
Caché: Caching Location-Enhanced Content
to Improve User Privacy

Shahriyar Amini
Carnegie Mellon University

Pittsburgh, PA, USA
shahriyar@cmu.edu

Janne Lindqvist
Carnegie Mellon University

Pittsburgh, PA, USA
jklindqv@cs.cmu.edu

Jason Hong
Carnegie Mellon University

Pittsburgh, PA, USA
jasonh@cs.cmu.edu

Jialiu Lin
Carnegie Mellon University

Pittsburgh, PA, USA
jialiul@cs.cmu.edu

Eran Toch
Tel Aviv University

Ramat Aviv, Tel Aviv, Isreal
erant@post.tau.ac.il

Norman Sadeh
Carnegie Mellon University

Pittsburgh, PA, USA
sadeh@cs.cmu.edu

ABSTRACT
We present the design, implementation, and evaluation of
Caché, a system that offers location privacy for certain classes
of location-based applications. The core idea in Caché is to
periodically pre-fetch potentially useful location-enhanced
content well in advance. Applications then retrieve content
from a local cache on the mobile device when it is needed.
This approach allows an end-user to make use of location-
enhanced content while only revealing to third-party content
providers a large geographic region rather than a precise lo-
cation. In this paper, we present an analysis that examines
tradeoffs in terms of storage, bandwidth, and freshness of
data. We then discuss the design and implementation of an
Android service embodying these ideas. Finally, we provide
two evaluations of Caché. One measures the performance
of our approach with respect to privacy and mobile content
availability using real-world mobility traces. The other fo-
cuses on our experiences using Caché to enhance user privacy
in three open source Android applications.

Categories and Subject Descriptors
H.5.m [Information interfaces and presentation]: Mis-
cellaneous; K.4.1 [Public Policy Issues]: Privacy

General Terms
Experimentation, Security, Human Factors

Keywords
Location privacy, location-enhanced content, location-aware
applications, disconnected operation, caching

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’11, June 28–July 1, 2011, Bethesda, Maryland, USA.
Copyright 2011 ACM 978-1-4503-0643-0/11/06 ...$10.00.

1. INTRODUCTION
In recent years, location-aware devices, such as mobile

phones with GPS, have gained mainstream popularity. This
trend has led to a rapid increase in location-based services
[34, 42]. Examples of such location-based services include
support for finding gas stations1 and stores2 with the lowest
prices, finding friends, and notifying friends when you arrive
at a location. Other examples include location-based games3

as well as location-enhanced micro-blogging.
A key challenge to widespread adoption of location-based

services, however, is privacy [19]. One problem is the per-
ception of privacy: people have expressed many concerns
about being tracked by friends and by third parties. Lo-
cation privacy concerns also tend to attract negative media
coverage, further hindering the spread of location-based ser-
vices. Another problem is actual privacy: end-users may be
unaware of the privacy implications of location-based tech-
nologies [3, 4], and end up unintentionally sharing more in-
formation than they realize.

To address this problem, we present Caché, a generalizable
approach for a class of location-based services that enables
users to enjoy the benefits of those services while minimizing
the associated privacy concerns. Caché takes a well-explored
idea from distributed systems, namely caching, and applies
it in the context of privacy. Caché has two core ideas: (1)
location-enhanced content can be periodically pre-fetched
in large geographic blocks onto a device before it is actually
needed, for areas that a person will likely be in, and (2)
the content can be accessed locally on a device when it is
actually needed, without relying on any networked services
outside of the device. Thus, rather than sharing current
location on each request for information, the user only needs
to share general geographic region hours, days, or even weeks
before the desired content is needed.

There are four steps in using Caché. Let us consider a
scenario in which a restaurant finder application is devel-
oped to use Caché. First, at design time, the developer
provides some hints as how to download the content (e.g.,
URL, content update interval). Second, the user installs the
Caché-enabled application and selects the regions for which
restaurant POIs should be downloaded. Third, Caché down-

1GasBag, http://www.jam-code.com
2ShopSavvy, http://www.biggu.com
3JOYity, http://www.androidapps.com/t/joyity

loads and updates the content based on the developer spec-
ified update rate, at a favorable time (e.g., when the device
is powered and a WiFi connection is present). Finally, when
the application requires content, it retrieves the content from
Caché, rather than make a live query.

Assuming that the user’s current location is determined
locally on the device (as is the case with GPS, PlaceLab [15,
24], POLS [35], and SkyHook’s autonomous mode), the user
can still make use of location-enhanced content, while con-
tent providers that offer maps, restaurant guides, bus sched-
ules, and other location-enhanced content are only aware of
the user’s general area of interest.

In past work [2], we presented a brief feasibility analysis
and outlined a possible implementation of Caché. In this
paper, we present the design, implementation and evaluation
of Caché. More specifically, this paper makes the following
research contributions:

• A feasibility analysis of caching for privacy, including
a taxonomy of location-based data types, and a dis-
cussion of tradeoffs with respect to freshness of data,
storage, and bandwidth requirements

• A system architecture that through pre-fetching en-
ables the use of location-enhanced content while also
supporting user privacy

• A reference implementation of our approach

• A performance analysis that demonstrates the benefits
of caching, specifically, the increase in privacy with
respect to the increase in bandwidth and storage usage,
evaluated through the use of two real-world mobility
trace databases

• Our experiences using Caché to improve privacy in
three open source Android applications

The rest of the paper is organized as follows. Section 2
presents feasibility analyses of a cache-based privacy solu-
tion. We discuss our design requirements in Section 3 and
the system architecture in Section 4. We present the eval-
uation in Section 5, and end with discussion, related work,
and conclusion in Sections 6, 7, and 8.

2. FEASIBILITY ANALYSIS OF
CONTENT CACHING

In this section, we provide an analysis of some of the tech-
nical challenges in caching location-enhanced content. More
specifically, we address the following:

• Location privacy model

• Cache hits and cache misses

• Data freshness

• Data consistency

• Estimated storage requirements

• Estimated bandwidth requirements

Note that in this section, we focus mainly on the technical
issues involved. There are many issues beyond the scope of
this paper, for example, how caching might impact adver-
tising on web sites, not to mention the various legal issues
involved in caching a great deal of content.

2.1 Location Privacy in Caché
Currently, there exist numerous ways to acquire location-

enhanced content, however, each presents a different loca-
tion privacy trade-off. One model for acquiring location-
enhanced content is to make a live request to a content
provider. Such a request would result in the user provid-
ing some information about her current interests as well as
her current location. The worst-case scenario consists of a
third party knowing when and where the user will be present
at all times.

On the other side of the spectrum, the user can purchase
content prior to usage. One example would be purchas-
ing a copy of Microsoft MapPoint, which comes pre-loaded
with maps and points of interests. Although the user’s re-
quests for content are kept private as they are fielded by
the purchased content, the data may become stale and may
lack future updates. As a result, this model does not work
well for content that changes frequently. There is also a
middle ground where the user can purchase content in bulk,
and update the content whenever updates are available from
the content provider. Purchasing a GPS device and updat-
ing the maps and points of interests is an example of this
model. However, this method also does not handle content
that changes frequently such as social events and movie the-
ater schedules. Unless the user’s device is connected and
set to update automatically, it is unknown when the user’s
content will be updated, if at all.

Caché resides in the middle of the spectrum. Data is
stored on the user’s device for the user’s regions of interest
and is also updated to reflect changes. As such, the user has
two points of interaction with Caché. First, by pre-fetching
content for a geographic area, the user signals that she is
interested in that area, but not specifically when and where
she is in the area. Second, the user implicitly requests con-
tent from Caché when interacting with Caché-enabled appli-
cations. Assuming that location is determined locally, then
there is not any information shared outside of the mobile
device. An obvious issue here is that this pre-fetching ap-
proach only works if we can pre-fetch useful content for the
correct geographical regions in advance, and if the content
does not change very often.

2.2 Cache Hits and Cache Misses
While using Caché, there are three possible outcomes when

looking for content near one’s current location: (1) the con-
tent is cached and up-to-date, (2) the content is cached but
is out-of-date, and (3) the content is not cached. The first
case is a positive outcome, and with Caché we seek to max-
imize this outcome.

The second case, out-of-date content, means that content
is available but may not be fresh. In some situations, this
is acceptable. For example, traffic information is not very
useful days after the fact, but maps can still be useful even
if they are a few years out-of-date. A related problem here
is that users will likely be unaware of the freshness of data
until it is requested. This can have an adverse effect on the
user experience, as in the case of stale traffic data.

The third case, a cache miss, could be caused by the user
not having cached content for a specific area of interest, or
the user moving outside the boundary of cached content. In
this case, the choices are to display no relevant results or to
download the content from a service provider on demand, at
the potential cost of some privacy and slower performance.

Table 1: A comparison of bandwidth and storage required for different types of content for the Pittsburgh
metropolitan area. In our application, we focus only on data updated with at most a daily frequency.

Update Rate Data Type Size† Time to Download‡
Real-Time (STTL) traffic flow, parking spots – –

e.g., Loopt, PeopleFinder, Reno, Bustle
Daily weather forecasts, social events, coupons <1 MB <1 min

e.g., Dede [18]
Weekly movie/theatre schedules, advertisements, crime rates 1.4 MB <1 min

e.g., Yelp!, GeoNotes, PlaceIts, PlaceMail
Monthy restaurant guides, bus schedules, geocaches 4.2 MB 2.8 min

e.g., Wikipedia (geotagged pages)
Yearly maps, points of interest, tour guides, store locators 6.4 MB 4.3 min

e.g., Google Maps, Starbucks, Wal-Mart
†Storage estimates are provided for the bolded content type.

‡Download times are estimated for a 200 kbps connection for the bolded content type.

2.3 Data Freshness
In this section, we analyze the feasibility of the Caché

approach with respect to the freshness of cached data. We
define two high-level categories to distinguish between the
update frequency requirement of data types, namely, Short
Time to Live (STTL) and Long Time to Live (LTTL) data
types. STTL refers to data that requires updating in real-
time or close to real-time, for example traffic information.
LTTL data refers to data that can be updated less often, on
the order of days or greater.

Table 1 shows examples of STTL and LTTL location-
based data types. As noted earlier, there are many kinds
of applications that require real-time updates, in particu-
lar those making use of synchronous communication. If the
user has a stable network connection, she can choose to keep
STTL data fresh by allowing for more frequent updates.
However, this approach depends on the time it takes for
STTL content to become stale, requires a network connec-
tion, and potentially costs the user some privacy. There are
also many kinds of data types that do not require immedi-
ate and constant updates. Some data types only need to be
updated once every day, such as weather conditions, social
events, and coupons. Other data types can be updated on
a weekly, monthly, or yearly basis, without compromising
the quality of the content. For example, a user might re-
fresh stale LTTL content overnight, and make use of it the
following day.

To evaluate the feasibility of the proposed solution, we
analyzed location-enhanced content downloaded daily from
May 2009 to October 2009. We downloaded data for weather,
social events, bus schedules, restaurant points of interests
from MSN and Yelp!, and Google map tiles. The rationale
for our analysis was to assess whether the selected content
type could be cached overnight and still provide fresh accu-
rate data when mobile and disconnected. We studied each
data type with respect to the percentage of data added, re-
moved, and modified daily (See Table 2). Based on our find-
ings, we have concluded that it is feasible to download the
aforementioned data types ahead of time to preserve user
privacy. We describe our findings for each data type below.

Weather: We downloaded weather data everyday us-
ing Google’s weather API, which offers weather information
daily for four consecutive days, starting with the present day.
For each weather caching instance, the data for the previ-
ous day’s weather becomes stale and has to be removed.

From any day, the weather condition for the next three days
carry over. As a result, there is 25% weather data added
daily, and 25% removed. Based on the data collected, ap-
proximately 67% of the weather data changed on average.
We performed our comparison considering minor changes in
the temperature or weather conditions as complete invali-
dation of prior cached data. If one were to consider minor
changes in temperature such as from highs of 72 degrees
Fahrenheit to 73 degrees Fahrenheit insignificant, then the
modified data percentage would be lower. Caching weather
conditions the night before use is a feasible solution for be-
ing aware of present day’s weather conditions. The stored
weather data for the next three days would allow for some
degree of information regarding upcoming weather.

Social Events: We downloaded events for Pittsburgh
and surrounding areas from Zvents.com, a major database
that stores upcoming events by aggregating and enforcing
content standards from various sources. We centered our
search at Pittsburgh with a radius of 75 miles and down-
loaded events every day for five months. The site consis-
tently offers approximately 2000 events in the search area.
Based on our data, we found less than 6% was added and
removed daily, with about 12% modified daily. Thus, over
80% of data was fresh on a day to day basis.

Points of Interests: We downloaded restaurant data
from Yelp! and MSN for Pittsburgh. The add, remove,
and modification percentages for Yelp! were all below 1%.
The MSN search modification percentage was below 2% with
add and remove percentages of approximately 7%. These
percentages are low enough that the user would have a sub-
stantially fresh cache for all restaurant data for Pittsburgh.
Based on these obtained results, we conjecture that other
point of interest data, such as gas stations, store locations,
libraries, and transportation stations, would behave in a sim-
ilar manner as physical places are relatively slow changing.

Bus Schedules: We downloaded Pittsburgh bus sched-
ules from the Pittsburgh Port Authority. The bus schedule
content was downloaded as html pages and parsed. Over
the five month period, there was no occurrence of schedules
being added or removed. We noted a 0.15% change in the
schedules, reflecting minor changes in departure and arrival
times over the five month period.

Maps: We downloaded map tiles from Google Maps for
the Pittsburgh metropolitan area and surrounding suburbs.

Data Type Added % Removed % Modified %
Weather 25.00 25.00 67.26
Events 5.28 5.35 11.75
Yelp POI 0.15 0.06 0.04
MSN POI 6.69 6.80 1.43
Bus Schedule 0.00 0.00 0.15
Map Tiles 0.00 0.00 0.00

Table 2: Average daily percentage of change for
added, removed, and modified data for various data
types. The results are based on downloading the
respective content daily for five months starting in
late May 2009. The added and removed columns
refer to percentage of new entries added to or re-
moved from the cache each day, respectively. The
modified column refers to the percentage of entries
that remained in the cache but required changes to
update data.

At a zoom level of approximately 3.70 meters per pixel4,
all of the 226 downloaded map tiles required only 6.4 MB
of storage. We found that over a period of more than five
months, there was zero change in the Pittsburgh map tiles.
This was verified by accounting for additional map tiles
that had to be downloaded, map tiles that had to be re-
moved, and whether an md5 hash of each individual map
tile changed.

Based on the presented results for weather, events, points
of interests, bus schedules, and maps, we conclude that it is
feasible to cache data overnight to field user queries during
daily use from the local cache. We notice that weather condi-
tions change the most on a daily basis. However, considering
automated caching of weather information every night, the
user will have reasonably fresh content for the morning. Fur-
ther, the cached content indicates some level of information
regarding the weather, even if marginally stale.

2.4 Data Consistency
Caché has a simple consistency model, in that it only reads

data from the web, and never writes data back. Thus, Caché
considers data on web sites to be canonical, and data stored
on a mobile device to be a soft copy that can always be
overwritten. As such, the main data consistency problem
resides in maintaining data freshness, as discussed in the
previous section.

2.5 Estimated Storage Requirements
In this section, we provide an analysis of the estimated

storage requirements for caching location-based data types
for a typical city. We start by examining map data for
streets. As previously mentioned map tiles were downloaded
for the city of Pittsburgh and surrounding suburbs. In total,
the map tiles required only 6.4 MB of storage. We repeated
the analysis for New York City and found that the entire
city could be stored in approximately 65 MB at 3.7 meters
per pixel. Considering that entry-level portable music play-
ers come with 4 GB of disk space, storing map data on a
mobile device for a number of cities is quite feasible.

We continue by estimating the storage requirements for
points of interest, using restaurants as a starting point. There

4Corresponding to a zoom level of 15 for the Google Maps
API at a latitude of 40 ◦ north.

!"#$%&'()*

+,-*./'0*

123*4'235"$5/*

6/$7/3*
82$)"3(7/39*:;<;*

123*:",(/*

=&>%2"*?2"@,"*
6,'A"3*

B/3C/3*

D*

ED*

FDD*

FED*

GDD*

GED*

HDD*

D* GDD* IDD* JDD* KDD* FDDD* FGDD* FIDD* FJDD* FKDD*

!"
#$
%&
'"
(')
$%
*+
*&
%'
,%
-"

.&
/$

0&
1'

2#%3'4#5*',6781'

2#%3'4#5*'9&:'!;)'2".$%'

Figure 1: POI data for selected metropolitan areas
from Google Maps. In the case of foreign cities,
notably Taipei and Mumbai, Google does not have
a comparable amount of data.

are approximately 20,000 restaurants in the city of New
York5. With our current implementation, which caches in-
formation regarding the restaurant’s name, street address,
and GPS coordinates, all such entries can be cached in about
10 MB. The amount of storage increases based on the num-
ber of categories for which the user maintains a cache.

We performed a separate analysis to estimate storage re-
quirements for POIs. We used New York City as a feasible
upper bound for the amount of necessary content for a given
city. Using Microsoft MapPoint as the source of points of
interest data, we obtained a total of approximately 76,000
points of interest by searching a 35 mile radius [27]. Given
the most basic record of name, point of interest type, street
address, latitude, longitude and a brief description, all such
data points can be stored in less than 33 MB.

Figure 1 shows the number of points of interests for var-
ious cities as obtained through queries on Google Local. In
this approach, New York City has about 250,000 points of
interest, requiring about 100 MB of storage. Thus, we have
roughly 65 MB of map tile data and roughly 100 MB of POIs
for a very large city. Given this analysis, basic location-
enhanced content can be easily stored on modern mobile
devices, even if the number of points of interest were in-
creased by two orders of magnitude.

Note that our estimates for points of interest focus on text
rather than images, audio, or video. Storing rich media for
New York City would require more space than a mobile user
could afford. Although we have not yet explored multime-
dia content, we have not ruled out the possibility of storing
content by reducing content fidelity [30], or reducing the size
of the cached region, i.e., caching on a ZIP code or neigh-
borhood level. For streaming multimedia content, the user
would have to rely on other methods of maintaining privacy.

2.6 Estimated Bandwidth Requirements
Bandwidth is a potential challenge since it could take an

unreasonable amount of time to download content in some
cases. In this paper, we estimate the time to download con-

5NYC Department of Health
http://www.nyc.gov/html/doh/html/rii/index.shtml

tent based on a conservative connection speed of 200 kbps,
which is the FCC required minimum for a connection to
be considered high-speed Internet access. Presently, much
higher transmission speeds are available in the United States
[41]. Assuming the worst case of refreshing all map tiles and
points of interest every day, pre-fetching for New York City
would take approximately 2 hours to complete on a 200 kbps
connection. This would be enough time to perform a com-
plete download overnight, such that the content could be
used the following day.

The challenge comes when more content is needed. In the
previous section, we observed that mobile devices could eas-
ily store gigabytes of data. However, the approach is limited
by the amount of content that could be downloaded in a rea-
sonable amount of time. If we assume we have six hours to
download content at 200 kbps, then this yields roughly 530
MB of content refreshed per day. Again, this is sufficient for
simple forms of location-enhanced content, including much
of the data types in Table 1, but not enough for multimedia.

3. DESIGN REQUIREMENTS
We briefly outline the design requirements for Caché in

this section. For deployability, it is preferable that a privacy-
preserving approach relies only on the mobile device, and
minimizes reliance on infrastructure beyond content itself.
Service providers might not have incentives to preserve users’
privacy, which is the motivation for our work, and further,
relying on the mobile device simplifies trust assumptions.
Furthermore, we aim to minimize required user interaction.
Preferably, a privacy-preserving approach would be com-
pletely transparent to the users and application developers,
but as we discuss later, this is not a practical approach. As
such, we placed the burden of managing privacy on appli-
cation developers, and offer support to simplify the task of
making applications privacy sensitive. Note that by appli-
cation developer we are referring to a person who would be
developing the application client for the user’s mobile de-
vice. However, there is no reason why the client-side and
server-side developer could not be the same person.

Threat Model: Our objective is to minimize the infor-
mation flow towards location-based service (LBS) providers,
or anyone accessing their logs or observing the traffic on the
way. Further, we explicitly desire that the real-time and
precise location of Caché users cannot be accurately deter-
mined. However, we do not protect against a local eaves-
dropper such as the network access-point, which can directly
observe that the user is downloading traffic related to mul-
tiple locations. A detailed applicable threat model for the
problem space has been throughly discussed before, e.g., by
Gruteser and Grunwald [12]. We emphasize that the threat
is not only that somebody discovers the location and regular
patterns of users movements through LBSs or logs of inter-
mediate servers. These logs can also be used to reveal the
sender of a message, if the attacker knows that a location
belongs to a user and discovers that the user was in that
location at a particular time.

4. CACHÉ SYSTEM ARCHITECTURE
The Caché architecture depicted in Figure 2 is similar to

that of an (non-transparent) Internet proxy requiring reg-
istration. When requesting location-enhanced content, in-
stead of querying the service provider directly, the applica-

Figure 2: Once the developer has registered an ap-
plication (1) and the user has specified the regions
for which content should be cached (2), Caché re-
quests and stores the content (3) for future use by
the application (4).

tion submits its request to Caché. Caché processes the query
and provides the application with the requested content.

The steps towards using Caché are as follows. The devel-
oper registers the application with Caché. The registration
is a simple declaration of the application’s content needs and
the content request format. After installation and prior to
initial use of the application, the user specifies the region
for which content should be downloaded by specifying an
address such as home or work, or a ZIP code. Caché then
downloads the content for the specified region using as many
requests to the content provider as necessary to cover the en-
tire region. The content download optimizes cost and energy
by downloading content only when the device is plugged in
and a WiFi connection is available. At runtime, all appli-
cation requests are forwarded to Caché, which takes a best
effort approach to provide the relevant content.

4.1 Space Discretization
In this section, we describe how and why Caché uses

space discretization with content downloading. Location-
enhanced queries use latitude and longitude to describe ge-
ographical regions. However, it is not possible to download
content for every latitude and longitude combination. To ad-
dress this problem, Caché decomposes a geographic region
of interest into a grid of cells. The grid consists of same sized
rectangular cells. The size of the rectangular cells are de-
fined by the developer at the application registration stage.
This requires the developer to have a notion of how densely

Figure 3: The user’s region of interest is discretized in space based at the granularity defined by the application
developer. Caché makes queries for each cell. When the application makes a content request, the results for
the nearest cell covering the query region are returned. (A) shows a level 0 grid, which has the smallest cell
size. (B) shows the same level grid with a grid overlay placed. (C) shows a level 1 grid. Cell height and
width are doubled at each level.

the content is packed in terms of physical geographical space.
An example grid is present in Figure 3(A). Our space dis-
cretization is based on the work by Krumm [21], which uses
a grid for location obfuscation. We use the grid as a basis to
download content with two optional modifications: overlay
and hierarchy.

Let’s consider the case where the user’s request for content
falls in the corner of a cell. The content retrieved from that
particular cell may not be the most relevant. We use a grid
overlay to tackle this problem (see Figure 3(B)). Overlay
refers to a secondary grid with cells of the same size as the
original that are shifted by a quarter of a cell. This way,
requests that fall at a corner of a grid cell can be fulfilled with
one of the overlay cells, instead of an original grid cell. Using
an overlay effectively doubles the amount of content that
has to be pre-fetched beforehand and also considered during
application content request. The grid overlay is an optional
feature, which is selected by the developer at application
registration time.

The other case to consider is when a request region en-
compasses a large area. If a single grid with same sized cells
were to be used, then the request could potentially cover
multiple cells. However, Caché does not have any informa-
tion regarding the data semantics that it stores. As a result,
it will not be able to combine data from multiple cells to
service a single request. We use grid hierarchy to service
larger request regions (see Figure 3(A) and 3(C) for a level
0 and level 1 grid, respectively). Grid hierarchy refers to
additional levels of cells that grow to cover the user’s entire
region of interest. We refer to the grid with the smallest
granularity cells (defined by the application developer) as
the level 0 grid. At each level, the width and the height
of the cells are doubled in size until a single cell covers the
entire region of interest. The hierarchy option can be se-
lected by the developer at the application registration time.
Note that both the overlay and the hierarchy options may
be selected.

4.2 Caché Setup and Usage
In this section, we describe what happens at each stage of

the Caché application lifecycle: design, installation, content
download, and content retrieval.

4.2.1 Application Design
At design time, the developer has to register the appli-

cation with Caché. Application registration informs Caché
of the nature of content requests, request parameters, the
finest sized grid cell for which content is downloaded, and
whether the optional overlay and hierarchical grids are to be
used.

Location-Enhanced Content Request: Some service
providers offer programming language-specific APIs to re-
quest content (e.g., Google’s JavaScript and Bing’s C#),
however, we focus only on RESTful HTTP requests. Our
decision to focus on REST-based requests is due to limited
programming language-support on mobile platforms. For
instance, not all mobile platforms offer C# support. Never-
theless, application developers can take advantage of REST
requests across multiple platforms, e.g., Android, iPhone,
Windows Phone 7, and Symbian.

We studied the content request formats of three major
content providers: Microsoft Bing Local, Google Local, and
Yelp!. We also looked at the content services GeoNames and
Google Panoramio used by two open-source Android ap-
plications, Mixare and Panoramio, respectively. We chose
these two applications as they are popular Android open
source applications that also fit the LTTL model. Through
the study of these applications and services, we noted gen-
eral forms of requesting location-enhanced content from ser-
vice providers. Below is a summary of request formats dis-
covered:
Single Geo Coordinate: Consists of latitude and longitude
coordinates. Google Local, Bing, and Yelp! all supported
this request format.
Geo Coordinate + Radius: The region described is centered
at the geo coordinate and bounded by a circle with the spec-
ified radius. Bing and GeoNames (Mixare) both supported
this format.
Bounding Box : defined by two Geo Coordinates such as the
top right and bottom left coordinates of a rectangular re-
gion. Yelp! supports this location format.
Geo Coordinate + Span: a single Geo coordinate and the
subtended latitude and longitude degrees, describing a rect-
angular region. Google Local supports this.

Geo Coordinate Range: a latitude range and a longitude
range, approximately defining a rectangular region. Google
Panoramio supports this format.

Caché is capable of addressing the requests and storage
needs of all the previously mentioned request types. As long
as other content providers use similar patterns of requesting
content, no changes are required. Nevertheless, Caché can
easily be extended to support other content providers by
the simple addition of request parsers that map the new
provider’s request to one of the pre-loaded request types.

Query String: During the application registration step,
the developer provides Caché with a query format string de-
scribing the content provider’s URL and request format. For
instance, for a single geo coordinate Yelp! query, the devel-
oper would register the application with a format string simi-
lar to http://api.yelp.com/v2/search?term=food&ll=#SLL
LAT#,#SLL LON#. #SLL LAT# and #SLL LON# are
Caché parameters, specifying where the Single Latitude Lon-
gitude (SLL) values should be placed. Quantities such as
radius can be specified in various units such as meters, km,
and miles (e.g., #RADIUS METERS#, #RADIUS KM#,
#RADIUS MILES#). Details for parameter conventions
and request types are compiled as a technical report [1].

Non-Numeric Request Parameters: The developer
can also add non-numeric parameters to the request. For
example, if each query contains a string which could be any
of pizza, burger, or wings, the developer can specify a string
part of the query which can be mapped to any of the above.
Caché would then make requests for all combination of query
inputs and grid cells. The developer can also pick an argu-
ment that encompasses multiple query values based on do-
main knowledge (e.g., restaurants instead of pizza, burger, or
wings). A query string is not always necessary for content
request. For instance, bus schedules, weather, and social
events may use a textual argument to narrow down a selec-
tion, but may be stored without one.

Cell Size, Overlay, and Hierarchy: The developer
chooses the size of the grid cells and whether an overlay
and/or a grid hierarchy should be used based on content
domain knowledge.

Update Rate and Scheduling Priority: During appli-
cation registration, the developer also provides the update
rate and the priority of the content. The update rate is
in terms of days. The priority ranges between 0 to 9, as
defined in the technical report [1]. The update rate allows
the developer to declare where the content belongs in the
LTTL spectrum. Caché downloads the content based on the
update rate, in increasing priority order.

Content Storage: The developer also selects the content
storage format. Caché stores content in its original format
in a database as text, a blob (binary representation), or a
file. Content stored as a file is stored directly onto the file
system with a pointer to its location. The text format allows
for optimized compression and covers a universal content
formats. Blob gives the developer more freedom, however,
requires the developer to deal with the binary representation
formatting.

4.2.2 Application Installation
After installing a Caché-enabled application, the user has

to specify the region for which content should be downloaded
(Figure 2, step 2). We allow for a number of input methods.
Specifically, the user can select between the user’s current

location, an address, a ZIP code, or a city. The user also
specifies the radius in miles of the region centered at the
aforementioned geographical location. Multiple regions may
be entered for content download, for instance, for possible
travel destinations or for work or school. The user may also
modify the content update rate and priority.

4.2.3 Application Content Download
Content download refers to step 3 of Figure 2. In this

section, we present aspects of downloading and storing con-
tent, namely, the downloading approach, content storage,
and content ranking.

After application registration and specification of content
download regions, Caché has all the necessary information to
download content. Caché makes requests based on the URL
that the developer has provided and the grid that Caché
builds over the region of interest. The cells can be down-
loaded in any order, e.g., sequential or random.

In the case of a hierarchical grid, Caché starts requesting
content for the highest level grid first; grid levels are assigned
at grid construction time. Since the download takes place
over the region specified by the user, one may argue that
the center of the region may be an important location to the
user, e.g., home or work. However, important locations are
masked as we use space discretization. The center location
can only be determined to the smallest size grid cell [21].
Also, we encourage the user to enter the region of interest
as a larger entity, such as a ZIP code or a city. As a result,
the user’s home or work is not necessarily at the center of the
region. Other possible forms of mitigation are introducing
noise to the original user’s region, downloading content for a
larger region, or using anonymity approaches where all the
people wanting content for an area would have the exact
same request pattern.

Content Ranking: By ranking we refer to the order
in which a content provider presents individual results to a
query, e.g., the order of restaurants from Yelp!. Caché can
both preserve and also distort content rankings. In cases
where there is no need for hierarchical caching and input
query strings, Caché preserves the content ranking as se-
lected by the service provider. If the developer has selected
cell sizes that poorly describe content density, the ranking
could be distorted. For instance, if the developer selects the
cell size to be as large as a city, then the POIs would be
centered somewhere in the city, whereas the user may be
anywhere in the city.

If hierarchical caching is necessary, the content returned
may be for a region that is possibly larger than the request
region. This may also result in ranking distortion. In cases
where an input query is necessary and an overarching query
is used, e.g., restaurants instead of pizza, burger, wings,
the more refined options are dropped from the content pre-
sented, even though the ranking may be almost equivalent.

4.2.4 Application Content Retrieval
Content retrieval refers to step 4 of Figure 2, where REST-

ful requests are sent to Caché. How the content is retrieved
depends on the complexity of the grid as defined by the de-
veloper and the user.

When hierarchical caching is not used, content retrieval is
simple. Assuming the request location is somewhere in the
grid, the content from the nearest cell in the grid is selected.
Note that the content only corresponds to a single cell. As

Caché does not know about content semantics, there is no
notion of taking a union or an intersection over the content.
Therefore, Caché finds the nearest cell in the database that
covers most of the request region, and presents its content
to the application. There are no additional changes required
in the application as the content is presented in exactly the
same format as that from the service provider. Because
content is retrieved based on a cell rather than the user’s
exact position, the content may not be exactly what the
user would have retrieved if she were to make a live request.

When hierarchical caching is used, cells are searched in
increasing grid level order. The lowest level grid has the
smallest cells. The closest cell that covers the entire request
is returned. If the nearest cell at level l does not cover
the entire query region, Caché moves up a level to l+1 to
find a cell that covers the entire region. Upon finding the
particular cell, Caché returns the corresponding content.

With respect to grid overlays, the concept remains the
same, except there are double the number of cells at each
level. The overlay allows for higher content accuracy at each
level. Further, the overlay might allow Caché to satisfy the
request region coverage without moving up a level.

Cache Misses or Stale Content: Cache misses occur
when requests fall outside of the cached regions. However,
content staleness can only be determined based on heuris-
tics, such as the number of times the content should have
been refreshed since its last update. Currently, we assume
content to be up-to-date. Some approaches to deal with
missing or stale content could be to present the user with
options to specify a new region for download or to update the
stale content, while estimating the time and the bandwidth
required based on download histories. Another approach
would be to make a live request. It is an open question how
to present these options in an application agnostic and un-
derstandable way to end-users. At this time, we rely on a
live request for cache misses to ensure functionality.

5. EVALUATION
We implemented Caché as an Android service that runs

in the background. Developers register their application on
start-up with the service. Each registered application shows
up as one of the privacy-enhanced applications under the
Caché GUI. Through the GUI, the user can specify the con-
tent download region, set the content update rate and con-
tent priority. To reduce energy and bandwidth overhead, we
have limited the service to only download content when the
device is plugged in and a WiFi connection is available.

We evaluated Caché using two approaches. We first in-
vestigated tradeoffs in both download times and cache hit
rates with respect to how much content was cached using
two mobility datasets. Intuitively, download times should
increase as more content is stored. Similarly, cache hit rates
should also increase. Our goal was to understand how well
Caché might work in practice. The other approach tells of
our experience using Caché to enhance the privacy of three
open source Android applications.

5.1 Evaluation Based on Mobility Datasets
We used real-world mobility traces from two different stud-

ies: Locaccino [36] and Place Naming [25], described in more
detail below. Both sampled user location at approximately

five minute intervals. We considered using some of the Craw-
dad6 datasets, but did not find any that matched our needs.

Informally, our evaluation consisted of estimating the lo-
cations of a person’s home and work, and then download-
ing all of the content within a certain radius. By adjusting
the radius, we increase the amount of content that is pre-
fetched. We then examined how many of the person’s actual
locations fall within these two radii to estimate how often
Caché would provide cache hits.

Human Mobility Datasets: Locaccino is a location-
sharing tool which offers users flexible control over who,
when, and where one’s location is shared with others. The
Locaccino dataset has over 4000 people total. For our study,
we selected the top twenty most active users of Locaccino,
made up of graduate and undergraduate students, faculty,
and a research software developer. Five of the selected users
are female and the rest are males. The data was collected us-
ing a number of mobile clients, Android, Symbian, iPhone,
and also laptops. The selected data consisted of approxi-
mately 460,000 location traces.

The Place Naming dataset consists of mobility traces col-
lected in 2009: 33 users in the Spring, 26 users in the Sum-
mer, and 10 users in the Fall. The project collects data
on how people label locations they visit. The participants
consist of staff, undergraduates and graduate student, with
ages ranging from 18 to 46. Over 40% of all participants are
female. All of the data for the Place Naming dataset was
collected using Symbian phones. The location data records
GPS coordinates if satellite signal is visible, otherwise, a list
of AP ids are recorded and translated to geo-coordinates
using Skyhook at a later time.

Building the Cache: Our first method of evaluation fo-
cused on building a cache from scratch. We evaluate how the
radius of the cached area affects the cache size and down-
load time. For each user in our Locaccino and Place Naming
datasets, we selected two significant locations. The signifi-
cant locations are selected based on the frequency that they
are visited and are required to be at least one mile apart. In
the majority of cases, these two locations refer to the user’s
home and work places. However, we do not attempt to infer
the relation of the significant locations to the participants.
We downloaded content for the significant locations based
on 5, 10, and 15 mile radii. The numbers are somewhat ar-
bitrary, but reflect the fact that 15 mile radius covers most
of the Pittsburgh area. The goal of this approach is to ver-
ify the amount of storage and bandwidth needed if the users
were to build a fresh cache anchored at two significant loca-
tions which they frequently visit. The content downloaded
is restaurant points of interest from MSN search and Yelp!

Table 3 shows the the size and estimated content download
time. As the radius for the amount of area covered increases,
user privacy is enhanced. The table presents the tradeoff
between further enhancing user privacy with respect to cache
size and the time required to build the cache. In the case
of POIs downloaded from MSN and Yelp!, the amount of
disk space and the time to download are not very large, as
expected. Based on the results obtained, it is clear that the
user can optimize for more privacy by downloading more
content. We expect similar results with respect to other
text based location data such as events, store locations, gas
stations, and bus and movie schedules.

6http://crawdad.cs.dartmouth.edu/

Dataset Radius (mi) Size (kB) Download Time (s) Spatial Locality % Spatial and Temporal Locality %

Locaccino
5 408 17 86.67 96.30

10 620 26 86.75 96.66
15 810 34 86.79 97.47

Place Naming
5 330 14 78.61 79.35

10 384 16 83.75 84.75
15 510 21 86.03 87.33

Table 3: This table shows the cache building statistics and hit rate. The content downloaded is restaurants
from MSN and Yelp!. Download time is estimated based on a 200 kbps connection. Spatial Locality % refers
to the approach where content is downloaded for two significant locations obtained through the study of each
individual user’s mobility data. Spatial and Temporal Locality % refers to the approach where, in addition
to the user’s hometown significant locations, two new significant locations are added to the user’s download
regions the day after they are visited.

Content Coverage: For this part of the analysis, we
evaluate how the radius of the cached area affects the pri-
vacy of the user. To simplify analysis, we assume the user
has fresh data. We used the Locaccino and Place Nam-
ing datasets to estimate the percentage of cache hits for the
location-enhanced content. We evaluated cache hits by look-
ing at the mobility trace of each individual user with respect
to 5, 10, and 15 mile radii around the two significant loca-
tions. For each recorded GPS coordinate, we considered the
entry a cache hit if it fell in either of the circles centered at
the significant locations as defined previously.

Keeping in mind the above definitions for cache hits, we
computed the cache hit rate for both datasets. As the hit
rates are computed based on the user’s two significant loca-
tions, the cache hit rates for the aforementioned approach
are labeled Spatial Locality %. Table 3 presents the cache
hit rates. It is noteworthy that by simply caching content
at a 5 mile radius at two significant locations, more than
75% of the recorded GPS coordinates lead to cache hits. By
caching at a 10 mile radius nearly 85% of the recorded GPS
coordinates lead to cache hits. Although caching with very
large radii increases user privacy, the increase in cache hits
is marginal.

The approach based on caching content at two significant
locations mainly caters to the scenario that the user is always
unaware of plans to travel to a distant location. The cache
misses correspond to users going out of the cached region
bounds. However, we see that hit rate improvement, from 5
to 15 mile cache radius, although not negligible, is not very
significant.

We explore another approach for when a user travels to a
distant location, defined to be more than a 100 miles from
home locations. Specifically, we cache content for the trav-
eled location for future occurrences past the first day. This
approach was based on the observation that if a user travels
to a new location, for instance, from Pittsburgh to New York
City, and stays for several days, then she can cache content
once she arrives at the location for future days. As a result,
on the first day when the user arrives, all recorded locations
result in misses. However, on the second day at the same lo-
cation, it is assumed that Caché downloads content for the
new destination. As a result, all locations in the traveled
destination that fall in the cached region will lead to cache
hits past the first day. We refer to this approach as Spatial
and Temporal Locality. By knowing that a destination has
been visited and that it is likely that the user will be in the

same location in the near future, we add a temporal locality
concept to our location-enhanced content cache.

The results for the above are shown in Tables 3 under the
Spatial and Temporal Locality % column. When the radius
is 5 miles, the Locaccino dataset offers a substantially larger
hit rate than the Place Naming dataset. We believe this is
the result of also using laptops for recording locations using
Locaccino. We find it likely that the bulkiness of laptops
caused user location traces to be mostly captured in areas
where the user can easily station herself. Thus, the user
will be closer to known locations where she is more likely to
comfortably use a laptop.

5.2 Porting Applications to Caché
In this section, we present our experience using the Caché

Android service to improve location-privacy in three open
source applications: mixare, Panoramio, and Restaurant
Request. While all of the applications were written as stan-
dalone applications, we found the process of transforming
the applications to run using Caché to require only minor
modifications to the original source code. Mixare is an aug-
mented reality engine browser, which presents Wikipedia,
Twitter, and Buzz entries that are near the user’s current
location. Panoramio shows nearby pictures that have been
uploaded by other Panoramio users. Finally, Restaurant
Request is an open source application that we wrote that
presents nearby restaurants overlaid on a map. Restaurant
Request uses Yelp! as its content provider. The code for
Restaurant Request is available on the Caché website7.

For mixare, we focused on Wikipedia entries which fit the
LTTL content description, i.e., the content is still useful
even if cached once a day. The Twitter and Google Buzz
entries fit the STTL description, where the value of cached
entries diminishes rapidly. We selected a grid with over-
lay for mixare, because mixare uses a large radius to grab
content, and content relevance would be unknown when the
user is at the edge of the circular boundary. For Panoramio,
we selected a grid with both the overlay and the hierarchy
options, since content requests are based on the location and
zoom level of the map as presented to the user. When both
options are selected, the final content presented to the user
is more accurate based on the user’s map selection. Finally,
for the Restaurant Request, we cached the nearby restau-
rant entries that were returned by Yelp!, using the default
grid without overlay or hierarchy options. All of the data

7www.ece.cmu.edu/~samini/projects/cache

SLOC
Application Original Added Removed
mixare 4692 18 (0.4%) 4 (0.1%)
Panoramio 1268 18 (1.4%) 7 (0.55%)
Restaurant Request 411 12 (2.9%) 8 (1.9%)

Table 4: Number of Source Lines of Code that had to
be added to and removed from each of three sample
Android applications to run using the Caché service.
Any source code provided as a template is not taken
into account.

was cached for a 5 mile radius centered at the CMU campus
and updated on a daily basis.

We have made the process of connecting to the Caché
service simple by writing an interface package that can be
added to any Android project. We also have a template
that a developer can copy into the application source code
to connect using the interface code. The template code is 30
lines and is not counted towards actual source code change.
Table 4 presents the lines of code that we had to add to
and remove from each application. All three applications
required less than 5% total code change, with 16 lines of
code added, and 6.4 lines of code removed on average. Most
changes involve routing the request to Caché rather than the
Android HTTP stack.

Based on our experience, applications can be transformed
into Caché-enabled applications easily without major code
change and without in-depth knowledge of the internal work-
ings of Caché.

6. DISCUSSION
In this section, we discuss limitations, developer burden,

adoptability, and further work.
Limitations: Caché targets certain LTTL content as dis-

cussed previously. Therefore, mobile services that require
rapidly changing content or user interaction with a server
are outside of Caché’s model. For instance, Caché would not
work for location check-in applications such as Foursquare
[26], which requires the user to check-in with a server at a
particular location.

Caché expects the user to have requested content for re-
gions she is likely to visit. If this is not the case, the user has
to rely on other privacy-enhancing approaches or to make a
live request. It is also important to consider what the real
cost of a cache miss could be. For instance, it may be okay
for a user if a restaurant has relocated to another location
and the user is forced to choose another option. However,
if a bus schedule is stale and the user is in a rush to get to
a location, the cost of a cache miss could be more expen-
sive. We conjecture that if the user’s downloaded content is
small enough to be downloaded completely over night, for
instance on the order of hundreds of MBs, then the content
could be downloaded every night. As a result, the chance
that an expensive cache miss would occur would be consid-
erably reduced.

Developer Burden: The application developer is re-
sponsible for defining the cell size in the content download
grid, content update rate, and content priority. If the devel-
oper does not have a good understanding of the content and
application domain, then the grid created by Caché could be
inefficient in grabbing the content that users expect. When

in doubt, it is best for the developer to select a small grid
size with both the overlay and hierarchy options included.
This way, Caché can present the correct content based on
the size of the region for which content is requested. For
cases where the LBS requires a query string, e.g., restau-
rants, pizza, libraries, the burden of correctly guessing the
user’s query falls on the developer. This may lead to an
incomplete sweep of data that the user expects.

Defining content download parameters requires knowledge
about content density. Although Caché requires the devel-
oper to have more of an understanding about the application
content, we conjecture that developers have such insights al-
ready. For instance, in our examination of the mixare soure
code, we noticed that 50 rows of content were requested for
a 20 km radius. The examination of the Panoramio source
code revealed that the application presents 20 photo entries
to the user at a time. Developers make decisions regarding
how much content to request and how to present content
to users already. However, Caché would require develop-
ers to understand such decisions with an additional level of
abstraction.

Adoptability: Caché does not require additional infras-
tructure to enhance user privacy. Further, caching and pre-
fetching are simple and familiar concepts to developers. How-
ever, instead of relying on pre-fetching and caching to im-
prove performance or to enable content use on disconnected
or weakly connected devices, Caché uses them to enhance
user privacy. Of course, this does not diminish the benefits
of pre-fetching and caching. Instead, it makes Caché ap-
pealing for developers as it boosts application performance
while reducing the burden to make the application privacy
friendly. In other words, unlike most approaches to location
privacy, Caché provides developers with a strong incentive to
increase privacy because pre-fetching and caching improve
performance and energy efficiency, and enable disconnected
operation. In a practical sense, our approach has a higher
chance of being adopted versus complex privacy preserving
solutions that require additional infrastructure or developers
with expert knowledge of preserving user privacy.

Further Optimizations: Caché can be optimized to
learn the content update rate and prioritization. Ideally,
there would be a protocol that lets end-users download only
updates from content providers in bulk. However, there is
currently no such protocol. An alternative is to update con-
tent based on an exponential back-off approach. Using such
an approach, Caché could use the update rate requested by
the developer as a guide rather than canonical. The same is
true for content prioritization. If the user uses the data for
an application more often than others, the content prioriti-
zation for that application can be increased. Note that the
information leak due to prioritization is minimal, as it does
not change the update rate of the content, only the order in
which it is downloaded.

Caché can further be optimized by sharing content be-
tween applications that use the same content provider. The
caveat here is that the shared content should be using the
same service with the same API calls and similar cell sizes in
the grid. The system then has to be extended to recognize
when the aforementioned conditions hold, and to service the
requests of one application with another application’s con-
tent.

Another aspect of Caché which may be optimized is how
content is downloaded for a large region. One could imag-

ine that instead of downloading content sequentially or ran-
domly, content for hot spots or popular locations could be
downloaded first. Another option would be to download
such that an overview is available early on, so that the user
has some useful data for various regions before the entire
grid is downloaded.

7. RELATED WORK
In this section, we present related work to the Caché ap-

proach. We start with content caching and proceed to dis-
cuss location privacy.

Content Caching: Caching content has been a well-
explored topic for mobile computing, primarily focused on
performance or disconnected or weakly connected devices.
For example, the Bayou architecture is designed from the
ground up to support mobile computing applications [8],
while the Coda file system is designed to provide support
for weakly connected operation [20, 37]. Our work differs
from this previous work in that we apply caching for loca-
tion privacy, examining the tradeoffs of such an approach in
today’s Internet architecture.

The content used by Caché is obtained through existing
web sites and content providers on the Internet. As with
other caching solutions, the content may become stale de-
pending on its update frequency. Cache staleness is a well-
known problem and has been explored in many domains,
for example in web search and indexing [6, 31, 33, 43]. Our
work does not directly address this problem. Instead, we
provide an analysis showing that there are many types of
location-enhanced content that can be effectively cached for
reasonable periods of time while still remaining accurate.

Location Privacy: Many past projects have explored
balancing the tradeoffs involved in providing useful function-
ality while offering privacy protection to end-users. Recent
work by Brush looks at if and how users understand the ef-
fectiveness of various privacy preserving techniques and how
much users value their location data in monetary terms [5].

Iachello and Hong offer a summary of current and future
research trends in privacy in their survey [17]. Duckham
and Kulik [10] sketch out four major themes for location
privacy, namely regulation, privacy policies, anonymity, and
obfuscation. Krumm [22] offers a survey of computational
approaches to location privacy that examines inference tech-
niques as well as countermeasures. Issues surrounding reg-
ulation and privacy policies are beyond the scope of this
paper. Instead, we will focus on the other two areas.

Anonymity: A common theme in much of the work on
anonymity has been relying on a trusted third party that
acts as a proxy between the client and the location-based
service. One metric that has been developed is k-anonymity
[11, 40]. There are many examples of work in location pri-
vacy using k-anonymity. Perhaps the most relevant here are
spatial and temporal cloaking [12], Mix Zones [13, 4], New
Casper [29], and (to some extent) CacheCloak [28]. Recent
work by Shokri questions the effectiveness of k-anonymity
for preserving location privacy with a common misunder-
standing of confusing query anonymity and location privacy
[39]. Our work here differs in that Caché does not focus
on anonymity. Instead, Caché offers a different model for
accessing location-enhanced content, one that relies on pre-
fetching and disconnected operation.

Privad [14] is an online advertising system that anonymizes
ad requests and ad view/click reports using untrusted ad

dealers. Caché is similar to Privad with respect to pushing
content storage and processing to the client. Anonymizing
networks may also be used to preserve user privacy. Tor [9] is
one practical implementation of a low-latency anonymizing
network. However, the performance issues associated with
Tor, specially in mobile applications, compromise applica-
tion usability. Further, Tor does not protect against services
that require authorization. With respect to anonymity ap-
proaches, Caché does not require any third party, nor does
it require a critical mass of users to be effective.

Anonymity can also be established with encryption tech-
niques. Private Information Retrieval (PIR) [7, 23, 32] al-
lows clients to make queries to a server in a way that the
server cannot distinguish which memory address was read.
The approach is interesting, however, the support would
need to be implemented both on client and server side, and
the use of cryptography would introduce additional overhead
to the system.

Obfuscation: Many techniques have been developed, in-
cluding adding noise, quantizing locations (essentially putting
locations into buckets or aligned onto a grid), and adding
false locations. SybilQuery is a client-side tool that creates
many different queries to the server to obfuscate the user’s
actual path [38]. Caché relies on obfuscation in that it only
shares with content providers that the user is in a geographic
region, e.g., a neighborhood or a city. However, Caché uses
obfuscation in a different way than past work, in that af-
ter retrieving content for a region, it processes and filters
content locally on the user’s mobile device. Thus, content
providers only know that the user is in a large region rather
than obfuscated trails or locations.

Privacy-Enhancing Systems: Finally, we discuss two
systems that are perhaps the closest to Caché in terms of
goals. Confab is a framework with the purpose of provid-
ing support for building ubiquitous computing application
with privacy enhancing mechanisms [16]. Caché is a logical
extension of this past work as it vastly expands the kind
of data types available for application development. Caché
also provides deeper analysis of the tradeoffs involved. An-
other approach for hiding the user’s location by surrounding
it with other users’ paths is CacheCloak [28]. CacheCloak
caches all previous requests and services queries from the
cache first. If data is not available, it makes a live query, dis-
guising the user’s current location by requesting data along
the predicted path, extended until the path intersects with
other paths. CacheCloak shares similar design ideas to our
approach. However, predicting mobility is not always neces-
sary. We show that pre-fetching is feasible for a substantial
amount of data without hindering system usability.

8. SUMMARY
We presented the feasibility analysis, design, implemen-

tation, and evaluation of Caché, a system that lets people
access location-enhanced content while offering location pri-
vacy through the use of pre-fetching.

In our feasibility analysis, we examined the privacy model,
as well as familiar systems issues of caching, data freshness,
and data consistency. We provided a taxonomy of location-
enhanced content, organizing content types as short-time-
to-live (STTL) and long-time-to-live (LTTL), and showed
many examples of content that could realistically be LTTL,
and thus, could potentially be pre-fetched. We estimated
how often various web sites changed their content, showing

that several kinds of data types could be cached and still
useful for at least one day (if not longer). We also pro-
vided estimates of how much storage and bandwidth would
be required for Caché, showing that for map tiles and ba-
sic text-based location-enhanced content, content could be
easily stored and downloaded using existing devices and net-
work connections.

Finally, we provided two evaluations of Caché. One evalu-
ation was based on the examination of tradeoffs with respect
to two human mobility datasets from separate user studies.
First, we showed the tradeoff between the size of the geo-
graphic region for which to download content and the size
of the cached content and download time. Second, we ex-
amined how often people’s locations would place them in an
area where they had cached content, adjusting the size of the
cached geographic region and seeing how things changed. In
both cases, we presented results showing that one does not
need to cache a great deal of content for the system to be ef-
fective, strongly suggesting that caching location-enhanced
content is a feasible strategy to improve user privacy. Our
second evaluation was based on our experience using Caché
to enhance user privacy in three Android applications. The
average change in the source lines of code was 16 lines added,
and 6.4 lines removed. No in-depth knowledge of Caché was
necessary to make the privacy enhancements.

9. ACKNOWLEDGMENTS
We thank Mahadev Satyanarayanan, Dan Siewiorek, and

Asim Smailagic for their generous constructive feedback in
supporting this work. We also thank our shepherd, Lan-
don Cox, for his insightful feedback. This research was sup-
ported in part by CyLab at Carnegie Mellon under grants
DAAD19-02-1-0389 and W911NF-09-1-0273 from the Army
Research Office. This research was also supported by NSF
CNS-0627513. Additional support has been provided by
Microsoft through the Carnegie Mellon Center for Com-
putational Thinking, FCT through the CMU/Portugal In-
formation and Communication Technologies Institute, and
through grants from FranceTelecom, Nokia, and the Al-
fred P. Sloan Foundation. Janne Lindqvist is supported by
Academy of Finland, and the foundations Emil Aaltosen
Säätiö and Tekniikan Edistämissäätiö.

10. REFERENCES
[1] S. Amini, J. Lindqvist, J. I. Hong, J. Lin, E. Toch, and

N. Sadeh. Caché: Caching Location-Enhanced Content
to Improve User Privacy [Extended]. Technical Report
CMU-CyLab-10-019, CMU Cylab, 2010.

[2] S. Amini, J. Lindqvist, M. Mou, R. Raheja, J. I.
Hong, J. Lin, E. Toch, and N. Sadeh. MobiCom 2010
Poster: Caché: Caching Location-Enhanced Content
to Improve User Privacy. ACM MC2R, 2010.

[3] L. Barkhuus and A. Dey. Location-Based Services for
Mobile Telephony: a study of user’s privacy concerns.
In Proc. of Interact, July 2003.

[4] A. R. Beresford and F. Stajano. Location Privacy in
Pervasive Computing. IEEE Pervasive Computing,
2(1), 2003.

[5] A. B. Brush, J. Krumm, and J. Scott. Exploring end
user preferences for location obfuscation,
location-based services, and the value of location. In
Proc. of UBICOMP, 2010.

[6] J. Cho and H. Garcia-Molina. Synchronizing a
database to improve freshness. SIGMOD Rec., 29(2),
2000.

[7] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private Information Retrieval. In Proc. of FOCS, 1995.

[8] A. Demers, K. Petersen, M. Spreitzer, D. Terry,
M. Theimer, and B. Welch. The Bayou Architecture:
Support for Data Sharing Among Mobile Users. In
Proc. of WMCSA, Dec. 1994.

[9] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The Second-Generation Onion Router. In Proc. of the
13 th Usenix Security Symposium, 2004.

[10] M. Duckham and L. Kulik. Location privacy and
location-aware computing, chapter 3. CRC Press, 2006.

[11] B. Gedik and L. Liu. Protecting location privacy with
personalized k-anonymity: Architecture and
algorithms. IEEE TMC, 2007.

[12] M. Gruteser and D. Grunwald. Anonymous Usage of
Location-Based Services Through Spatial and
Temporal Cloaking. In Proc. of MobiSys, 2003.

[13] M. Gruteser and B. Hoh. On the Anonymity of
Periodic Location Samples. In Proc. of SPC, 2005.

[14] S. Guha, B. Cheng, and P. Francis. Privad: Practical
Privacy in Online Advertising. In Proc. of NSDI, 2011.

[15] J. Hong, G. Borriello, J. Landay, D. Mcdonald,
B. Schilit, and D. Tygar. Privacy and Security in the
Location-enhanced World Wide Web. In Proc. of
UBICOMP, 2003.

[16] J. I. Hong and J. A. Landay. An architecture for
privacy-sensitive ubiquitous computing. In Proc. of
MobiSys, 2004.

[17] G. Iachello and J. Hong. End-user privacy in
human-computer interaction. Found. Trends
Hum.-Comput. Interact., 1:1–137, January 2007.

[18] Y. Jung, P. Persson, and J. Blom. Dede: design and
evaluation of a context-enhanced mobile messaging
system. In Proc. of CHI, 2005.

[19] W. Karim. Privacy Implications of Personal Locators:
Why You Should Think Twice before Voluntarily
Availing Yourself to GPS Monitoring. Washington
University Journal of Law and Policy, 14(485), 2004.

[20] J. J. Kistler and M. Satyanarayanan. Disconnected
operation in the Coda File System. ACM Trans.
Comput. Syst., 10(1), 1992.

[21] J. Krumm. Inference attacks on location tracks. In
Proc. of PERVASIVE, 2007.

[22] J. Krumm. A survey of computational location
privacy. Personal Ubiquitous Comput., 2008.

[23] E. Kushilevitz and R. Ostrovsky. Replication is not
needed: single database, computationally-private
information retrieval. In Proc. of FOCS, 1997.

[24] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower,
I. Smith, T. S. James Scott, J. Howard, J. Hughes,
F. Potter, J. Tabert, P. Powledge, G. Borriello, and
B. Schilit. Place lab: Device positioning using radio
beacons in the wild. In Proc. of Pervasive, 2005.

[25] J. Lin, G. Xiang, J. I. Hong, and N. Sadeh. Modeling
people’s place naming preferences in location sharing.
In Proc. of UBICOMP, 2010.

[26] J. Lindqvist, J. Cranshaw, J. Wiese, J. Hong, and
J. Zimmerman. I’m the Mayor of My House:
Examining Why People Use foursquare - a
Social-Driven Location Sharing Application. In Proc.
of CHI, 2011.

[27] MapPoint. Microsoft mappoint 2009, north america.
http://www.microsoft.com/mappoint, 2009.

[28] J. Meyerowitz and R. Roy Choudhury. Hiding stars
with fireworks: location privacy through camouflage.
In Proc. of MobiCom, 2009.

[29] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new
Casper: query processing for location services without
compromising privacy. In Proc. of VLDB, 2006.

[30] D. Narayanan and M. Satyanarayanan. Predictive
Resource Management for Wearable Computing. In
Proc. of MobiSys, 2003.

[31] C. Olston and S. Pandey. Recrawl scheduling based on
information longevity. In Proc. of WWW, 2008.

[32] F. Olumofin, P. K. Tysowski, I. Goldberg, and
U. Hengartner. Achieving efficient query privacy for
location based services. In Proc. of PETS, 2010.

[33] S. Pandey and C. Olston. Crawl ordering by search
impact. In Proc. of WSDM, 2008.

[34] C. Pettey. Gartner Says Worldwide Mobile
Application Store Revenue Forecast to Surpass $15
Billion in 2011.
http://www.gartner.com/it/page.jsp?id=1529214, Jan
2011.

[35] Pols. Privacy Observant Location System.
http://pols.sourceforge.net, 2008.

[36] N. Sadeh, J. Hong, L. Cranor, I. Fette, P. Kelley,
M. Prabaker, and J. Rao. Understanding and
capturing people’s privacy policies in a mobile social
networking application. Personal Ubiquitous Comput.,
13(6), 2009.

[37] M. Satyanarayanan, J. J. Kistler, L. B. Mummert,
M. R. Ebling, P. Kumar, and Q. Lu. Experience with
disconnected operation in a mobile computing
environment. In Proc. of MLCS, 1993.

[38] P. Shankar, V. Ganapathy, and L. Iftode. Privately
querying location-based services with SybilQuery. In
Proc. of Ubicomp, 2009.

[39] R. Shokri, C. Troncoso, C. Diaz, J. Freudiger, and
J.-P. Hubaux. Unraveling an old cloak: k-anonymity
for location privacy. In Proc. of WPES, 2010.

[40] L. Sweeney. k-anonymity: a model for protecting
privacy. Int. J. Uncertain. Fuzziness Knowl.-Based
Syst., 10(5), 2002.

[41] D. Turner. Broadband Reality Check: The FCC
ignores America’s Digital Divide. Consumer Union,
2005.

[42] S. Wang, J. Min, and B. Yi. Location Based Services
for Mobiles: Technologies and Standards. In Proc. of
ICC, 2008.

[43] J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman,
and L. Ozsen. Optimal crawling strategies for web
search engines. In Proc. of WWW, 2002.

