
An Infrastructure Approach to Context-Aware 
Computing 

Jason I. Hong and James A. Landay 

University of California at Berkeley 

RUNNING HEAD: CONTEXT-AWARE COMPUTING 
INFRASTRUCTURES 

Corresponding Author’s Contact Information:  
 
Jason I. Hong 
525 Soda Hall 
Computer Science Division, University of California at Berkeley 
Berkeley, CA 94720-1776 
510-643-7354 
jasonh@cs.berkeley.edu 

Brief Authors’ Biographies: 

Jason Hong is a computer scientist with an interest in context-aware computing and 
multimodal interfaces; a PhD candidate, he works with the Group for User Interface 
Research at University of California at Berkeley. James Landay is a computer scientist 
with interests in informal user interfaces, multimodal interaction, and design tools; he is 
an Assistant Professor in the Computer Science Division at University of California at 
Berkeley and co- leads the Group for User Interface Research.  

 



ABSTRACT 

The Context Toolkit (Dey, Salber, and Abowd 2001 [this special issue]) is only one 
of many possible architectures for supporting context-aware applications. In this essay, 
we look at the trade-offs involved with a service infrastructure approach to context-aware 
computing. We describe the advantages that a service infrastructure for context-
awareness has over other approaches, outline some of the core technical challenges that 
must be addressed before such an infrastructure can be built, and point out promising 
research directions for overcoming these challenges. 



CONTENTS 

1. INTRODUCTION 

2. LIBRARIES, FRAMEWORKS, TOOLKITS, AND INFRASTRUCTURES 

3. ADVANTAGES TO AN INFRASTRUCTURE APPROACH 

 3.1. Independence from Hardware, Operating System, and Programming 
Language 

 3.2. Improved Capabilities for Maintenance and Evolution 

 3.3. Sharing of Sensors, Processing Power, Data, and Services 

4. CHALLENGES TO BUILDING A CONTEXT-AWARE INFRASTRUCTURE 

 4.1. Defining Standard Data Formats and Protocols 

 4.2. Building Basic Infrastructure Services 

  Automatic Path Creation 

  Proximity-Based Discovery 

 4.3. Apportioning Responsibilities 

 4.4. Scoping and Access of Sensor and Context Data 

 4.5. Scaling Up the Infrastructure 

5. SUMMARY 

 



1. INTRODUCTION 

People have always used the context of the situation to get things done. We use our 
understanding of current circumstances to structure activities, to navigate the world 
around us, to organize information, and to adapt to conditions. For example, when we’re 
holding a conversation in a noisy place, we talk louder so that the other person can hear. 
But when we’re in a meeting, we whisper so as not to disturb other people. 

Context-awareness has also been an integral part of computing. Even simple forms of 
context, such as time and identity, have been used in a number of meaningful ways. For 
example, by being aware of the current time, computers can give us reminders of 
calendar events. By being aware of our identity through logins, computers can 
personalize the look and feel of our user interface. Different kinds of context can also be 
used together. For example, computers can tag files with both time and identity, giving us 
many ways of organizing and finding information created in the past. 

Strides in miniaturization, wireless networking, and sensor technologies are enabling 
computers to be used in more places and to have a greater awareness of the dynamic 
world they are a part of. In fact, over the past few years, a new class of context-aware 
applications that make use of these technologies have been developed, showing how 
computers can leverage even elementary notions of location, identity, proximity, and 
activity to great effect (e.g., Active Badges (Want, Hopper, Falcao, & Gibbons, 1992), 
ParcTabs (Want et al., 1995), and Cyberguide (Abowd et al., 1997)). The key to these 
context-aware applications was that they provided tighter ties between the physical and 
social worlds we live in and the virtual world in which computers operate.  

These prototypes have demonstrated the potential of context-aware applications, but 
have also shown that these kinds of systems are still extremely difficult to design, 
develop, and maintain. There remain a number of technical challenges that must be 
overcome before even simple context-aware systems can be widely deployed and 
realistically evaluated. Some recent research has focused on developing frameworks and 
toolkits to assist development, including the system for ParcTabs (Schilit, 1995), Stick-E 
Notes (Pascoe, 1997), and MUSE (Castro & Muntz, 2000). The most complete work in 
this area has been the Context Toolkit by Dey, Salber, & Abowd (2001 [this special 
issue]).  

Our work takes inspiration from many of the ideas in these projects but recasts them 
in the light of service infrastructures. Our position is that to greatly simplify the tasks of 
creating and maintaining context-aware systems, we should shift as much of the weight 
of context-aware computing onto network-accessible middleware infrastructures. By 
providing uniform abstractions and reliable services for common operations, such service 
infrastructures could make it easier to develop robust applications even on a diverse and 
constantly changing set of devices and sensors. A service infrastructure would also make 
it easier to incrementally deploy new sensors, new devices, and new services as they 
appear in the future, as well as scale these up to serve large numbers of people. Lastly, a 
service infrastructure would make it easier for sensors and devices to share sensor and 



context data, placing the burden of acquisition, processing, and interoperability on the 
infrastructure instead of on individual devices and applications. 

In the following sections, we discuss the advantages of an infrastructure approach to 
context-aware computing in more detail, comparing it to some design decisions taken in 
the Context Toolkit by Dey et al. We then outline some of the core technical challenges 
involved, and describe some promising directions for building such an infrastructure. 

2. LIBRARIES, FRAMEWORKS, TOOLKITS, AND 
INFRASTRUCTURES 

Before going on, it’s important to make the distinction between different kinds of 
software support for building context-aware applications. In general, software support for 
applications can be classified as libraries, frameworks, toolkits, or infrastructures. These 
approaches are not mutually exclusive: there are cases where it’s useful to have all of 
these. 

A library is a generalized set of related algorithms. Examples include code for 
manipulating strings and for performing complex mathematical calculations. Libraries 
focus exclusively on code reuse. On the other hand, frameworks concentrate more on 
design reuse by providing a basic structure for a certain class of applications. 
Frameworks shoulder the central responsibilities in an application but provide ways to 
customize the framework for specific needs. Toolkits build on frameworks by also 
offering a large number of reusable components for common functionality. So a GUI 
event dispatching system would be an example of a framework, and a corresponding 
toolkit would provide buttons, checkboxes, and text entry fields for that framework. The 
Context Toolkit fits pretty well under this definition of a toolkit, as it offers a framework 
for sensor-based context-aware applications and provides a number of reusable 
components. 

An infrastructure is a well-established, pervasive, reliable, and publicly accessible set 
of technologies that act as a foundation for other systems. We are most interested in 
service infrastructures, middleware technologies that can be accessed through a network. 
Any kind of device or application can use these services by adhering to predefined data 
formats and network protocols. An example infrastructure is the Internet itself. An 
example service offered by some computers connected to the Internet is the Domain 
Name System (DNS), which converts computer names such as “www.berkeley.edu” into 
IP addresses such as “128.32.25.12”. All an application needs to know to access the 
Internet is the TCP/IP suite of network protocols. Once a device has been programmed to 
understand these, any computer connected to the Internet can be contacted from any 
location in the world. From a developer’s standpoint, the rather complex task of 
communicating with other computers has been reduced to understanding the data formats 
and protocols used.  

This is one of the key insights into the success of the Internet: the fundamental 
problem of interoperability can be overcome by separating the desired properties and 
responsibilities into separate layers, and by defining good enough data formats and 



network protocols at each of these layers. The data formats and protocols are more 
important than any specific library or toolkit that implements them, because they enable 
computers that know nothing of each other to interoperate. 

There are several subtle distinctions between having library, framework, or toolkit 
support for an application versus having infrastructure support. These distinctions can be 
illustrated by comparing the differences between a CD-ROM of an encyclopedia versus 
access to Encyclopedia Britannica’s website. With the CD-ROM, you need a CD-ROM 
drive, a fast microprocessor, a specific operating system, and a non-trivial amount of disk 
space to install and run the encyclopedia application. In contrast, with the website 
service, you just need a simple microprocessor, a network connection, and a web 
browser. The website is “always on,” can be accessed by anyone from any device that has 
a web browser, and can be periodically updated with new information and new 
functionality without mailing out new CD-ROMs to everyone. Similarly, we argue that 
there are several compelling benefits to having a service infrastructure for context-
awareness over having just library, framework, or toolkit support. These benefits are 
described in the next sections. 

3. ADVANTAGES TO AN INFRASTRUCTURE APPROACH 

Software support for context-aware applications has so far focused on general 
architectures (e.g., the system for ParcTabs (Schilit, 1995)) and frameworks and toolkits 
(e.g., Stick-E Notes (Pascoe, 1997), the Context Toolkit (Dey et al.), and MUSE (Castro 
& Muntz, 2000)), with only basic notions of infrastructures present. We advocate pushing 
as much of the acquisition and processing of context into the infrastructure as services 
that can be accessed by any device and any application. Frameworks and toolkits are 
useful, but we claim that there are even greater advantages to an infrastructure approach, 
which benefit not only developers but also administrators maintaining the infrastructure 
and end-users using the infrastructure.  

3.1. Independence from Hardware, Operating System, and 
Programming Language 

The first benefit of a service infrastructure is that it can be used independently of 
hardware platform, operating system, and programming language. By using standard data 
formats and network protocols that can be easily implemented, the infrastructure can 
support a greater range of devices and applications. This approach makes the 
infrastructure easier to evolve as new sensors, devices, operating systems, and 
programming languages appear.  

By default, the Context Toolkit uses HTTP as the network protocol and XML as the 
data format, achieving a certain level of interoperability. The Context Toolkit is also 
flexible enough to allow different protocols and data formats to be used. This is 
demonstrated quite nicely by the fact that context widgets have been implemented in 
C++, Visual Basic, and Python.  

3.2. Improved Capabilities for Maintenance and Evolution 



A second benefit of a service infrastructure is that sensors, services, and devices can 
be changed both independently, without affecting anything else, and dynamically, even 
while other sensors, services, devices, and applications are running. By providing a 
middleware layer that presents a uniform level of abstraction, an infrastructure can 
strictly separate sensors from services and services from devices and applications (see 
Figure 1). The end result is that the entire system can be incrementally evolved as new 
sensors, services, devices, and applications appear. 

Figure 1 ABOUT HERE 

As an analogy, a new computer can be added to the Internet without having to update 
or restart any other computer. If designed correctly, the same can be true with adding 
sensors and services to the infrastructure. To add a new sensor, all that is needed is 
software that connects the sensor to the rest of the middleware. To add a new service, all 
that is needed is a space in the middleware where services can be uploaded, discovered, 
and then run when needed. To add a new device, all that is needed is software that 
understands the protocols and data formats used by the infrastructure. 

One positive side effect of this design is that sensors and services can be upgraded in 
place and be immediately accessible to everyone. For example, suppose we had a service 
that detected moving objects in a video stream. In the future, faster algorithms will likely 
be developed for object detection. The service could then be upgraded, and as long as it 
accepted the same kind of input and provided the same kind of output as before, every 
application that used this service would still work correctly but also run faster.  

In contrast, there is a serious distribution problem with libraries, frameworks, and 
toolkits. Since the code is stored and run locally on individual devices, every copy of the 
code has to be updated whenever changes are made.  

In this respect, the Context Toolkit exhibits some properties of an infrastructure. New 
sensors can be added by finding (or creating) the appropriate widget and then writing the 
code that connects the sensor to the widget. Context widgets can also be upgraded in 
place by finding the computer running the old widget, stopping the widget, and then 
running the new one.  

As an aside, one problem here is that the Context Toolkit relies on context widgets as 
the primary abstraction for sensors, but this may not be right in all cases. For example, 
Active Badges can be used for acquiring both identity and location, but in Figure 2 of 
Dey et. al. the Active Badge is mapped directly to a location widget. To get identity, the 
Active Badge location (and implicitly the Badge ID) is fed into an interpreter, which 
returns a user name. This is an awkward mapping because an Active Badge represents 
both location and identity but can only mapped to one context widget in the Context 
Toolkit.  

Another example where the widget abstraction is insufficient is with smart dust motes 
(Kahn, Katz, and Pister, 1999). Smart dust are wirelessly networked and sensor-based 
computers with size on the order of tens of millimeters. Motes vary widely in terms of 



network connectivity, available power, available sensors, and reliability of sensor data. It 
typically takes a collection of motes in order to reliably process certain kinds of 
information, such as temperature and humidity. For this reason, a one-to-one mapping 
from a mote to a context widget does not make sense, even if it is possible. 

In both of these cases, it makes sense to add another layer to separate context data 
from sensors. This layer would do manage and process sensor data before it becomes 
context data. Such a layer is not intrinsic to an infrastructure, however, and could be 
added to the Context Toolkit. 

3.3. Sharing of Sensors, Processing Power, Data, and Services 

A third benefit of an infrastructural approach is that context-aware devices and 
applications will be easier to develop and deploy because sensors, processing power, 
data, and services within the infrastructure can be shared. By sharing sensors, individual 
devices will not need to carry every type of conceivable sensor in order to acquire the 
needed context information. Instead, the burden can be placed on the infrastructure to 
find suitable nearby sensors. For example, a PDA wouldn’t need location sensors if it can 
simply ask the infrastructure to use neighboring sensors to tell it where it is. A side effect 
is that applications needn’t be tied to specific platforms just because the platform has 
specific sensors. If the infrastructure can provide the right kinds of context information, 
then the application can be run on any networked device. 

By sharing processing power, devices wouldn’t need to have powerful, expensive, 
and energy-hungry microprocessors. Likewise, by sharing data, devices wouldn’t need 
large amounts of storage. Even though processing power and storage capacity are steadily 
increasing, there are still many reasons to offload computation and data to the 
infrastructure. Some algorithms used for context-aware applications, such as speech 
recognit ion or image processing, are computationally expensive and cannot feasibly be 
run on small devices. In many cases, it makes more sense to have dedicated machines to 
do this kind of processing. Similarly, it’s simply impractical to keep certain kinds of data 
on individual devices. For example, extremely large data sets, such as book ISBN 
numbers and US ZIP code numbers, are too large to be feasibly stored on most portable 
devices. Similarly, highly dynamic data, such as stock prices and traffic information, are 
updated too often. It makes more sense to keep these kinds of data in the infrastructure 
than on individual devices. Even personal data can be stored in the infrastructure as long 
as the data is easily accessible from any device the individual is using. An added benefit 
of this approach is that devices can be lost or stolen but the data will still be safe.  

By sharing services, applications can be smaller and thus easier to store on portable 
devices. Instead of monolithic and self-contained applications, the bulk of an 
application’s functionality would be in the form of many small services that exist in the 
infrastructure that applications could simply call. Although there would only be a few 
services at first, the more applications that are built, the more services there will be that 
others can use, making it easier to build applications in the future.  



This sharing is one philosophical difference between the Context Toolkit and an 
infrastructure approach. With the Context Toolkit, the implicit desire is to keep the 
programming model within the current paradigm but add some extensions to handle 
sensor input. An infrastructure approach differs in two ways. First, put as much 
functionality as possible into the network to increase utilization, reliability, and sharing, 
as well as to decrease maintenance. Second, create many small network-based services 
that can be composed together instead of monolithic applications that reside on devices. 
It’s possible to do this with the Context Toolkit, but it’s neither emphasized nor 
supported. 

4. CHALLENGES TO BUILDING A CONTEXT-AWARE 
INFRASTRUCTURE 

Although we have pointed out many advantages to an infrastructure approach for 
supporting context-aware applications, there are still many technical challenges that must 
be overcome. We draw special attention to five of these and sketch out some current 
research and potential directions for addressing each of these issues. 

4.1. Defining Standard Data Formats and Protocols 

The first challenge lies with designing the data formats and protocols used by the 
infrastructure. These standards will be the glue that allows the separate pieces of the 
infrastructure to interoperate. For this reason, they need to be simple enough that they can 
be implemented for practically any device and used by any application. A good negative 
example is the Jini coordination framework (Scheifler, Waldo, & Wollrath, 2000). Jini 
requires clients to have access to a full- fledged Java Virtual Machine as well as a large 
set of Java libraries, seriously restricting the class of devices that can use Jini. To 
encourage as many people as possible to use the infrastructure, it needs to be as agnostic 
as possible with respect to hardware platform, operating system, and programming 
language. The Salutation (Salutation Consortium 2000) and Universal Plug and Play 
(Universal Plug and Play 2000) coordination frameworks are good examples along these 
lines. The SOAP protocol (Box et al., 2000), currently under consideration as a W3C 
standard, is a remote procedure call protocol based on XML and also shows great 
promise. 

Besides being simple, the data formats and protocols also need to be rich enough to 
cover the diverse range of sensors and assorted types of context. Furthermore, as pointed 
out by the anchor paper, many types of context are inherently ambiguous. The data 
formats need to address the fact that sensor data is often partial and unreliable, leading to 
ambiguity in how the context is interpreted. There has been much work in using 
probabilistic frameworks to model uncertainty, and we believe that this is the most 
promising approach for modeling context data. One advantage of representing context 
data probabilistically is that applications can be given a notion of the confidence of the 
context data before acting on it. Another advantage is that a probabilistic framework 
makes it easier to fuse context data together to give better results. One example where 
this is taking place is with MUSE (Castro & Muntz, 2000), which uses Bayesian nets and 
Hidden Markov Models to model sensor data. 



Here, we need to make the distinction between sensor data and context data. Sensor 
data itself is unambiguous; however, it has several attributes, including precision, 
granularity, and accuracy, which affects how it is interpreted as higher- level context data. 
By precision we mean the variation in a set of repeated measurements. By granularity we 
mean the smallest unit that can be measured. By accuracy we mean the difference 
between the calculated value and the actual real-world value. To illustrate the difference 
between these terms, let’s suppose we have a GPS device and check it every few seconds. 
If we are standing still and see that our measured location is jumping around sporadically, 
then our measurement is not very precise. If we can walk at most a half-meter in any 
direction and not have our measured location change, then our device has a granularity of 
about one meter. If we are actually at one location but the measurement says we are fifty 
meters away, then our measurement is not very accurate (for most applications, anyway). 

In turn, these attributes affect the interpretation of sensor data as context data. For 
example, if we have highly accurate GPS location data and want to model the current 
street we are on, we might say that we are on street A with 98% confidence and on street 
B with 2% confidence. However, if we are using a less accurate system, such as some 
form of radio triangulation, we might find that we are on street A with 80% confidence, 
on street B with 12% confidence, and on street C with 8% confidence. The key here is in 
representing uncertainty in a uniform way and then letting other entities choose what to 
do. Some applications may choose to use sophisticated probabilistic algorithms, while 
others may simply reject data below a certain threshold. 

Another quirk that needs to be modeled in the context data format is that the context 
may not be available at all. Perhaps the needed sensors may not be at hand, the network is 
down, a person simply wants to keep certain information private, or the requestor does 
not have authenticated access to the data. For these reasons, UNKNOWN always needs 
to be a valid value for all types of context data at all times. 

4.2. Building Basic Infrastructure Services 

The second challenge to building a context infrastructure lies with designing the 
services. Some of these context services will be highly application specific and will have 
to be designed and implemented on a case-by-case basis. However, other context services 
will be basic enough that they will be an integral part of the infrastructure itself. We 
describe two such services below, Automatic Path Creation and Proximity-Based 
Discovery. 

4.2.1. Automatic Path Creation 

One such service is automatic path creation. Previous research on automatic path 
creation has focused on network protocol and data format interoperability (Kiciman & 
Fox, 2000; Mao, 2000). However, we believe that automatic path creation can be adapted 
for context-awareness to simplify the task of refining and transforming raw sensor data 
into higher- level context data.  



Automatic path creation relies on operators, a special subset of services. Figure 2 
shows four operators. The first operator transforms GPS location data to ZIP code data 
(denoted GPS à ZIP). The second takes a cellular phone’s cell location and calculates 
the GPS coordinates of the center of the cell (Cell à GPS). Another operator takes cell 
location, does a lookup to find the ZIP code, and then returns the ZIP code.  The last 
operator takes ZIP code data and returns the current weather conditions for that area. 
Individually, none of these services are very interesting; however, much like Unix pipes, 
they can be chained together into paths to form more interesting services. For example, 
GPS can be used to retrieve local weather conditions (chaining GPS à ZIP and ZIP à 
Weather together). 

Figure 2 ABOUT HERE 

Clearly operators can be combined manually into paths, but the real power comes 
from the fact that they can be composed automatically based on high- level needs and on 
whatever resources are available. For example, figure 3 shows three different ways of 
answering the question “What are the nearby movie theaters?” In the first case the path 
goes from GPS à ZIP and ZIP à Movie Theaters. In the second case it goes from Cell 
Location à ZIP and ZIP à Movie Theaters. In the third case it goes from Cell Location 
à GPS, GPS à ZIP, and then ZIP à Movie Theaters. With automatic path creation, any 
of these three paths can be created dynamically on demand depending on what kind of 
location sensors and services are currently available.  

Figure 3 ABOUT HERE 

Automatic path creation provides a flexible and high- level abstraction for context-
awareness. It relieves application developers from having to know about specific sensors 
and services. Instead, developers only need to worry about formulating the right context 
query. Furthermore, it provides greater reusability than if the transformations were 
simply hardwired together as a single monolithic application. For example, now that there 
is a GPS to ZIP code operator, all a developer needs to do to get the local traffic report is 
to create an operator that takes ZIP code information and retrieves the traffic conditions 
in that area. Compare this with how context is currently processed in the Context Toolkit. 
Currently, developers have to manually specify what path context data flows through. 
Not only is this tedious, it also makes it difficult to acquire context information in 
changing situations, such as when a person moves from one room full of sensors to 
another.  

The challenge to building an automatic path creation service is fourfold. The first 
problem is one of engineering. A critical mass of operators must be built before 
automatic path creation becomes sufficiently useful. The second problem is one of 
standards. Standard data types need to be developed; otherwise, operators cannot be 
connected with one another. The third problem is one of building good paths. The system 
needs a way of selecting a path if there are multiple valid paths. It also needs a way to 
determine where to run each of these operators. These decisions may also be influenced 
by performance, quality of service, and uncertainty constraints. The fourth problem is one 
of representing the context query. The query needs to be rich enough to pose interesting 



context questions, but also simple enough that it can realistically be understood and 
processed.  

4.2.2. Proximity-Based Discovery 

Another basic service is proximity-based discovery, which finds all nearby sensors 
(see Figure 4). Proximity-based discovery is important since many context-aware 
applications make use of spatial locality. For example, suppose that a meeting capture 
service wants to know if there is a meeting going on in a given room right now so it can 
begin recording. Instead of hardwiring the service to use the specific sensors in that room, 
it can ask the infrastructure to locate the sensors in that room and then use automatic path 
creation to bridge the gap between the low-level sensor data and the higher- level question 
of “Is there a meeting right now?” Combining proximity-based discovery with automatic 
path creation makes it easier to design and deploy context-aware applications. 
Applications don’t have to know beforehand exactly which sensors will be used, but as 
long as the right sensors are there, they will still work correctly.  

Figure 4 ABOUT HERE 

There are three difficulties inherent in proximity-based discovery. The first problem 
is logistical. Not every sensor will be able to pinpoint its location, meaning that some 
sensors will have to be manually configured (a tedious proposition). The second problem 
is representing the location of sensors. For example, a nearby sensor could be “10 meters 
away”, as well as be “on a desk”, “in room 525”, “in building Soda Hall”, and “on the 
campus of University of California at Berkeley”. The representation needs to be flexible 
enough so that higher level queries can be constructed. The third problem is storing the 
location of sensors. In some cases, this is obviated by wireless technologies such as 
Bluetooth, which can use physical proximity to discover similarly enabled sensors. The 
trouble is that not all sensors will be wireless, meaning that sensor location data still 
needs to be stored somewhere. Fortunately, this problem can be reduced to just finding 
the local service that contains the location data, a more tractable problem. 

4.3. Apportioning Responsibilities 

A third challenge to building a context-aware infrastructure is deciding how to split 
responsibilities between devices, applications, and the infrastructure. For example, 
Hinckley et al modified a PDA to have tilt, touch, and proximity sensors (Hinckley, 
Pierce, Sinclair, & Horvitz, 2000). The screen would rotate simply by rotating the PDA. 
Also, the voice recorder would automatically activate if the PDA was tilted upwards, was 
being touched, and was near something (ideally the user’s face). All of this sensor data 
was processed locally on the device itself. However, if it were processed in a context 
infrastructure, it’s likely that the interactivity would be stilted due to network latency. 

There are two extremes here (see Figure 5). On one side, we have smart, standalone 
devices that are completely autonomous and self-contained. On the other, we have a 
smart infrastructure with extremely simple clients, with all of the work done by the 
infrastructure. There are clear advantages and disadvantages to both of these approaches. 



The essence of the problem is finding the middle ground, determining what devices and 
applications should handle and what the infrastructure should handle. More applications 
will have to be built before we have a better understanding of the tradeoffs involved. 

Figure 5 ABOUT HERE 

4.4. Scoping and Access of Sensor and Context Data 

A fourth and very difficult challenge to building a context infrastructure lies with 
scoping and access of both sensor and context data. In other words, who has access to 
what data? Clearly, the infrastructure needs to be secure against unauthorized access, but 
it also needs ways to let people introspect, so that they can understand what is being done 
with the data and by whom. Furthermore, the infrastructure needs to be designed such 
that privacy concerns are legitimately and adequately addressed. There is a clear mental 
model with standalone devices and applications: everything is done locally. However, 
once we shift to a service infrastructure, the lines become blurred. It’s no longer obvious 
what is being captured, who has access to it, and what is being done with it.  

Clearly, access control and encryption will be an important part of any context 
infrastructure. One possible approach is to follow the model the web has taken with 
digital certificates. Digital certificates are issued by trusted third-party organizations and 
provide an identity and authentication of that identity. As long as these third-party 
organizations are trusted, their digital certificates should be too.  

4.5. Scaling Up the Infrastructure 

A fifth challenge is that of scale. The sheer number of sensors, services, and devices 
envisioned poses some fundamental engineering challenges. The infrastructure needs to 
work for large numbers of sensors, services, devices, and people. It also needs to require 
a minimal amount of administrative effort. Much work has been done in building 
distributed systems (for example, CORBA (Object Management Group, 2001) and 
DCOM (Eddon & Eddon, 1998)), application servers (such as BEA WebLogic (BEA 
2001) and IBM WebSphere (IBM 2001)), and service infrastructures (including Jini 
(Scheifler et al., 2000), Salutation (Salutation Consortium 2000), HP eSpeak (Hewlett-
Packard Inc. 2001) and Ninja (Gribble et al., 2001)). However, considerable progress is 
still needed in these areas before a context infrastructure can be deployed across a wide 
area.  

5. SUMMARY 

Although frameworks and toolkits are very useful for building context-aware 
applications, we believe that there are several compelling advantages to a service 
infrastructure approach. We have identified three broad benefits. First, since an 
infrastructure can be neutral with respect to hardware platform, operating system, and 
programming language, a greater variety of devices and applications can access the 
infrastructure. Second, the middleware layer decouples the individual pieces of the 
infrastructure from one another. This allows sensors and services to be upgraded 



independently of one another and dynamically while the system is still running. Third, 
devices can be simpler because they can rely on using sensors, processing power, 
services, and data contained in the infrastructure.  

We have also outlined five challenges that must be overcome before a context-aware 
infrastructure can be built. The first challenge is in designing the data formats and 
network protocols to be simple enough that they can be implemented on virtually any 
platform, but also rich enough to represent the majority of sensor and context data. The 
second challenge is in building the basic services in the infrastructure, including 
automatic path creation and proximity-based discovery. The third challenge is in finding 
the middle ground between smart devices and smart infrastructures, finding the right 
balance of responsibilities between the two. The fourth challenge is in scoping of sensor 
and context data to ensure security and privacy. The fifth challenge is in building an 
infrastructure that will scale up gracefully for large numbers of sensors, services, devices, 
and people. Our group at University of California at Berkeley is currently designing an 
infrastructure to meet these challenges 

 



NOTES 

Background. This essay describes the preliminary work of the first author’s PhD 
dissertation.  

Acknowledgments. We would like to thank all of the members of the Group for User 
Interface Research (GUIR) for their feedback on this essay. 

Support. This work is supported in part by DARPA grant N66001-99-2-8913: The 
Endeavour Expedition. 

Authors’ Present Addresses. Jason I. Hong, 525 Soda Hall, Computer Science 
Division, University of California at Berkeley, Berkeley, CA, 94720-1776, Email: 
jasonh@cs.berkeley.edu. James A. Landay, 683 Soda Hall, Computer Science Division, 
University of California at Berkeley, Berkeley, CA, 94720-1776, Email: 
landay@cs.berkeley.edu. 

HCI Editorial Record. (supplied by Editor) 

 



REFERENCES 

Abowd G. D., Atkeson, C. G., Hong, J., Long, S., Kooper, R. & Pinkerton, M. (1997). 
Cyberguide: A mobile context-aware tour guide. ACM Wireless Networks, 5(3), 
421-433. 

BEA Systems (2001). BEA WebLogic Application Servers. Web page available at: 
http://www.bea.com/products/weblogic. 

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F., 
Thatte, S., & Winer, D. (2000). Simple Object Access Protocol (SOAP) 1.1 (W3C 
Note 08). Cambridge, MA: World Wide Web Consortium. Web page available at: 
http://www.w3.org/TR/SOAP/ 

Castro, P., & Muntz, R. (2000). Managing Context for Smart Spaces. IEEE Personal 
Communications, 7(5), 44-46. 

Dey, A. K., Salber, D., Abowd, G. D. (2001). A conceptual framework and a toolkit for 
supporting the rapid prototyping of context-aware applications. Human-Computer 
Interaction, 16, xxx-xxx. [this special issue] 

Eddon, G., & Eddon, H. (1998). Inside Distributed COM. Redmond, WA: Microsoft 
Press. 

Gribble, S. D., Welsh, M., Behren, R. v., Brewer, E. A., Culler, D., Borisov, N., 
Czerwinski, S., Gummadi, R., Hill, J., Joseph, A., Katz, R. H., Mao, Z. M., Ross, 
S., & Zhao, B. (2001). The Ninja Architecture for Robust Internet-Scale Systems 
and Services. To appear in a Special Issue of Computer Networks on Pervasive 
Computing. 

Hewlett-Packard Inc (2001). eSpeak: The Universal Language of E-Services. Web page 
available at: http://www.e-speak.net/. 

 
Hinckley K., Pierce, J., Sinclair, M. & Horvitz, E. (2000). Sensing techniques for mobile 

interaction. Proceedings of the 13th Annual ACM Symposium on User Interface 
Software and Technology (UIST 2000), 91-100. New York, NY: ACM Press. 

IBM Corporation (2001). IBM WebSphere Application Server. Web page available at: 
http://www.ibm.com/software/webservers. 

 
Kiciman, E., & Fox, A. (2000). Using Dynamic Mediation to Integrate COTS Entities in 

a Ubiquitous Computing Environment. Proceedings of the 2nd International 
Symposium on Handheld and Ubiquitous Computing (HUC2K), Heidelberg, 
Germany: Springer Verlag. 

Mao, Z. M. (2000). Fault-tolerant, Scalable, Wide-Area Internet Service Composition. 
Unpublished master's dissertation, University of California at Berkeley, Berkeley. 



Web page available at: 
http://www.cs.berkeley.edu/~zmao/Papers/techreport.ps.gz 

Object Management Group (OMG) (2001). The Common Object Request Broker 
Architecture. Web page available at: 
http://www.omg.org/technology/documents/index.htm. 

Pascoe, J. (1997). The Stick-e Note Architecture: Extending the Interface Beyond the 
User. Proceedings of the International Conference on Intelligent User Interfaces 
(IUI '97). New York, NY: ACM Press. 

Kahn, J. M., Katz, R. H., and Pister, K. S. J (1999). Next Century Challenges: Mobile 
Networking for "Smart Dust". Proceedings of ACM/IEEE Intl. Conf. on Mobile 
Computing and Networking (MobiCom 99). Web page available at: 
http://robotics.eecs.berkeley.edu/~pister/publications/1999/mobicom_99.pdf 

Salutation Consortium (2001). Salutation Specification. Web page available at: 
http://www.salutation.org/ordrspec.htm. 

Scheifler, R., Waldo, J., & Wollrath, A. (2000). The Jini Specifications. (2nd ed.): 
Addison-Wesley. 

 
Schilit B. (1995). System architecture for context-aware mobile computing. Unpublished 

doctoral dissertation, Columbia University. Web page available at: 
http://www.fxpal.xerox.com/people/schilit/schilit-thesis.pdf 

Universal Plug and Play Forum (2000). Universal Plug and Play Device Architecture. 
Web page available at: 
http://www.upnp.com/download/UPnPDA10_20000613.htm. 

 
Want R., Hopper, A., Falcao, V. & Gibbons, J. (1992). The Active Badge location 

system. ACM Transactions on Information Systems, 10(1), 91-102 

Want, R., Schilit, B. N., Adams, N. I., Gold, R., Petersen, K., Goldberg, D., Ellis, J. R., & 
Weiser, M. (1995). Overview of the PARCTAB Ubiquitous Computing 
Experiment. Mobile Computing, 2(6), 28-43. 

 
 

 

 



FIGURE CAPTIONS 

Figure 1. An infrastructure for context-awareness can provide a middleware layer 
between sensors on one side and devices and applications on the other. The 
middleware layer presents a uniform layer of abstraction, making it easier to 
update individual pieces independently of each other.  

Figure 2. Operators are a special kind of service that reside in the infrastructure. 
Operators offer simple services, such as converting GPS data into ZIP code 
data. The power of operators comes from the fact that they can be composed 
into more powerful services. 

Figure 3. Automatic path creation is one basic service that would be provided by a 
context infrastructure. Given a context query, automatic path creation can 
incrementally transform raw sensor data into an answer. This figure shows 
three different paths for computing the answer to the question “What are the 
nearby movie theaters?” The first case uses GPS sensors. The second and 
third cases use cell phone location. With automatic path creation, any of 
these paths can be created on demand based on whatever resources and 
services are available. 

Figure 4. Proximity-based discovery is another basic service that would be provided 
by a context infrastructure. Given a location, the service would find all of the 
nearby sensors. 

Figure 5. At one end of the spectrum, context can be acquired and processed 
entirely in standalone devices. These devices will vary in terms of capability. 
At the other end, context can be handled entirely by the infrastructure, with 
extremely simple devices. There is also a large middle ground, where some 
devices are autonomous and some devices rely on the infrastructure. 

 



FIGURES 

Figure 1. An infrastructure for context-awareness can provide a middleware layer 
between sensors on one side and devices and applications on the  other. The 
middleware layer presents a uniform layer of abstraction, making it easier to 
update individual pieces independently of each other.  

 



Figure 2. Operators are a special kind of service that reside in the infrastructure. 
Operators offer simple services, such as converting GPS data into ZIP code 
data. The power of operators comes from the fact that they can be composed 
into more powerful services. 

 



Figure 3. Automatic path creation is one basic service that would be provided by a 
context infrastructure. Given a context query, automatic path creation can 
incrementally transform raw sensor data into an answer. This figure shows 
three different paths for computing the answer to the question “What are the 
nearby movie theaters?” The first case uses GPS sensors. The second and 
third cases use cell phone location. With automatic path creation, any of 
these paths can be created on demand based on whatever resources and 
services are available. 

 



Figure 4. Proximity-based discovery is another basic service that would be provided 
by a context infrastructure. Given a location, the service would find all of the 
nearby sensors. 

 



Figure 5. At one end of the spectrum, context can be acquired and processed 
entirely in standalone devices. These devices will vary in terms of capability. 
At the other end, context can be handled entirely by the infrastructure, with 
extremely simple devices. There is also a large middle ground, where some 
devices are autonomous and some devices rely on the infrastructure. 

 

 


