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ABSTRACT
This paper examines the location traces of 489 users of a
location sharing social network for relationships between
the users’ mobility patterns and structural properties of their
underlying social network. We introduce a novel set of
location-based features for analyzing the social context of a
geographic region, including location entropy, which mea-
sures the diversity of unique visitors of a location. Using
these features, we provide a model for predicting friendship
between two users by analyzing their location trails. Our
model achieves significant gains over simpler models based
only on direct properties of the co-location histories, such as
the number of co-locations. We also show a positive rela-
tionship between the entropy of the locations the user visits
and the number of social ties that user has in the network.
We discuss how the offline mobility of users can have im-
plications for both researchers and designers of online social
networks.
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INTRODUCTION
Although voices in the media and academia often make dis-
tinctions between online social networks and offline social
networks, until recently it has been extremely difficult to
rigorously address questions comparing these two worlds.
This has led to conflicting results when researchers have at-
tempted to relate online and offline behavior. For example,
in a recent article Deresiewicz argues that online social net-
works are contributing to the isolation of people in the physi-
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cal world [2], while a recent Pew Internet and American Life
report argues that online social networks have a positive im-
pact on social relations in the physical world [9]. The current
lack of methodology for analyzing the distinctions between
online and offline social networks can explain, in part, this
type of open ended debate.

At the same time, the growing ubiquity of location-enabled
“smartphones” blurs the distinction between online and of-
fline social networks. This is most apparent in emerging mo-
bile social networks such as Foursquare and Gowalla which
have created new means for online interaction based entirely
on the physical location of their users. Furthermore, smart
devices also make it possible to study peoples’ offline behav-
ior by continuously tracking their whereabouts. As a conse-
quence, many questions of human behavior which in the past
were difficult to answer, will soon become easier to analyze.

One of the challenging problems in this space is inferring
properties of the social behavior of users from their location
trails. Some promising research in this area can be seen in
papers by Eagle et al. [3, 4] and Li et al. [11] who develop
measures of user similarity based on mobility and use this
to infer the social structures of the users. This task is par-
ticularly challenging since co-location of two users, loosely
defined as being in the same place at the same time, does
not provide enough evidence to reliably establish a relation-
ship between them, especially in urban environments, where
co-location among strangers is frequent [12]. Furthermore,
in realistic conditions, location tracking is inherently partial
and inexact, making this kind of inference difficult on a large
scale.

To meet these challenges we introduce a set of features that
shed light on the social context of the locations that users
visit. We evaluate these features on two tasks: predicting
whether two co-located users are friends on Facebook, and
predicting the number of friends a user has in the social net-
work. Additionally, we examine the relative importance of
the predictors used, and we show that looking deeper into
characteristics of the locations the users visit can signifi-
cantly improve performance on these tasks.

Being able to rigorously address these questions requires a
special experimental framework capable of observing both
the offline social behavior and the online social structure of
the users. To meet this end, we use Locaccino, a location-



sharing application based on Facebook’s social network [14].
Locaccino allows users to share their location with their
Facebook friends subject to robust privacy preferences. Our
results are based on an analysis of the location trails of 489
participants who were tracked using GPS and WiFi position-
ing technologies installed on the their mobile phones and/or
laptop computers.

In this work we introduce and evaluate a set of contextual
features of human location trail data for inferring two social
aspects of the users: the existence of an online social net-
work link between two users, and the number of friends a
user has. We show that by analyzing characteristics of the
locations the users visit, and by studying the patterns of an
individual user’s mobility, we can gain valuable context into
the users social world.

This work makes the following primary research contribu-
tions:

1. We establish a model of friendship in an online social net-
work based on contextual features of user co-location.

2. We identify positive relationships between the mobility
patterns of a user and the number of online friends the
user has.

3. We show that diversity measurements of a location, such
as the entropy of the distribution of unique visitors there,
can be used to analyze the context of the social interac-
tions at that location.

RELATED WORK
Several promising results demonstrate the potential of using
ubiquitous mobile technologies to study human social be-
havior. In a series of papers, González et al. observed a
large group of mobile phone users over six months, show-
ing that phone users’ mobility patterns have a high degree
of spatial and temporal regularity [7]. They then used this
insight to developed statistical models of user mobility pat-
terns. Eagle and Pentland used eigenvalue decomposition
to study routine behaviors of mobile phone users [3]. They
showed that the inferred principal components of participant
behaviors discovered by their decomposition can be used to
build a similarity measure between users. Furthermore, they
showed that this similarity measure can be used to success-
fully infer familiarity. Li et al. also used location histories to
derive a user similarity measure [11]. Their similarity mea-
sure is derived from a hierarchical modeling of the users’
location histories that takes into account both movements on
a micro scale, say from building to building, and movements
on a macro scale, say from city to city. Miklas et al. studied
the network of interactions of mobile phone participants in
relation to their social network [12]. Although the primary
focus of their work was on applications that exploit social
interactions such as routing in delay tolerant networks, they
also found several interesting descriptive results about social
interactions, such as the distribution of participant interac-
tions with strangers versus interactions with friends.

Eagle et al. analyzed a set of features of mobility data to

study the social structure of the participants [4]. They ex-
amined features such as the proximity of the users at work,
proximity on a Saturday night, whether there was phone
communication between them, and the number of unique lo-
cations where they were together as predictors of whether
there was a relationship between the two users. They then
conducted a regression analysis using self report data for
the actual user relationships to study what factors contribute
most to friendship. Their analysis showed that phone com-
munication was by far the most significant predictor of friend-
ship, followed by the number of unique location, and prox-
imity on a Saturday night.

We build on this foundation and expand it several ways.
First, we compare physical social interactions with an exist-
ing online social network rather than self reported social ties.
Not only does this bypass any potential biases introduced by
self report data, this type of analysis also allows our work to
contribute new applications to online social networks, such
as location-based friend recommendation and categorization
systems, and location recommendation systems. Second, we
do not record the existence of cellular phone communica-
tion between the users. Rather, our methodology is based
only on knowing the users’ locations. Finally, we expand
the existing methodology for analyzing location data, by in-
troducing new tools for enhancing the understanding of the
context of human location observations by looking at global
properties of the location where the observation occurred,
such as the entropy of the distribution of users that visit the
location. We show that using these new location-based fea-
tures, we can construct a classifier for predicting social ties
that outperforms one that is based on features similar to the
proximity-based features used used by Eagle et al. [4].

Unlike the bluetooth handshake method for inferring interac-
tions used by Eagle et al. [4] which requires communication
between the phones of the participants in order to establish
proximity, our method records the location of the users us-
ing standard GPS and WiFi geo-positioning, similar to Li et.
al [11]. We then infer by proximity, rather than explicitly
observe via bluetooth handshake, the social interactions be-
tween the users. This method is realistic and highly scalable,
making it relevant for researchers and practitioners wishing
to study user location traces on a large scale. Most impor-
tantly, although inferring social interaction in this way can
produce noisy data, we show how a sophisticated analysis
of the context of the observed proximity can compensate for
data limitations.

The methodology we present in this paper also offers new
tools that can be used in future research on the impact of
the Internet on social relations. Current research in this field
is is based mostly on qualitative findings and surveys. For
example, Barry Wellman et al. studied the impact of Internet
on neighborhoods and families [15], Kraut et al. studied the
effects of the Internet on the well being of users [10], and
Ellison et al. studied social capital of Facebook [5]. While
our current paper does not aim to contribute directly to any
of these questions, our work provides another dimension to
address these difficult questions in future work.



METHOD
We observed users through continuous tracking of their loca-
tion using laptop computers and smart phones. Additionally
we observed the existence of Facebook friendships between
pairs of users. In this section, we describe in detail the tech-
nical and experimental framework, and the collected data.

Locaccino
Locaccino [14] is a Web-application developed by the Mo-
bile Commerce Lab at Carnegie Mellon University that al-
lows a user to share her current location with other Locac-
cino users through her Facebook social network subject to
user-controllable privacy rule specifications1. From the user’s
perspective, there are two components of Locaccino: the
web application, which allows users to query their friends’
locations and set up and review privacy rules, and the locator
software, which runs on laptops and mobile phones (Sym-
bian OS and Android) and updates the user location every
10 minutes.

Users run the client locator software in the background of
their laptops or smart phones, which uses a combination of
GPS (if available), WiFI, and IP geolocation to ascertain
location coordinates of the user. Each method has differ-
ing levels of accuracy. Locations ascertained via GPS are
typically accurate to within 10 to 15 meters. Locations as-
certained through a WiFi lookup service like that provided
by Skyhook Wireless2 are typically accurate to within 10
to 20 meters. Locations ascertained via IP geolocation are
typically at the city or neighborhood level of granularity.
These location observations, which consist of a time-stamp
together with latitude and longitude values, are sent to the
Locaccino server by the client software in 10 minute inter-
vals.

Recruitment, Demographics and Data Collection
The 489 users discussed in this work were each active users
of Locaccino for periods ranging from 7 days to several
months (mean of 74 days, median of 38 days). The par-
ticipants started using Locaccino at different times and for
different reasons. 285 of the users were recruited as part of
3 different studies from the campus population using fliers
and posting on the university’s electronic message boards.
The rest of the users were either invited by study partici-
pants through a built-in invite mechanism, or they found Lo-
caccino through research publications, online press, or other
means. Figure 1 shows a plot of the number of unique users
being tracked for each day of the period we study in this
work. All users of Locaccino, regardless of how they were
recruited, gave informed consent to participate in the study
prior to registering an account on the system.

Although we recognize this might limit the generality of our
findings, to enforce some control over the data we ignore
all observations outside of the Pittsburgh metropolitan re-
gion (where Locaccino was first deployed). This allows us
to study the users in a closed “ecosystem” and it frees the

1www.locaccino.org
2www.skyhookwireless.com
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Figure 1. A plot of the number locatable study users in the Pittsburgh
metropolitan region for each day of the study period. Peaks in Apr-09,
Jul-09, and Dec-09 indicate controlled studies.

data from any bias that might result from an uneven density
of observations across geographic regions. In total, over 3
million location observations were collected for this work,
with nearly 2 million of these falling in the Pittsburgh re-
gion. Additionally, we ignore all location observations that
were obtained by IP geolocation. Assuming each data point
represents a 5 minute interval, this is over 20 years of cumu-
lative human observational data.

A large percentage of the observations were collected from
the laptop locator software (93.7%). This imposes several
limitations on the data analysis. For one, people are not as
mobile with laptops, which are often only powered on in
stationary locations, as they are with cellular devices, which
often remain powered-on and near that person at all times.
Furthermore, laptops offer a much more sporadic approxi-
mation of a person’s location than cellular devices do. Lap-
tops are sometimes powered on for hours at a time while the
user is in fact not near the laptop (for instance at home, or at
the office). Although, this adds a significant element of noise
to the data that is difficult to quantify, the data is nevertheless
realistic, as it represents a real world deployment of a loca-
tion sharing system. Furthermore, we feel the limitations
of the data are testament to the strength of our methods, as
we are able to find significant and strong results using data
generated in this realistic and highly scalable manner.

Co-location
We divide the latitude and longitude space into discrete
0.0002× 0.0002 latitude/longitude grids (approximately 30
meters × 30 meters) and the time coordinate into whole 10
minute intervals. In this way, a co-location of two users
is defined as an observation of the users within the same
0.0002 × 0.0002 location grid within the same discrete 10
minute interval. The particular choice of discretization was
based on practical considerations balancing the accuracy of
the location sensing technology with the noise associated
with larger discretization windows. Although such a dis-
cretization adds some noise when trying to infer co-locations,
when examining the entire history of co-locations between
pairs of users, this noise is marginalized. Unless otherwise
stated, when we refer to a location or location observation or
co-location observation in this paper we assume the location
and time coordinates are subject to this discretization.

Network Data
In this work we primarily focus on network data induced
from Locaccino user observations. In particular, we compare
the network formed by co-location of system users, with the



Graph Structural Properties S C S∩C
Number of vertices 397 397 397
Number of isolated vertices 15 120 206
Number of edges 1063 3636 307
Num connected components 106 108 234
Largest component size 315 275 67
Density 0.014 0.046 0.004
Connectedness 0.63 0.48 0.04
Degree centralization 0.06 0.22 0.03
Eigenvector centralization 0.42 0.21 0.50

Table 1. Structural properties of the networks analyzed in this work.

underlying Facebook social network. The three networks
that we consider are defined below:

The Social Network: We denote the underlying Facebook
social network of Locaccino users by S. There is an edge
between vertices u1, u2 ∈ S if and only if u1 and u2 are
friends on Facebook.

The Co-location Network: We construct an undirected graph
based on user co-location, so that an edge exists between u1

and u2 if they were co-located. We call this graph the co-
location network and denote it by C.

The Co-located Friends Network: We will refer to the
graph induced by those Facebook friends who were actually
co-located as the co-located friends network, which will will
denote by S ∩ C.

Structural properties and descriptive statistics of the networks
are shown in Table 1. In this work we will primarily focus
on the edges of the graphs. Although their were 3636 ob-
served colocations among the users, only 307 of these were
co-locations of Facebook friends. This shows that although
co-location among Locaccino users in Pittsburgh is quite
common, co-location among Facebook friends is compar-
atively rare. Indeed, only roughly 30% of the dyads in the
social network ever appear in the co-location network. Also
of interest are global properties of the graph structures, such
as the distribution of component sizes (see Figure 2). Ob-
serve that, ignoring isolated vertices, co-location of the par-
ticipants occurs in one large connected component, whereas
co-location of friends occurs in several smaller distinct com-
ponents.

MODEL DESCRIPTIONS
In this section we describe the variables we use to model the
co-location of two users and individual user mobility.

Measuring the diversity of a location
To better understand the context of each observation, it would
be helpful to have information about the type of location
where the observation occurred. For example, observations
of a user in a private residence should be interpreted differ-
ently from those in a crowded shopping center. We introduce
a set of measures on locations that attempt to quantify the
diversity of observations that occur at a given location. One
primary motivation in defining these measures is to be able
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Figure 2. The distribution of connected component sizes in the social,
co-location and co-located friends networks. Ignoring isolated vertices,
co-location of the participants occurs in a single connected component,
whereas co-location of friends occurs in several smaller components.

to distinguish when a co-location between two users happens
by chance, say two strangers eating at adjacent tables in the
same restaurant, and when the co-location is a social event,
say one friend inviting the other to his house for dinner.

In this work we consider three diversity measure on loca-
tion: frequency, user count, and entropy. The frequency
of a location measures the raw count of user observations
that occurred there, user count looks at the total number of
unique users that visit the location, and entropy takes into
account both the number of users observed at the location as
well as the relative proportions of their observations. A loca-
tion will have a high entropy if many users were observed at
the location with equal proportion. Conversely it will have
low entropy if the distribution of observations at a location
is heavily concentrated on few users. See Figure 4 for a con-
crete illustration of the difference between the three diversity
measures. We find entropy to be particularly appealing be-
cause locations of high entropy by definition are precisely
where chance encounters are most likely to occur.

Now we define these notions formally. Let L be a location
and let U be the set of all users. For a u ∈ U , let Ou be
the set of location observations of u and let O =

⋃
u∈U Ou.

An observation o ∈ Ou is a 4-tuple of the user ID, the lo-
cation latitude and longitude coordinates, and a timestamp.
Define UL = {u ∈ U : u was observed at location L}. Let
Ou,L = {o ∈ Ou : o ∈ L} and OL = {o ∈ O : o ∈ L} be
restrictions of Ou and O to the location L3. The probability
that a random drawn from OL belongs u is PL(u) = |Ou,L|

|OL| ,
that is PL(u) is the total fraction of all observations at loca-
tion L that are of user u.

Definition 1: For a location L, the frequency of the loca-
tion is defined as Freq(L) := |OL|, the user count of the
location is defined as UserCount(L) := |UL|, and the lo-
cation entropy of the location is defined as Entropy(L) :=
−

∑
u∈UL

PL(u) logPL(u).

Our application of the UserCount and Entropy mea-
sures to study locations is motivated by their use in ecology
in the study of biodiversity [13].

Co-location features

3The notation that o ∈ O and o ∈ L is imprecise. Elements of
O are 4-tuples whereas elements of L are location coordinates. By
o ∈ L we mean the location component of o lies in location L.
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Figure 3. A map of the study region where observations are colored ac-
cording to their level of entropy. Places such as the university campus,
shopping and dining districts, have high entropy levels. Residential ar-
eas have low entropy.

For each co-location edge {u1, u2} of C, we extract 67 fea-
tures from the data describing contextual properties of the
history of co-locations between u1 and u2. These features,
which are outlined in Table 2, are designed to distinguish
more “meaningful” co-location histories from chance co-
locations. Broadly, we divide the features into four cate-
gories, Intensity and Duration, Location Diversity, Speci-
ficity, and Structural Properties.

Intensity and Duration: The Intensity and Duration fea-
tures measure qualities related to the size and spatial and
temporal range of the set of co-locations. These features
quantify how long and how actively users have embraced
the system.

Location Diversity: The location diversity measures given
in Definition 1 provide the basis for several features which
aid in understanding the context of a set of co-locations.
For a given co-location observation between u1 and u2, let
l be the location where they were observed. We compute
Freq(l), UserCount(l) and Entropy(l) for every co-location
of u1 and u2, then we take the average, median, variance,
minimum and maximum of the resulting values to get the
features listed in Table 2. Additionally, although they are not
listed in Table 2, we also use two variations of each of these
features where the statistics are taken only over evening and
weekend co-locations.

Specificity: Inspired by the tf-idf ranking technique from
information retrieval, we would like to measure how spe-
cific a location is to the pair of users who were co-located
there. For example, a domestic residence is highly specific
to the married couple that lives there, since a large fraction of
the observations there are co-locations of that couple. For a
given location l, we define the TFIDFu1,u2(l) to be the num-
ber of times u1 and u2 were observed co-located at l divided

l4

l1 l2

l3

Frequency: Low
User count: Low
Entropy: Low

Frequency: High
User count: Low
Entropy: Low

Frequency: High
User count: High
Entropy: Low

Frequency: High
User count: High
Entropy: High

= observation of user 1 = observation of user 2 = observation of user 3

Freq(l1) = 2
UserCount(l1) = 1
Entropy(l1) = 0

Freq(l2) = 12
UserCount(l2) = 1
Entropy(l2) = 0

Freq(l3) = 12
UserCount(l3) = 3
Entropy(l3) = 0.60

Freq(l4) = 12
UserCount(l4) = 3
Entropy(l4) = 1.58

Figure 4. Four representative scenarios highlighting the differences be-
tween the location diversity measures. Circles of a given shade repre-
sent location observations of a particular user.

by Freq(l) (i.e. the total number of observations at the lo-
cation). The Specificity features listed in Table 2 are de-
termined by first computing TFIDFu1,u2 at each co-location
observation of u1 and u2, and then taking the average, mini-
mum, and maximum of the resulting data.

Structural Properties: We use three variables which mea-
sure the strength of the structural relationship between u1

and u2 in C. Two of these are standard social network
analysis techniques (NumMutualNeighbors and Neighbor-
hoodOverlap). The third feature, LocationOverlap, is not
strictly a structural property of C, but is computed similarly
to NeighborhoodOverlap, and can be viewed as a similarity
measure between the sets of locations u1 and u2 visit.

Measuring the regularity of a user’s routine
In studying how properties of user mobility relate to proper-
ties of the underlying social network, one attribute we would
like to quantify is the regularity of a user’s schedule. We ac-
complish this by first representing each location observation
o ∈ Ou as a vector of values of the location, day of the week,
and hour of the day of the observation. To measure how a
user’s mobility pattern repeats in regular intervals, we can re-
strict this vector to a subset of the components and study the
observed probability distribution in the resulting subspace.

For example, if we restrict the observations to just the loca-
tion and day of the week components, then we could study
how the user’s schedule varies as a function of the day of the
week. The observed joint probability distribution on these
two components provides some insight into the regularity of
the user’s weekly schedule. If the distribution is concen-
trated at relatively few values, then the user has a highly reg-
ular weekly schedule, and if the distribution is spread out
among several values, then the user has a highly irregular
schedule. We will again use entropy as a measure of the
spread of this distribution.

We now formalize this intuition. Let R ⊂ {L, D, H} denote
the components of the restriction (standing for location, day
of the week, and hour of the day respectively). For a given
o ∈ Ou, we let o(R) be the restriction of o to the compo-
nents of S. Then Ou(R) = {o(R) : o ∈ Ou} is the unique



Category Variables Description Co-location User mobility

Intensity
and
Duration

NumObservations The total number of observations of the user.
√

NumColoc, NumColocEvening, Num-
ColocWeekend

The number of co-location observations of the two users, in total, in the
evening only, and on weekends only.

√

NumLocations, NumLocationsEvening,
NumLocationsWeekend

The number of distinct grid boxes where the user or users were observed, in
total, in the evening only, and on weekends only.

√ √

NumHours, NumWeekdays, NumDates The number of distinct hours of the day, days of the week, and calendar
dates that the two users were observed together.

√

ObservationTimeSpan The difference in seconds between the last and the first location or co-
location observation.

√ √

BoundingBoxArea The area of the minimal axis aligned rectangle that contains the
locations/co-location observations of the user/users.

√ √

Location
Diversity

AvgEntropy, MedEntropy, VarEntropy,
MinEntropy, MaxEntropy

The mean/median/variance/min/max of the location entropy at each
location/co-location observation of the user/users.

√ √

AvgFreq, MedFreq, VarFreq, MinFreq,
MaxFreq

The mean/median/variance/min/max of the location frequency at each
location/co-location observation of the user/users.

√ √

AvgUserCount, MedUserCount, VarUser-
Count, MinUserCount, MaxUserCount

The mean/median/variance/min/max of the location user count at each
location/co-location observation of the user/users.

√ √

Mobility
Regularity

SchEntropyL, SchEntropyLH, SchEn-
tropyLD, SchEntropyLHD

The schedule entropy of the user with respect to location, location and hour,
location and day of the week, and location and hour and day of the week.

√

SchSizeLH, SchSizeLD, SchSizeLHD The schedule size of the user with respect to location and hour, location and
day of the week, and location and hour and day of the week.

√

Specificity

AvgTFIDF, MinTFIDF, MaxTFIDF The mean/minimum/maximum of the location TFIDF at each co-location of
the two users.

√

PercentObservationsTogether The total number of co-locations of the two users divided by the sum of
each users total number of observations.

√

Structural
Properties

NumMutualNeighbors The number of people who have been co-located with both users.
√

NeighborhoodOverlap The number of people who have been co-located with both users divided by
the number of people who have been co-located with either user.

√

LocationOverlap The total number of distinct places visited by both users divided by the total
number of places visited by either users.

√

Table 2. Above are the names and descriptions of the independent variables used in our models. We divide the variables into five categories to better
understand how the groups of variables relate to one another. Further we indicate whether the variables are features of co-location, or features of
individual user mobility, or both.

set of |R|-tuples generated by applying the restriction R to
observation vectors in Ou (i.e. observations of users u). We
define the observed probability distribution of the restricted
observations as r ∈ Ou(R) as p(r) = |{o∈Ou : o(R)=r}|

|Ou| .

Definition 2: The schedule size of u with respect to restric-
tion R is defined as SchSize(Ou, R) := |Ou(R)| and the
schedule entropy of u with respect to R is defined as

SchEntropy(Ou, R) := −
∑

r∈Ou(R)

P (r) logP (r).

To clarify these definitions, suppose again that R = {L,D},
so R is a restriction of the observation to the location and
day of the week. Then SchSize(Ou, R) will be high if on
each day of the week u visits many different locations and
SchEntropy(Ou, R) will be high if a u visits many loca-
tions on each weekday in relatively equal proportions.

User mobility features
For each vertex u of C, we extract 64 features from the data
describing properties of the mobility patterns of u. Again
see Table 2 for a full description of the features. We partition
the user mobility features into three categories, Intensity and
Duration, Location Diversity, and Mobility Regularity.

Intensity and Duration: Similar to the corresponding cat-
egory in the co-location model, these features measure the
intensity of and range of the user’s use of the system.

Location Diversity: Location Diversity features for the user

mobility model are identical to the co-location model, except
instead of measuring the diversity of co-location observa-
tions, we measure the diversity of the location observations
of a single user.

Mobility Regularity: In this work we consider four restric-
tions: {L}, {L, H}, {L, D}, {L, H, D}. Computing the
schedule size and schedule entropy on these four restrictions
yields the seven Mobility Regularity features listed in Table
2 (the eight feature is SchSize(Ou, {L}), which is already
represented by NumLocations). Similar to the location di-
versity variables, we also use evening and weekend varia-
tions for the Mobility Regularity features.

RESULTS
In this section we present our main results. We analyze the
relative importance of the independent variables both in the
context of predicting the number of social network ties a user
has as well as the existence of a social network tie between
two co-located users.

Inferring social network ties from co-location
First we consider the task of predicting ties from co-location
data. For each edge of C we use a binary response variable
FacebookFriends to indicate whether or not the correspond-
ing edge is present in S. In total, there were 307 co-location
edges where the users were Facebook friends and 3330 co-
location edges where the users were not Facebook friends.
We model FacebookFriends as a function of the co-locations
features.

We then trained 6 classifiers on the data (2 Random Forest



Classifier Prec. Recall
RandomForests (10 vars. per node) 0.62 0.22
RandomForests (18 vars. per node) 0.61 0.22
AdaBoost (dec. stumps, exp. loss) 0.68 0.24
AdaBoost (dec. stumps, lgstc. loss) 0.60 0.28
SVM (deg 2 polynomial kernel) 0.40 0.31
SVM (deg 3 polynomial kernel) 0.26 0.37

Table 3. The observed precision and recall of the 6 classifiers we tested.
Predictions were conducted with a 50-fold cross validation procedure
over all the observations in the dataset. The choice for number of vari-
ables at each split in the Random Forest models was picked via cross
validation. Each Random Forest model had 1000 trees. The AdaBoost
algorithm was run for 400 iterations.

classifiers, 2 AdaBoost Classifiers (with Decision Stumps),
and 2 SVM Classifiers (with polynomial kernels). The per-
formance of each classifier was measured against the true
values of whether the users are Facebook friends using a 50-
fold cross validation procedure. Table 3 shows the observed
average precision and recall for each from this procedure.

The RandomForest models and the AdaBoost models out-
perform the two SVM models that we trained. In particular,
the AdaBoost model with exponential loss seems to perform
the best, having the best observed precision, and very near to
the best observed recall. It correctly identifies 74/307 friend-
ships and 3295/3330 non-friendships. Although the overall
accuracy of the classifier is high (92%), this is somewhat
misleading since the class distribution is heavily biased to-
wards non-friendship, so we prefer to examine the precision
and recall to get a clearer judge of performance.

To examine the relative predictive power of the 4 feature
classes, we trained an AdaBoost classifier (exponential loss
/ decision stumps) using only the Intensity and Duration fea-
tures. Such a model uses proximity-based features similar
to those used by Eagle et al. for a similar friend predic-
tion task [4]. To see how these feature perform against the
location features we define in this work, we compare this
model to one trained using the three remaining co-location
feature classes (Location Diversity, Specificity, and Struc-
tural Properties). The results are shown in figure 5. Here
we plot the precision and recall curves at varying thresholds
of the class probabilities output by AdaBoost. We again use
50-fold cross validation for all classifier estimates. For com-
parison, we also plot the precision/recall curves for the full
AdaBoost classifier, and a baseline formed by thresholding
NumColocations at varying threshold values.

One can observe that both the full model, and the model
trained on the Location Diversity, Specificity, and Structural
Properties features significantly outperform the model trained
only on Intensity and Duration features. Furthermore at mod-
erate to high recall levels, the Intensity and Duration model
does not offer any improvement over simply thresholding on
NumColocations. This is in contrast to the other models,
which show consistent and significant gains over the base-
line at all recall levels.

The low performance of the baseline and of the Intensity
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Figure 5. Observed precision and recall of the full AdaBoost classi-
fier on all the features, compared with two sub-models: the first is
only trained on the Intensity and Duration features, and the second
is trained on the Location Diversity, Specificity, and Structural Prop-
erties features. Precision and recall estimates are made using 50-fold
cross validation. These are shown against a baseline constructed by
thresholding NumColocations at varying threshold values.

and Duration features is illustrative of the wide range of
co-location patterns observed among the participants. This
result shows that, although co-location alone is not a very
strong predictor of online friendship, we can significantly
improve the predictive performance by looking at additional
contextual social properties of the locations the users visit.

Inferring the number of friends from user mobility data
Next we consider the relationship between the number of
Facebook friends a user has in Locaccino and her mobility
patterns. There are plausible hypotheses why one may ex-
pect variables in each of the three mobility feature categories
to be correlated with the number of friends the user has in
Locaccino. First, one would expect that user’s who have
used the system longer or more vigorously might have more
friends in the system. Furthermore, since locations of high
diversity are in some ways more “social,” one could hypoth-
esize that users who visit such locations often might have
more friends in general. Finally, users with highly irregu-
lar schedules might find a system such as Locaccino more
useful to help coordinate with their friend and family.

To examine this question, we first calculated the Pearson’s
correlation between the node degrees in S with each user
mobility feature listed in Table 2. The results are plotted
in Figure 6, where the three variable categories have been
grouped and shaded in different colors. There are several
interesting observations that should be noted when exam-
ining this figure. First, one should notice that the correla-
tion of variables in the Intensity and Duration category have
a far weaker correlation to the number of friends than the
more nuanced variables in the Location Diversity and Mo-
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Figure 6. Pearson’s correlation of user mobility variables with node degree in S. Error bars indicate an approximate 95% confidence interval. The
highest correlation values correspond to variables that measure the location diversity of observations.

bility Regularity categories. Only 2 out of the 6 Intensity
and Duration features correlate with the number of friends,
and only very weakly (0.10 - 0.12).

The weak correlations of the Intensity and Duration vari-
ables is in contrast to the Location Diversity category, where
the variable with highest correlation is MaxEntropyWeekend
(cor=0.39 with 95% CI=(0.31, 0.47)). Indeed, MaxEntropy-
Weekend is the single variable most correlated to the number
of friends. Furthermore, note that for each diversity mea-
sure, the highest correlated sample statistic on the set of lo-
cations is always the maximum: MaxEntropy (cor=0.29 with
95% CI=(0.20,0.37)), MaxUserCount (cor=0.30 with 95%
CI=(0.21,0.38)), and MaxFreq (cor=0.29 with 95% CI=(0.20,
0.37)), with similar results for the evening and weekend vari-
ations of these variables. These variables each quantify in
their own way the “most diverse” location that a user vis-
ited, suggesting that users who visit highly diverse locations
tend to have more social network ties than those who do not.
In addition to the maximum, the average and variance sam-
ple statistics exhibit moderate positive correlations with the
number of friends, whereas the minimum exhibits a weak
negative correlation. The median statistic showed very weak
and often insignificant correlations with the number of friends.

It is important to make the distinction that the location di-
versity measures for a user do not simply take census data
of other nearby users at each specific location the user visits.
Rather they are global properties of the locations themselves,
taking into account all observations of all users at each given
location (recall Figure 4). It is thus possible, even likely, for
a user to be located at a highly diverse location, yet also not
be co-located with any other system users. In this sense we
believe these correlations are strong, if not surprising, results
illustrating a unique relationship between the context of the
locations a user visits and the number of online social net-
work ties the user has.

Next observe the moderate positive correlation values for the

Variable b-estimate β-estimate p-value
SchEntropyLHWeekend 7.67e-01 0.237 0.001
AvgFreqEvening 1.25e-04 0.228 < 0.001
MinFreqEvening -1.83e-04 -0.195 0.002
MaxEntropyWeekend 6.99e-01 0.188 0.007
VarEntropyEvening 8.46e-01 0.148 0.008
MinEntropy 9.08e-01 0.119 0.055
BoundingBoxArea -2.97e+02 -0.102 0.037
VarFreq -3.01e-09 -0.092 0.098
MinFreqWeekend -4.26e-05 -0.042 0.398
NumObservations -3.32e-05 -0.037 0.500

Table 4. Raw b-coefficient, standardized β-coefficient estimates and
p-values from a multiple regression with listed variables taken inde-
pendents and the number of friend taken as dependent. Variables are
sorted according to the absolute value of the β estimates.

schedule entropy variables in the Mobility Regularity cat-
egory: SchEntropyL (cor=0.16 with 95% CI=(0.06,0.25)),
SchEntropyLH (cor=0.28 with 95% CI=(0.20,0.37)), SchEn-
tropyLD (cor=0.28 with 95% CI=(0.19,0.37)), and SchEn-
tropyLHD (cor=0.32 with 95% CI=(0.23,0.40)), as well as
their corresponding evening and weekend variations. As
these variables quantify the regularity of a user’s schedule,
the results suggests that users who have irregular schedules
tend to have more ties in the online social network S.

It is notable that both the diversity variables and the regu-
larity variables have a higher correlation with the number of
friends than variables which measure the intensity and du-
ration of system use. This suggests that the correlations ob-
served in the diversity and regularity features are not simply
byproducts of heavy system use.

To better understand the interrelations among the user mo-
bility features with respect to the number of friends, we con-
ducted a multiple regression analysis. First, to account for
multicolinearity in the data, any pair of independent vari-
ables having correlation higher than 0.80 in absolute value,



the variable with lowest absolute correlation to the number
of friends was discarded. We then performed an stepwise
search with AIC penalty working backwards from the full
model to select a sub-model of the full linear model. The
fitted model of the remaining 10 variables (2 intensity, 7 di-
versity, 1 regularity) given by this procedure are shown in
table 4.

The resulting model (adj R2=0.21, p-val < 0.001) yields
very strong evidence that the diversity and regularity vari-
ables outperform the intensity variables. Examining the stan-
dardized β coefficients from the regression can provide some
insight into which variables are the strongest predictors. We
can see that the two variables with highest absolute β are
AvgFreqEvening (β = 0.223) and SchEntropyLHWeekend
(β = 0.237). Indeed, the Intensity and Duration variable in
total comprise 10% of the total absolute weight of the β coef-
ficients, whereas the Location Diversity variables comprise
73%, and the Mobility Regularity terms comprise 17%.

This result provides evidence that an examination of the con-
text of the locations a user visits and analysis of the regular-
ity of the user’s routine can provide valuable insight into so-
cial behaviors of the user, in this case the number of friends
the user has in an online social network. We have shown that
the types of places a user visits, and the regularity of a user’s
routine are stronger predictors for the number of Locaccino
friends they have than how long or how intensely they use
the system.

DISCUSSION
In this work we have explored several interesting connec-
tions between an online social network, and an offline co-
location network on the same user set. These networks have
very different structures. The co-location network has roughly
3 times the number of edges as the social network, yet the
social network is better connected. The co-location network
has many small disconnected components, but it has a sin-
gle large and highly connected subcomponent. Despite these
differences, we have shown that the co-location graph con-
tains important information that can be used to reconstruct a
portion of the social network.

We have shown that properties of the locations a user vis-
its can provide valuable context to the user observations. In
particular we have shown that the entropy of a location is
a valuable tool for analyzing social mobility data. By defi-
nition, locations of high entropy locations are precisely the
places where chance encounters are most probable, thus co-
locations at high entropy locations are thus much more likely
to be random occurrences than co-locations at low entropy
locations. Thus if two users are only observed together at a
locations of high entropy such as a shopping mall or a uni-
versity center, they are less likely to actually have a tie in the
online social network than if they are observed in a place of
low entropy.

We have also shown that the entropy of the locations a user
visits can provide insight into the number of ties that the in-
dividual has in the social network. Users who visit locations

of higher entropy tend to have more ties in the social network
than users who visit less diverse locations. One possible ex-
planation for this result is that locations of high entropy tend
to be more social in nature than locations of lower entropy,
and so users who visit these locations tend to be more so-
cial. However future studies are needed to further explore
this relationship.

In addition to location diversity measures, we have explored
several novel features that have proven useful in analyzing
social mobility data. We looked at features that measure the
intensity, location diversity, specificity, and structural prop-
erties of a set of co-locations, and we used these to con-
struct a classifier that predicts social network ties between
the users. These features far outperform predictions based
on simple co-location observation counts between the two
users.

In our analysis we have observed a wide range of co-location
patterns between both Facebook friends and non-friends. We
view this as testament to the complexities of human social
relations (both online and offline). Indeed, the data show
many instances where users are not friends in the online so-
cial network, yet exhibit very convincing co-location pat-
terns for friendship. Similarly, there are numerous instances
of friendships in the online social network with little to no
evidence for friendship in the co-location data.

This disparity highlights two strong use cases for our work.
Online social networks could use our classifier in their friend
recommendation systems to find users with strong co-location
patterns who are not yet friends in the social network. Such
a system could strengthen current link-based friend recom-
mendation systems by taking into account user behavior in
the offline world to bolster online social relationships. Ad-
ditionally, although future research is needed to verify the
hypothesis, it is plausible that the predictions (and mis-
predictions) of our classifier could provide insight into the
strength of ties between users [8, 6]. If this were true our
work could aid location aware social networks in developing
systems to aid users in segregating and categorizing their on-
line connections, which among other things could be useful
in building privacy rules and organizing the social graph.

One area where we feel our work has the greatest potential
is as a window into the relationship between online and of-
fline social behavior. We show that location-based features
(such as the entropy of a location) have significant correla-
tions with real social behavior features (such as the number
of friends in a social network). Understanding the interplay
between users’ location patterns and social patterns is an im-
portant area for future research.

It is also important to highlight some of the limitations of
our work. Location data is extremely sensitive [14], and it is
clear that the type of analysis we perform requires strong pri-
vacy controls and procedures that would protect users. Also,
our pool of study participants is highly homogenous, con-
taining mostly students. Future studies would strengthened
by seeking a more diverse pool of participants as other pop-



ulations could exhibit different online and offline behavior.

CONCLUSIONS
In this work we explore connection between an online so-
cial network and the location traces of its users. We eval-
uate a set of features of the location observations for their
potential in analyzing the social behavior of the users. So-
cial network designers may find our methodology useful for
designing social applications, such as location-aware infor-
mation sharing platforms, privacy control mechanisms, and
friend suggestion systems.

This work opens up many future paths of research. Can dif-
ferent types of social relationships be inferred from location
data? Can tie strength be estimated from locations? Does
offline interaction spur online communication? This also
raises important privacy questions about how much infor-
mation location-based services leak about their users. We
believe that this work provides a necessary step towards ad-
dressing such questions.
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