, B. Bershad, G. Borriello, S. Gribble, and D.
Wetherall, Programming for pervasive computing

environments. Technical Report UW-CSE-01-06-01,
University of Washington Department of Computer Science
and Engineering, Seattle, WA 2001.

[31] Griswold, W.G., P. Shanahan, S.W. Brown, and R. Boyer,
ActiveCampus - Experiments in Community-Oriented

Ubiquitous Computing. Technical Report CS2003-0765,
Computer Science and Engineering, UC San Diego 2003.

[32] Grudin, J., Desituating Action: Digital Representation of
Context. Human-Computer Interaction (HCI) Journal 2001.

16(2-4).
[33] Grudin, J. and E. Horvitz, Presenting choices in context:

approaches to information sharing. 2003: Workshop on

Ubicomp communities: Privacy as Boundary Negotiation.
http://guir.berkeley.edu/pubs/ubicomp2003/privacyworkshop
/papers.htm

[34] Gruteser, M. and D. Grunwald. Anonymous Usage of
Location-Based Services Through Spatial and Temporal
Cloaking. In Proceedings of The First International

Conference on Mobile Systems, Applications, and Services

(MobiSys 2002) 2002.
[35] Harper, R.H.R., Why Do People Wear Active Badges?

Technical Report EPC-1993-120, Rank Xerox, Cambridge
1993.

[36] Heer, J., A. Newberger, C. Beckmann, and J.I. Hong. liquid:
Context-Aware Distributed Queries. In Proceedings of Fifth

International Conference on Ubiquitous Computing:

Ubicomp 2003. Seattle, WA: Springer-Verlag. pp. 140-148
2003.

[37] Hindus, D., S.D. Mainwaring, N. Leduc, A.E. Hagström, and
O. Bayley, Casablanca: Designing Social Communication
Devices for the Home. CHI Letters (Human Factors in

Computing Systems: CHI 2001), 2001. 3(1): p. 325-332.
[38] Hong, J.I., G. Boriello, J.A. Landay, D.W. McDonald, B.N.

Schilit, and J.D. Tygar. Privacy and Security in the Location-
enhanced World Wide Web. In Proceedings of Fifth

International Conference on Ubiquitous Computing:

Ubicomp 2003 (Workshop on Ubicomp Communities:

Privacy as Boundary Negotiation). Seattle, WA 2003.
[39] IBM Corporation, Enterprise Privacy Authorization

Language (EPAL 1.1).
http://www.zurich.ibm.com/security/enterprise-
privacy/epal/Specification/

[40] Jiang, X., N.Y. Chen, J.I. Hong, K. Wang, L.A. Takayama,
and J.A. Landay. Siren: Context-aware Computing for
Firefighting. In Proceedings of The Second International

Conference on Pervasive Computing (Pervasive 2004).
Vienna, Austria. pp. To Appear 2004.

[41] Jiang, X., J.I. Hong, and J.A. Landay. Approximate
Information Flows: Socially-based Modeling of Privacy in
Ubiquitous Computing. In Proceedings of Ubicomp 2002.
Göteborg, Sweden. pp. 176-193 2002.

[42] Johanson, B., A. Fox, and T. Winograd, The Interactive
Workspaces Project: Experiences with Ubiquitous

Computing Rooms. IEEE Pervasive Computing 2002. 1(2):
p. 67-74.

[43] Kaasinen, E., User Needs for Location-aware Mobile

Services. Personal and Ubiquitous Computing 2003. 7(1): p.
70-79.

[44] Kindberg, T. and J. Barton, A Web-based Nomadic

Computing System. Computer Networks 2001. 35: p. 443-
456.

[45] Korba, L. and S. Kenny. Towards Meeting the Privacy
Challenge: Adapting DRM. In Proceedings of 2002 ACM

Workshop on Digital Rights Management. Washington DC,
USA 2002.

[46] Lamming, M. and M. Flynn. Forget-me-not: Intimate
computing in support of human memory. In Proceedings of
FRIEND 21: International Symposium on Next Generation

Human Interfaces. Meguro Gajoen, Japan. pp. 125-128
1994.

[47] Langheinrich, M. A Privacy Awareness System for
Ubiquitous Computing Environments. In Proceedings of
Ubicomp 2002. Goteberg, Sweden. pp. 237-245 2002.

[48] Langheinrich, M. Privacy by Design - Principles of Privacy-
Aware Ubiquitous Systems. In Proceedings of Ubicomp

2001. Atlanta, GA. pp. 273-291 2001.
[49] Lederer, S., J. Mankoff, and A.K. Dey. Who Wants to Know

What When? Privacy Preference Determinants in Ubiquitous
Computing. In Proceedings of Extended Abstracts of CHI

2003, ACM Conference on Human Factors in Computing

Systems. Fort Lauderdale, FL. pp. 724-725 2003.
[50] Lessig, L. The Architecture of Privacy. In Proceedings of

Taiwan NET'98. Taipei, Taiwan 1998.
[51] Mayor, M., New Wireless Device Could Rescue Firefighters.

2001.
http://www.wirelessnewsfactor.com/perl/story/9134.html

[52] Nagel, K., C.D. Kidd, T. O’Connell, A. Dey, and G.D.
Abowd. The Family Intercom: Developing a Context-Aware
Audio Communication System. In Proceedings of Ubicomp

2001. Atlanta, GA. pp. 176-183 2001.
[53] Olsen, D.R., S. Jefferies, T. Nielsen, W. Moyes, and P.

Frederickson, Cross-modal Interaction using XWeb. CHI

Letters, The 13th Annual ACM Symposium on User Interface

Software and Technology: UIST 2000 2000. 2(2): p. 191-
200.

[54] OnStar. http://www.onstar.com/
[55] Palen, L. and P. Dourish, Unpacking "Privacy" for a

Networked World. CHI Letters (Human Factors in

Computing Systems: CHI 2003), 2003. 5(1): p. 129-136.
[56] Pascoe, J. The Stick-e Note Architecture: Extending the

Interface Beyond the User. In Proceedings of International

Conference on Intelligent User Interfaces. pp. 261-264 1997.
[57] Povey, D. Optimistic Security: A New Access Control

Paradigm. In Proceedings of 1999 New Security Paradigms

Workshop 1999.
[58] Priyantha, N.B., A. Chakraborty, and H. Balakrishnan. The

Cricket Location-Support System. In Proceedings of
MobiCom 2000: The Sixth Annual International Conference

on Mobile Computing and Networking. Boston,
Massachusetts: ACM Press. pp. 32-43 2000.

[59] Rhodes, B. and T. Starner. The Remembrance Agent: A
Continuously Running Automated Information Retrieval
System. In Proceedings of The First International

Conference on The Practical Application of Intelligent

Agents and Multi Agent Technology (PAAM '96). London,
UK. pp. 487-495 1996.

[60] Román, M., C.K. Hess, R. Cerqueira, A. Ranganathan, R.H.
Campbell, and K. Nahrstedt, Gaia: A Middleware

Infrastructure to Enable Active Spaces. IEEE Pervasive

Computing 2002. 1(4): p. 74-83.
[61] Schilit, B.N., A Context-Aware System Architecture for

Mobile Distributed Computing, Unpublished PhD, Columbia
University, 1995. http://seattleweb.intel-
research.net/people/schilit/schilit-thesis.pdf

[62] Schilit, B.N., N.I. Adams, and R. Want. Context-Aware
Computing Applications. In Proceedings of Workshop on

Mobile Computing Systems and Applications. Santa Cruz,
CA: IEEE Computer Society, December 1994 1994.

[63] Schilit, B.N., G. Borriello, W.G. Griswold, D. McDonald, A.
Lamarca, J. Hong, E. Lazowska, A. Balachandran, and V.
Iverson. Challenge: Ubiquitous Location-Aware Computing.
In Proceedings of The First ACM International Workshop on

Wireless Mobile Applications and Services on WLAN

Hotspots (WMASH '03). San Diego, CA: ACM Press. pp. To
Appear 2003.

[64] Sloane, L., Orwellian Dream Come True: A Badge That
Pinpoints You, New York Times pp. 14, 1992.

[65] Spreitzer, M. and M. Theimer. Providing location
information in a ubiquitous computing environment. In
Proceedings of Fourteenth ACM Symposium on Operating

System Principles. Asheville, NC: ACM Press, December
1993.

[66] Sweeney, L., k-anonymity: a model for protecting privacy.
International Journal on Uncertainty, Fuzziness and

Knowledge-based Systems 2002. 10(5): p. 557-570.
[67] Talbott, S., The Trouble with Ubiquitous Technology

Pushers, or: Why We'd Be Better Off without the MIT Media
Lab. 2000.
http://www.oreilly.com/people/staff/stevet/netfuture/2000/Ja
n0600_100.html

[68] Want, R., A. Hopper, V. Falcão, and J. Gibbons, The Active
Badge Location System. ACM Transactions on Information

Systems 1992. 10(1): p. 91-102.
[69] Weiser, M., R. Gold, and J.S. Brown, The Origins of

Ubiquitous Computing Research at PARC in the Late 1980s.

IBM Systems Journal 1999. 38(4): p. 693-696.
[70] Westin, A.F., Privacy and Freedom. New York NY:

Atheneum, 1967.
[71] Whalen, J., You're Not Paranoid: They Really Are Watching

You, Wired Magazine, vol. 3(3): pp. 95-85, 1995.

Columns on Last Page Should Be Made As Close As
Possible to Equal Length

