
 - 1 - 

CASA: Context-Aware Scalable Authentication 
 

Eiji Hayashi1 Sauvik Das1 Shahriyar Amini1 
Jason Hong1 

 
Ian Oakley2 

1Carnegie Mellon University 
5000 Forbes, 

Pittsburgh PA, 15213, USA 

2University of Madeira 
Funchal, 

9000-390, Portugal 
ehayashi@cs.cmu.edu 

 

ABSTRACT 
We introduce context-aware scalable authentication (CASA) as a 
way of balancing security and usability for authentication. Our 
core idea is to choose an appropriate form of active authentication 
(e.g., typing a PIN) based on the combination of multiple passive 
factors (e.g., a user’s current location) for authentication. We 
provide a probabilistic framework for dynamically selecting an 
active authentication scheme that satisfies a specified security 
requirement given passive factors. We also present the results of 
three user studies evaluating the feasibility and users’ 
receptiveness of our concept. Our results suggest that location data 
has good potential as a passive factor, and that users can reduce up 
to 68% of active authentications when using an implementation of 
CASA, compared to always using fixed active authentication. 
Furthermore, our participants, including those who do not using 
any security mechanisms on their phones, were very positive 
about CASA and amenable to using it on their phones. 

Categories and Subject Descriptors 
H.5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

General Terms 
Security; Human Factors. 

Keywords 
User Authentication; Context-Aware; Mobile; 

1. INTRODUCTION 
Reliable authentication is an essential requirement for secure 
systems. Today, passwords are the most common form of 
authentication. However, passwords are also a major source of 
vulnerabilities, as they are often easy to guess, re-used, forgotten, 
shared with others, and susceptible to social engineering 
[7,19,20,22]. We argue that the commoditization of sensor 
technologies coupled with advances in modeling people and 
places offers new opportunities for both simplifying and 
strengthening authentication. This insight is the basis for what we 
call context-aware scalable authentication, or CASA.  

CASA embodies two concepts. First, these cheap digital sensors 
combined with models of people and places can yield multiple 
passive factors about users’ identities. For our specific context, we 
define a factor as any data that provides information about a user’s 

identity. Passive factors are those that can be acquired without 
explicit interaction from the end-user (e.g., a user’s location or 
time since last login). In contrast, active factors require explicit 
interaction (e.g., entering a PIN or scanning fingerprints).  

Second, CASA is based on the idea that this passive multi-factor 
data can be used to modulate the strength of active authentication 
needed to achieve a given level of security. For example, with 
CASA, we want to enable quick and easy active factors in 
situations where passive factors indicate a high probability the 
user is a legitimate user (for instance, being located in home or 
work where only the user and a small number of trusted people 
can access). Conversely, we want active factors to be tough and 
reliable in situations where the passive factors indicate a low 
probability (such as being located in an unfamiliar place).  

In this approach, CASA breaks current underlying assumptions 
about authentication, by making authentication easier or harder 
based on passive factors rather than making it uniformly hard for 
all cases. We argue that today’s authentication systems are 
designed to ensure security in extreme cases; consequently, they 
overlook common, mundane and ultimately average case 
scenarios that characterize most user authentications. Some people 
have argued that this conventional approach of always having 
more security actually leads to less compliance and less security 
overall (see for example, [7,31]). In particular, Norman argues that 
“[t]he more secure you make something, the less secure it 
becomes. Why? Because when security gets in the way, sensible, 
well-meaning, dedicated people develop hacks and workarounds 
that defeat the security” [6]. Norman’s predictions appear to be 
well founded in statistics about mobile phone PINs usage. A 
survey in 2007 found that 61% of people had no PIN on their 
phones [5]. 

CASA targets this large population of users who do not secure 
their devices by attempting to derive solutions that offer them a 
more appropriate perceived balance between usability and 
security. By exploring solutions that provide easy access in 
commonplace everyday situations, such as whilst a user is at 
home, but require more secure authentication in less common 
scenarios, this paper points the way towards how to lower the 
overall burden of having user authentication on mobile devices to 
increase the compliance rate. 

Towards this end, this paper makes several research contributions. 
First, we present a general Bayesian framework that allows us to 
choose active factors given passive factors. Second, we examine 
the feasibility of using location as one possible passive factor, 
presenting the results of a field study that analyzes users’ mobility 
patterns along with their phone usage patterns. Third, we describe 
the results of two field studies where we iteratively designed, 
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developed and evaluated one implementation of CASA. We 
believe that our Bayesian framework can be applied to many 
different authentication systems that use both active and passive 
factors. We also believe that the data and the process described in 
this paper will help practitioners and researchers working on user 
authentication to design their systems.  

2. Related work 
Existing user authentication systems primarily depend on three 
types of mechanisms: what you know, what you have and what you 
are. Passwords are the most commonly used authentication system 
based on what you know. Password authentication has advantages 
in its simplicity and convenience [19]. However, many studies 
have found that passwords still place substantial burdens on users, 
resulting in users adopting insecure practices such as choosing 
weak passwords or reusing passwords [7,22].  

Authentication systems based on what you have, include eToken 
USB devices [1], RSA securID [2], and Google’s two-step 
verification [3]. Such techniques are only partially related to the 
work in this paper as it involves the user carrying a smartphone, 
but this is used solely to gather data rather than being used as a 
token. Finally, authentication systems leveraging what you are, or 
biometrics have been widely commercialized. Common examples 
uses fingerprint, iris, voice, and face. These kinds of biometrics 
tend to focus on physical characteristics of individuals. In 
contrast, researchers have also investigated a number of behavioral 
biometric techniques focusing on individuals’ behavioral patterns, 
e.g., walking gait [29], keyboard typing pattern [30], what 
applications and features on a mobile phone are being used [23].  

This paper is closely related to behavioral biometrics but differs in 
two key ways. First, we seek to use commodity devices as well as 
sensors that already exist on many computers today. In particular, 
this paper examines the potential for using location as a factor 
modulating authentication on smart phones. Second, we seek to 
understand how to use passive factors to adjust the level of active 
authentication to satisfy security requirements rather than solely 
using the behavioral patterns for authentication. 

2.1 Modulating the Level of Authentication 
Some online services already modulate authentication level in 
specific circumstances. For example, many bank web sites ask 
extra questions when logging in from new network IP addresses. 
Similarly, Facebook asks additional questions when using an 
unusual IP address [4]. In this technique, users must identify 
several of their friends’ photos before being allowed to login.  

CASA differs from these techniques in that it seeks to expand and 
extend (and ultimately generalize) the factors used when adjusting 
authentication level. Our current work also focuses on 
authenticating primarily with a device rather than an online 
service, as there are serious privacy issues with storing behavioral 
data on multiple online services. We do believe that CASA can be 
used to simplify authentication with remote online services, but 
we consider this beyond the scope of the current paper. 

There are also theoretical investigations of risk-based access 
control models. These models focusing on handling uncertainties 
and risks in making access control decisions (e.g., [12,21]).  
CASA differs from these investigations in that it focuses on 
passive factors collected by sensors on mobile devices and 
modulating active actors based on the passive factors. 

2.2 Leveraging Contexts 
Several systems have discussed or used contextual information for 
security [e.g. 15]. For example, proximity has been used both to 
authenticate users [9,13,21] and to perform pairing operations 
[24]. Similarly, Seifert et al. proposed TreasurePhones a system 
that protected information on mobile phones based on a user’s 
location as detected by near field communication technology [33].  
Buthpitiya et al. demonstrated that a system could detect 
anomalous activities (e.g., a phone being stolen) by analyzing a 
user’s location history using an n-gram model [11].  Gupta et al, 
proposed a context profiler that classifies point of interest into 
safe, unsafe, and uncategorized places, and evaluated the model 
with data collected in Lausanne Data Collection Campaign [17]. 
Riva et al. proposed Progressive Authentication that combined 
light, temperature/humidity sensor, touch screen, login events, 
microphone, and Bluetooth receiver using SVM model to 
authenticate users [28].  

The prior work closest to CASA is Jakobsson et al.’s discussion of 
implicit authentication [23]. Their core idea was to utilize user 
behavior patterns for authentication. They considered two 
behavioral features derived from a mobile device: time since the 
user last checked email and GPS location. The two feature scores 
were combined through a weighted linear function to calculate an 
overall “authentication score”, which was then compared with a 
pre-defined threshold to determine whether a user should be 
authenticated. A fundamental difference between this work and 
our work is that, while implicit authentication accepts or rejects 
users only based on behavioral features, our work modulates 
active authentication based on passive factors, including 
behavioral features.  

CASA has similar goals with these prior works; however, it differs 
from these past explorations in three important ways. First, we 
study selecting appropriate active authentication given passive 
factors rather than authenticating users based on passive factors. 
Second, our model considers the differences between a user and 
others while existing works are focused on the user’s behavior 
patterns. For instance, being at a favorite café does not provide 
strong information about the user’s identity because there are 
many other people who visit the café; however, being at work (a 
location where we assume a small number of people have access) 
has increased weight. Finally, in contrast to more theoretical 
approaches in prior work, this paper presents three field studies 
with a total of 86 users. This empirical data informs practical 
system viability and sheds light on users’ perspectives. 

2.3 Human Mobility Analysis 
One of our working assumptions with CASA (which we examine 
in the first evaluation) is that users’ locations can be useful as a 
passive factor. Prior work has found that there are many 
predictable patterns in people’s mobility patterns [16,26]. For 
example, Gonzalez et al. [18] analyzed the mobile phone cell 
tower data of 100,000 people over six months (based on call log 
and SMS log data). They found that people spent a great deal of 
time in just a few highly frequented locations. Hayashi et al. [19] 
presented the results of a diary study investigating where people 
login to desktop and laptop computers. They found that 84.3% of 
logins took place at home (59.2%) and work (25.1%). 

Combined, this past work suggests that location data may be 
promising, for two reasons. First, strong, predictable patterns in 
one’s mobility patterns would make location data very useful as a 
passive factor for authentication. Second, if people primarily use 
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their mobile devices in just a few places (e.g., home or work), then 
streamlining the level of authentication for just those places 
should improve usability. If these places also have reasonably 
good physical security, then we can improve usability without 
making significant tradeoffs for security. However, currently, 
there is little empirical data on where and how often people 
actually use their smartphones (as opposed to computers). This 
paper also contributes to this body of knowledge by providing 
analyses of where people actually use smartphones, using GPS 
and Wi-Fi data for fine-grained information with ground truth.  

3. Framework for active factor selection 
In this section, we introduce our probabilistic framework for 
choosing an active factor given passive factors. Our approach is to 
use a Naïve Bayes classifier to combine multiple factors, 
calculating a “risk assessment” value to determine the appropriate 
level of active authentication required given passive factors.    

Most existing user authentication schemes can be considered 
binary classifiers, classifying a person as a legitimate user (u = 1) 
or not ( u = !1 ). We can also model these schemes 
probabilistically as shown in Eq. (1) where u  denotes the 
prediction (i.e., the result of the user authentication), P(u = 1|s) 
denotes the probability the requester is the legitimate given the 
observation s,  P(u = !1|s) denotes the probability the person is 
not the legitimate user given the observation s, and α denotes the 
degree to which user authentication is conservative. The α 
parameter can be set based on one’s comfort level with expected 
costs of false accepts and false rejects.  

 ! = 1,
−1,

!" ! = 1|! > !(! = −1|!)
!" ! = 1|! ≤ !(! = −1|!) (1) 

For instance, for PIN-based authentication, if the system observes 
that a requester enters the correct PIN, the probability that the 
requester is legitimate is much higher than the probability he is 
not. Thus, the system predicts u = 1 and authenticates the user. 
Conversely, the system predicts the opposite if the requester enters 
a wrong PIN.  

Many current authentication schemes focus on a single factor that 
has large differences between the probability distributions of 
P(u = !1|s) and P(u = 1|s) across the range of values of s. In 
contrast, CASA combines multiple factors that may or may not 
have as pronounced of a difference between the probability 
distributions of P(u = !1|s)and P(u = 1|s) , but taken together 
offer benefits over a single factor approach. 

In Eq. (2), we show the underlying probabilistic model of multi-
factor authenticators such as CASA. Again, u denotes whether a 
user is legitimate  (u=1) or not (u=-1), and si denotes the 
observation value for the i-th factor. 

! = 1,
−1,

!"(! = 1|!!,… , !!) > !(! = −1|!!,… , !!)
!"(! = 1|!!,… , !!) ≤ !(! = −1|!!,… , !!) (2) 

We can reformulate Eq. (2) into Eq. (3) using the sign function, 
which extracts the sign (positive or negative) of a real number. 

 ! = sign log !"(! = 1|!!,… , !!)
!(! = −1|!!,… , !!)

 (3) 

Using Bayes’ theorem, P(u|s!, s!,… , s!) can be reformulated into 
Eq. (4). Eq. (4) has the term, P(s!, s!,… , s!|u), that depends on all 
the factors simultaneously. In practice, estimating this term is 
challenging because the number of possible combinations of 

(s!, s!,… , s!) increases exponentially when the number of signals 
increases. Therefore we simplify Eq. (4) as Eq. (5) by assuming 
conditional independence between each identifier. This is a 
standard transformation in building Naïve Bayes classifiers. This 
simplification allows us to deal with each signal separately.  In Eq. 
(5), P(u) denotes a prior probability of how likely a person is a 
legitimate user (or not) in general. P(u) will be canceled in the 
following reformulations.  

 ! ! !!, !!,… , !! = ! !!, !!,… , !! ! ! !
! !!, !!,… , !!

= !(!!|!)!
!!! ! !
! !!, !!,… , !!

 

 

(4) 

(5) 

Finally, by substituting P(u|s!, s!,… , s!) in Eq. (3) with Eq. (5), 
we obtain a Naïve Bayes classifier (Eq. (6)). Intuitively, the 
parameter in the sign function increases with the probability that a 
requester is legitimate and vice versa. 

! = sign log ! !(! = 1)
!(! = −1) + log !(!!|! = 1)

!(!!|! = −1)

!

!!!
 (6) 

Note that because each factor might not be conditionally 
independent, Eq. (6) may have approximation errors compared to 
Eq. (3). However, in practice, we believe the errors will be limited 
because we can choose largely independent factors (e.g. voice and 
PIN). Further, in Eq. (6), we can discuss each factor independently 
by estimating P s! u = 1 /P(s!|u = !1) . Thus, we believe the 
benefit of the independence assumption outweighs its drawbacks. 

3.1 Selecting an Active Factor 
CASA uses this probabilistic model to select an active factor that 
provides enough evidence to authenticate a user, given a set of 
passive factors. The model allows us to compare the strength of 
the evidence using the terms in the sign function in Eq. (6). 

We describe one example here to illustrate how we can utilize the 
framework in choosing active factors. Let’s assume we want to 
choose an active identifier S that provides as much evidence when 
a user is at a café as compared to the user typing her correct PIN at 
her home. Assuming that location is the only passive factor, the 
condition that S should satisfy can be written as Eq. (7). The first 
term in Eq. (6) is canceled. Ps,1(1)  denotes the probability that the 
active factor S indicates that a person is the legitimate user when a 
person is actually a legitimate user. Ps,-1(1) denotes the same when 
a person is not the legitimate user. PL,1(l) (or  PL,-1(l)) denotes the 
probability the person is at the location l when she is the legitimate 
user (or not). H and C denote home and café respectively.  

log !!,!(1)!!,!!(1)
+ log !!,!(!)!!,!!(!)

≥ log !!"#,! 1!!"#,!! 1
+ log !!,!(!)!!,!!(!)

 (7) 

Eq. (7) can be rewritten as Eq. (8), which quantifies the security 
criteria that an active factor S should satisfy to have the same level 
of security as the legitimate user typing her PIN at home, given 
that the active factor S authenticates the person at a café. 

log !!,! 1!!,!! 1
≥ log !!"#,! 1!!"#,!! 1

+ log !!,! !!!,!! !
− log !!,! !!!,!! !

 

!!!!!!!!!!!!!!!!!!!!!!!=log !!"#,!(1)!!"#,!!(1)
+ log!!,!(!)!!,!(!)

!!,!!(!)
!!,!!(!)

 

 

(8) 

A legitimate user is more likely to be at her home than to be at 
café. Thus, P!,! H /P!,!(C) > 1 . In contrast, someone else is 
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much more likely to be at the café than to be at the user’s home, 
i.e., P!,!! C /P!,!!(H) ≫ 1. Thus, the second term on the right 
side is positive. Therefore, Eq. (8) indicates that the active factor 
should provide greater confidence than a standard PIN. 

Furthermore, Eq. (8) offers a quantitative guideline for the 
strength of S given the user’s location. Our model can also include 
other passive factors, such as sensor data, time since last login, or 
number of times logged in at given places. We describe another 
example of selecting an active factor in our second field study. 

4. Empirical Evaluations 
To assess the feasibility of CASA, we conducted three different 
empirical evaluations. In our first evaluation, we investigated the 
potential of using location as a passive factor. Past work suggests 
that people spent most of their time in a few locations [8,18,26]. 
However, there is little empirical data on how frequently people 
used their smart phones at these locations. We collected this 
information to evaluate the usefulness of location information for 
CASA.  

In our second study, we conducted a one-week field study of a 
prototype with 32 participants. This prototype modulated active 
factors based on their locations. This study helped us understand 
how well our ideas might work in practice, as well as to obtain 
feedback from participants. 

In our third study, we iterated on both the system design and the 
study design based on the results of the second study. We 
conducted a 10-day field study with 18 participants. This 
prototype took into account location as well as whether the 
participants used their computers nearby recently. 

5. Study #1: Mobility pattern analysis 
In this study, we investigated people’s mobility patterns along 
with their phone usage patterns, to evaluate the effectiveness of 
location information as a passive factor. We recruited multiple 
Android phone users through Craigslist and e-mails. Participants 
were asked to install our logging app from the Android Market. 
Participants were enrolled in a raffle for $50 Amazon gift cards as 
compensation. Over five months, we collected data from 128 
participants. In this analysis, we focused on 36 participants with at 
least seven days of logs.  

5.1 Data Collection 
Our app sampled location every three minutes regardless of 
whether participants were interacting with their phones. Location 
was obtained through standard Android APIs using Wi-Fi and cell 
tower information. The standard API also provided the expected 
error for each location estimate. We discarded location data when 
the expected errors were greater than 200 meters. Our app also 
logged the smartphone’s running processes every 30 seconds 
when the smartphone was not in sleep mode. The timestamps of 
these logs let us infer when participants used their phones. 

We analyzed location traces from 36 participants. The data 
collection periods varied from seven days to 140 days. The median 
length of the data collection was 26.5 days. We divided the 
latitude and longitude space into discrete 0.002 × 0.002 
latitude/longitude grids (each cell was approximately 200 × 200 
meters in/near North America) as previously done in [14]. The 
particular choice of discretization was based on practical 
considerations balancing the accuracy of Android’s positioning 
system with granularity of the analysis.  

5.2 Identifying Phone Activation 
To track phone use, our app ran a low-level thread that logged 
active processes every 30 seconds. When the phone was in sleep 
mode, the thread was automatically paused. Thus, by examining 
the timestamps of log entries, the phone state could be determined. 

Theoretically, intervals between log entries that exceed 30 seconds 
signified a phone activation event after being in sleep mode once. 
However, initial trials of this log analysis identified two common 
sources of error. The first issue was the low priority of the logging 
thread leading to fluctuations in the sequentially logged times - 
variations typically in the region of 5 seconds. To deal with this, 
we considered valid differences between log time stamps to be in 
the range 30-35 seconds. The second issue was phone activations 
caused by push notifications (e.g. email arrival). We adopted a 
conservative approach to mitigate false positives relating to this 
issue. Essentially, phone activation events were counted only 
when there were two successive log timestamps after observing at 
least a 35 second gap. This filtered out short phone activations due 
to push notifications because the phone would quickly go back to 
sleep mode after an automatic activation. A consequence of these 
manipulations was that a certain proportion of valid user 
activations (e.g. very brief glances and interactions) would not be 
counted. However, despite this cost, we believe that these 
manipulations ensured the validity of the study by counting only 
real user activations of their phones.  

5.3 Mobility Pattern Analysis 
We identified 55840 phone activation events in our dataset. 
Participants activated their phones 27.4 times a day on average 
(SD=19.7). Table 1 shows the distribution of time spent and logins 
at the places where participants spent most of their time. We first 
calculated each participant’s top five places based on the amount 
of time spent using location data alone (see the two columns under 
“Time”). Then, for each participant, we calculated the number of 
phone activations at each of these places using location data and 
process data (see the two columns under “Activations”). 

The results indicated that people spent 57.8% of their time at two 
locations, which we assume are home and work. This result is 
aligned with past work investigating people’s mobility patterns 
e.g., [18,19]. However, before conducting this study, it was 
unclear to us how often people would use their smartphones at 
home and work, since there would be other devices with network 
connectivity and larger displays (e.g., desktop and/or laptop 
computers) at these locations. Nevertheless, our results showed 
that these top two places accounted for 60.8% of the total phone 
activation events on average (SD=14.5%). This data indicates that 
people activate their phones more frequently at their homes and 
workplaces than at other places. 

Table 1. The distribution of the time spent and the phone 
activation events at the places where participants spent most of 
their time. Place 1 to 5 denote the places where participants 
spent most time (1) to fifth most time (5).  

Place Time Activations 
Mean [%] SD [%] Mean [%] SD [%] 

1 (Home) 38.9 20.2 31.9 15.6 
2 (Workplace) 18.7 12.6 28.9 18.1 
3 9.9 8.4 18.5 13.7 
4 5.5 4.8 10.8 8.5 
5 4.3 4.7 5.2 4.7 
Other places 22.6 13.1 4.5 4.6 
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This result provides supporting evidence that people exhibit strong 
patterns in where they use their smartphones, suggesting that 
location could be a very useful passive factor. This result also 
indicates that we can positively impact both usability and security 
if we adjust the active factor based on location data coupled with a 
very trivial model (home, workplace and other places). Again, this 
approach makes the assumption that a person’s home and 
workplace have reasonably good physical security, and that there 
are relatively few trusted people that can access those locations.  

6. Study #2: Evaluation of CASA prototype 
In this field study, we developed and deployed a prototype using 
CASA framework for Android smartphones. This prototype 
dynamically selected active factors based on participants’ location 
(i.e., whether they are at home, workplace, or some other places). 
In this study, we investigated users’ reactions to dynamically 
changing active factors. We also collected empirical data to 
estimate how much effort our participants could reduce in user 
authentication when using our prototype. These data help us to 
understand the design space opened by the concept of CASA, and 
to improve the prototype for the next design iteration to make it 
better fit users’ needs.  

6.1 Participants 
We recruited 32 participants using a participant recruitment 
website at Carnegie Mellon University. Their age ranged from 18 
to 40 years old with a mean age of 24. Our participants consisted 
of 26 students, five full-employed and one non-employed. 
Twenty-three out of 32 participants were living with others in their 
homes. We compensated participants $40 for their participation in 
the study.  

Participants were assigned to one of two conditions based on 
whether they used any security lock on their phones prior to this 
study. Nineteen participants not using a security lock (i.e., PIN or 
Android Pattern Lock) were assigned to the PIN condition. 
Thirteen participants already using a security lock were assigned 
to the password condition. None of the participants were using 
passwords to secure their phones. In essence, participants used the 
same authentication they already used at home and work, and had 
stronger active authentication at other places.  

6.2 Procedure 
In the first session, we installed our prototype on participants’ 
Android phones. We asked participants in the PIN condition to 
choose a PIN. For participants in the password condition, we 
asked them to choose a password in addition to a PIN.  

During the study period, when the participants turned on their 
phone displays, our prototype selected an active factor based on 
the participant’s location (home, work, and other) and condition 
(the PIN or password condition) (see Table 2). In the explanation, 
we explicitly defined “work” as a room or building where the 
participants spent most of time except home. For instance, for 
students, “work” means their offices or campus buildings. After 
participants authenticated, the prototype asked the participants to 
answer if they were at home, work, or other place (Figure 2 (c)). 
The answers were used to train the location classifier implemented 
in the prototype. This classifier is trained on the fly during the 
study using the ground truth. After one week, we had the second 
session where we asked participants to complete a post-survey, 
and conducted a follow up interview that lasted about 15 minutes. 

6.3 Prototype with Active Factor Selection 
Our prototype used location as a passive factor and selected an 
active factor from three options: no active factor, a PIN, and a 
password. First, we describe how we can use CASA in selecting 
active factors, using the password condition as an example. The 
participants in the password condition were using PIN or Android 
Pattern Lock to secure their phones prior to this study. Thus, for 
the participants in the password condition, we selected active 
factors so that they would provide the same level of evidence as 
typing a PIN at workplace, where risks are higher than home, but 
still lower than other places. 
Because location is the only passive factor in our prototype, Eq. 
(6) can be simplified to Eq. (9) and (10). These equations denote 
the conditions that active factors should satisfy to provide no less 
evidence than being at home (Eq. (9)) or at a place other than 
home and workplace (Eq. (10)), where W, H and Oi denotes 
workplace, home, and a place other than home and workplace 
respectively. Note that Oi does not denote the aggregation of 
places other than home and workplace, but it denotes a single 
place. f l!, l!  and g(S)  are defined as shown in Eq. (11). 
Intuitively, log f l!, l!  means the likelihood that a person is a 
legitimate user when she is at l2 compared to when she is at l1. If it 
is less likely, log f l!, l! becomes positive. Then, the evidence 
provided by the active factor (the term on the left side) should be 
greater than that of PIN. If it is more likely, log f l!, l! becomes 
negative. Then, the active factor could be weaker than PIN. As 
log f l!, l!  increases, the user’s location provides stronger 

evidence towards authentication. g(S) denotes how strongly an 
active factor S indicates users’ identities.  

log$!(!) ≥ log$!(!"#) + log !(!,!)  (9) 

log$!(!) ≥ log$!(!"#) + log !(!,!!)  (10) 

! !!, !! = !!,!(!!)
!!,!(!!)

!!,!!(!!)
!!,!!(!!)

,! ! = !!,!(1)
!!,!!(1)

 (11) 

We estimated g(S) based on the entropy of four-digits PINs (~9 
bits) and passwords (~18 bits) according to the estimations by 
NIST [10]. Assuming that the authentication system allows three 
trials and that a legitimate user always types a PIN and a password 
correctly, then we have PPIN,1(1)=1,    PPIN,-1(1)=3/29,    PPwd,1(1)=1,   
PPwd,-1(1)=3/218 and P!"#$,! 1 = P!"#$,!! 1 = 1 . Thus, 
g PIN = 2! 3, g Pwd = 2!" 3 and g None = 1. 

To calculate log f W,H  and log f W,O!  accurately, we need 
further empirical data collection. However, because our primary 
purpose in this study was to investigate participants’ responses to 
our concept rather than applying CASA precisely, we 
approximated these values. We approximate the values in a way so 
that log f l!, l!  becomes smaller to avoid overestimating the 
strength of the evidence provided by location information. We 

Figure 1. Graphical representations of Eq. (9) and (10). 
Horizontal line denotes log(g(s)) for each S (None, PIN, or 
password). 
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discuss the data collection issue more in the discussion section. 

For P!,! H  and P!,! W , we used 0.389 and 0.187 that were 
obtained in the first study. For P!,!(O!), we used 0.099, which was 
the highest probability among the places other than home and 
workplace in the first study (Table 1). When P!,!(O!) becomes 
higher, the CASA model estimates the evidence provided by being 
at home and the workplace to be lower. Thus, we used the highest 
value for all Oi to be conservative. Additionally, we assumed that 
P!,!! l  was proportional to the number of people who can 
physically come into the location. Because we do not have 
empirical data about P!,!! l , we make assumptions after showing 
its effect on the active factor selection.  

Figure 1 is a graphical representation of Eq (9) and (10). The 
diagonal plots show the right sides of the Eq. (9) and (10), and the 
horizontal lines denotes log$g(S) for each factor (i.e., S=None, 
PIN or password). Intuitively, the X-axis denotes how many 
people can access certain locations (home for the red plot and 
other places for the green plot) compared to the number of people 
who can access workplaces. The Y-axis denotes confidence about 
users’ identities. When we only consider active factors, the 
confidences are not relevant to numbers of people who can access 
certain locations. Thus, the blue plots become horizontal. In 
contrast, when we consider locations as indicators of users’ 
identities, the confidences become dependent on the likelihood. 
Thus, the plots become diagonal as shown by the red and green 
plots.  

In Figure 1, satisfying Eq. (9) is equivalent to the condition that 
the lower diagonal plot is below one of the horizontal lines at 
given PL,-1(l2)/ PL,-1(l1). We assume that the number of people who 
can access home is less than that of workplace and more than 1/10 
of that of workplace. The lower diagonal plot in the segment PL,-

1(l2)/ PL,-1(l1) =[0.1, 1] is between the horizontal lines representing 
PIN and None under this assumption. Therefore, we select PIN as 
an active factor that satisfies Eq. (9).  Similarly, we assume that 
the number of people who can access other places is more than 
that of workplace and less than 100 times of that of workplace, the 
upper diagonal plot in the segment PL,-1(l2)/ PL,-1(l1) = [1, 100] is 

between the horizontal lines representing Password and PIN. 
Therefore, we select passwords as an active factor that satisfies 
Eq. (10).  

We made two assumptions above; however, we believe that these 
assumptions are safe to make considering the ranges. Additionally, 
our choice of active factors (Table 2) made active authentication 
more secure than that used by our participants prior to the study. 
Our prototype required the same active factors as they used prior 
to this study at their homes and workplaces, and required more 
secure active factors at other places. Thus, we made the 
authentication more secure for our participants, compared to pre-
study levels.  

6.4 User Interfaces 
Our prototype estimated the smartphone’s location every 150 
seconds using standard Android APIs (which uses WiFi access 
points and cell tower information). The positioning system returns 
latitude, longitude, and estimated error. We discarded the location 
if the error was greater than 200 meters.  

When a participant turned on her display, our prototype took the 
latest location information and classified the location as home, 
workplace, or other, using a 5-nearest neighbors classifier. To 
minimize misclassifications, especially in areas where ground 
truth data is sparse, the classifier considered ground truth within a 
100 meter radius. Our prototype then requested an active 
authentication according to participants’ locations and the 
experimental conditions (Table 2). After participants completed 
the active authentication, the prototype asked participants to 
confirm their semantic location (home, workplace or others) to use 
as additional ground truth data for the 5-nearest-neighbor classifier 
(Figure 2).  

6.5 Results 
6.5.1 Location Classification 
Our prototype asked for the ground truth of locations after each 
authentication (Figure 2 (c)) and trained the 5-nearest neighbor 
classifier using all the ground truth collected up to the 
classification. The classification accuracy was 92%. Most of the 
misclassifications happened due to our location sampling rate. It 
would be therefore be possible to improve the classification 
accuracy by increasing the sampling rate when the accelerometers 
on the mobile device detect that it is moving.  

 
Figure 3. The number of phone activations per day. Gray and 
black bars denote participants in the PIN-password condition 
and none-PIN condition respectively.  
 

Table 3. The means of the phone activation frequency per day 
at each location. The numbers in parentheses denote standard 
deviations. Both the PIN and the password condition activated 
phones more than 50% of time at homes or workplaces. 

Condition Home Workplace Other places 
PIN 13.1 (1.4) 2.5 (0.4) 8.1 (1.1) 

Password 24.5 (3.2) 7.1 (1.0) 15.7 (2.0) 
 

Table 2. Active factors required at different locations in the 
second study. The prototype required the same active factors 
as participants were using at their homes and workplaces while 
required stronger active factors at other places. 

Condition Home Workplace Other places 
PIN None None PIN 

Password PIN PIN Password 
 

   
(a) PIN (b) Password (c) Questionnaire  
Figure 2. Prototype screenshot. Based on users’ locations and 
the conditions (see Table 2), the prototype either skips 
authentication, (a) requests PIN, or (b) requests password. 
After authentication, the prototype showed a questionnaire to 
obtain ground truth of locations.  
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6.5.2 User Authentication 
Our participants activated their phones 33.8 times a day on 
average. Figure 3 shows the distribution of phone activations per 
day. The black and gray bars represent participants in the PIN 
condition and in the password condition respectively. The 
participants in the PIN and the password condition activated their 
phone a mean of 23.9 times and 47.3 times a day respectively. The 
difference between the means was statistically significant with 
Welch’s t-test (t(14)=2.78, p<0.05). This result might be because 
those who use their phones more frequently are more likely to 
have sensitive data on their phone. Table 3 shows that participants 
in the PIN condition activated their phones 68% of the time at 
home or work, and participants in the password condition did the 
same 55% of the time. This indicates that they mostly activated 
their phones at homes or workplaces. 

One possible concern with CASA’s approach is that users may be 
more likely to forget their PINs or passwords because they are 
used less frequently. However, in this study, we found that 
participants still typed PINs and/or passwords frequently enough 
to retain them. As shown in Table 3, participants typed PINs 8.1 
times a day on average in the PIN condition. Similarly, in the 
password condition, participants typed PINs more than 31.6 times 
a day and typed passwords 15.7 times a day on average. 
Furthermore, we found that our participants typed correct PINs 
96.5% of the time, out of 1034 total authentications using PINs. 
Additionally, no participant typed the wrong PIN three times 
successively. For passwords, there were two cases out of 1193 
authentications using passwords where participants typed wrong 
passwords three times successively. However, in both cases they 
retrieved passwords in the next authentication. These data indicate 
that, although the frequency of typing PINs and passwords 
decreased, the memorability of PINs and passwords remained 
high. 

6.5.3 Participants’ Receptiveness 
In a post-survey, we asked participants about their perceptions of 
our prototype using a 5-point Likert scale (higher scores being 
more positive). Participants in both conditions were very receptive 
to our prototype. Below, the number in the parentheses denotes the 
median of ratings. 

Participants in the PIN condition reported that not requiring a PIN 
at home and work while requiring a PIN at other places was useful 
(4) and very easy to understand (5). They also reported that they 
felt our prototype was secure (4) compared to not having any 
security lock on their phone. They were neutral (3.5) to using our 
prototype if it were available on their phones.  

Similarly, participants in the password condition reported that 
requiring a PIN at home or work while requiring a password was 
neither useful nor useless (3) and easy to understand (4). They also 
reported that they felt the prototype was more secure (4), as easy 
to use as requiring a PIN at all the places (4). However, they were 
neutral (3) to using our prototype.  

We further asked the participants in the password condition about 
the configuration that we used for the PIN condition. (i.e., not 
requiring PINs at homes or workplaces and requiring PINs at other 
places). The participants reported that the configuration would be 
easy to use (4) and as secure as a requiring a PIN at all places 
(3.5), and they somewhat agreed (4) that they would use the 
system if it were available on their phones.  

As these results indicate, participants thought our prototype useful. 
Although participants were neutral to using our prototype on 
average, our participants rated the none-PIN configuration as 
easier to use than the security lock that they used prior to our 
study, and more or equally secure to the security lock. We further 
iterated on the system design in our third field study to make it fit 
better to users’ needs. 

7. Security Analysis 
In this section, we discuss the security implications of CASA with 
respect to our results from the second study. Through this 
discussion, we identify potential security risks and possible 
improvements to the system that we tested in the third study. 
Table 4 divides possible attackers into four groups based on 
whether they have information about their target (informed or 
uninformed attackers), and whether the attackers have knowledge 
about CASA as well as information security in general (novice or 
expert attackers). 

7.1 Uninformed Novices and Experts 
An example scenario where an uninformed novice might attack 
CASA is the case where a legitimate user loses her phone outside 
of home or work, and some stranger picks it up. In this case, 
CASA is almost as secure as a system that requires a PIN all the 
time. The only situation where it would be weaker is if the user 
loses her phone right next to her home or work, or if an attacker 
breaks into a person’s home or work (again, we assume these 
places have reasonably good physical security). An expert attacker 
could try to activate the phone at different places to find the user’s 
home or workplace, in hopes of putting CASA into its simpler 
mode of authentication. However, CASA can also be configured 
to always require a PIN after a certain number of trials, making 
this kind of attack infeasible.  

7.2 Informed Novice 
Informed novices would be people who know a lot about an 
individual but not a great deal of technical expertise. Those who 
living with users, such as family members, could be informed 
novices. However, our survey results showed that our participants 
trusted people who they are living with. Furthermore, even if the 
phone is protected by PIN, existing work has reported that people 
frequently share their PIN among these people [34]. Thus, even if 
CASA does not work well when the family members are not 
trustable, it does not increase the risk significantly. Alternatively, 
the system can allow people to configure where it does and does 
not require PIN. 

Friends or co-workers could be informed novices as well. They 
could visit users’ homes or workplaces to access the users’ 
phones. The system in study #2 did not have protection for this 
threat model. In designing the prototype used in the second study, 
we assumed that homes and workplaces would have reasonable 
level of physical security and that people would put more weight 
on ease of access than security in these places.  The results of the 
second user study suggest that these assumptions hold for homes 
but not for workplaces. Thus, we improved the system to mitigate 
the risk at workplaces and tested in the field study #3. 

Table 4. We categorized attackers into a 2×2 table based on 
knowledge about target users and technical expertise. 

 Knowledge about target users 
Uninformed Informed 

Technical 
expertise 

Novice Uninformed Novice Informed Novice 
Expert Uninformed Expert Informed Expert 
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7.3 Informed Experts 
Informed experts are the most capable attackers against CASA, 
who can dedicate time and resources to breaking the system. In 
practice, this group likely represents a small and exceptional case, 
one that goes outside of the average case that we are focused on, 
but also a case that CASA should offer some kind of protection 
against. At the same time, too much emphasis on security may 
lead people to not have any security, as exemplified by the number 
of people not using security locks on their phones.  

Given the difficulties of defending against a dedicated attacker, 
the relative rarity of attacks, plus the goal of balancing security 
and usability, we opted to focus less on prevention mechanisms 
and more on detection, making it easier for phone owners to see if 
others were making use of their devices. We implemented and 
evaluated one possible detection mechanism in the field study #3 
in the form of a notification mechanism indicating when and 
where the smartphone was used. 

8. CASA Design Iteration 
Based on the previous field study and security analysis, we 
iterated on the system design of our prototype, to make it more 
acceptable for users and secure against some of the potential 
attacks. The results from the previous field study clearly showed 
that participants with security locks on their phone found requiring 
passwords on mobile devices too high a burden. Thus, we 
configured our system to require a PIN at places outside of one’s 
home.  

Participants also showed concerns about not requiring user 
authentication at workplaces. Our survey results showed that, 
while 68% of participants strongly trusted people who could 
access their home, only 18% strongly trusted those who could 
access their workplace. This implies that the approximation that 
we made in the active factor selection in the system design was 
not accurate enough because it did not take the level of trust into 
account. Thus, in this iteration, we assumed that being at 
workplaces does not provide enough evidence to change the active 
factor from PIN to none. Instead, we added one more passive 
factor at workplaces, having smartphones check whether users 
were using their laptop (or desktop) computers nearby. If the 
computers were being used, the probability that users were near 
their smartphones was quite high, assuming that the computers 
required passwords to be accessed. Thus, the smartphones 
required no active factor when the computers were used nearby 
recently.  

Our smartphone prototype communicated via Bluetooth with an 
application installed on the users’ computers every 60 seconds to 
check the last time the keyboard or mouse was used. If the users 
interacted with their computer within the past 180 seconds, the 
smartphone prototype did not require a PIN. This modification 
could address the cases where, for instance, the users leave their 
smartphones at their workplace unattended. 

In addition to improving prevention mechanisms (i.e., user 
authentication), we also added a notification mechanism. When a 
user’s smartphone was activated, a popup message would appear 
on their computers. Clicking on the message would show the geo-
location of the smartphone on a map. The message disappears 
after five seconds automatically. Although this approach does not 
prevent illegitimate accesses, it makes detection easier and could 
prevent further access to sensitive data. 

Finally, we modified CASA to always require a PIN when 
someone turned on the phones’ display more than five times 
without typing a PIN, to prevent attackers from trying to 
systematically find a user’s home or workplace. 

9. Study #3: Iterative Evaluation 
In addition to using the modified prototype described in the 
previous section, we also modified our study protocol to improve 
ecological validity. In the second study, participants were always 
asked their locations after they activated their phones to train the 
location classifier. However, for a real version of CASA, this data 
collection should happen only for a short period when users start 
using the system. Furthermore, in field study #2, some participants 
commented that answering where they were located every time 
they typed in a PIN was tedious. To address this problem, we 
divided the study into a training period and an evaluation period. 

In this study, we clearly separated a training collection period and 
an evaluation period. On the first day, we had the first session 
where we explained our system and installed our prototype on 
their Android phones and laptops. The first five days was a 
training period where the system asked for participants’ semantic 
locations (home, workplace or other places) as well as requiring 
PINs if necessary, as we did in the previous study. After the 
training period, we had five to nine days of the evaluation period, 
where the system stopped asking the questions. After the 
evaluation period, we had the second session, where we asked 
participants to fill our survey and conducted interviews for 20 
minutes. 

We recruited 18 participants using the university’s participant 
recruitment website. We recruited participants who had Android 
phones and laptops with Bluetooth, which they used at their 
workplaces. None had participated in previous studies. Their age 
ranged from 21 to 40 years old with a mean age of 26.3. Our 
participants consisted of 12 students and six fully-employed. 
Sixteen of 18 participants were living with others in their homes. 
Seven were using security locks on their Android phones prior to 
our study. All the participants used passwords to log into their 
computers and to unlock screensaver on their computers. We 
compensated participants $60 for their participation.  

9.1 Results 
For the basic analyses, we found results similar to those from field 
study #2. Thus, we will describe the analysis of the modified parts.  

9.1.1 Logins at Workplaces 
Figure 4 shows the distribution of the average numbers of the 
phone activations at workplaces per day for each user. The black 
parts denote the number of cases where their computers were 
active and the phones did not require a PIN to be activated, and 
the gray parts denote the number of cases where the phones 
required PIN. On average, the participants activated their phone 
5.5 times a day at their workplaces. Out of the 5.5 times, the 
phones did not require PINs 2.9 times, while they did 2.6 times. 

9.1.2 User Perceptions 
In our post-survey, we asked our participants to rate the three 
features in our system both in Likert scales and freeform 
responses. In the followings, the numbers in parentheses denote 
medians of Likert scale responses where 1 denotes very negative 
and 5 denotes very positive. 

The participants were generally positive about our system. They 
reported that changing the authentication method based on 
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location was useful (4.5), and that changing it based on computer 
usage was useful (4) as well. They also answered that changing 
authentication method based on location and computer usage was 
easy to understand (5 and 4.5 respectively). They also reported 
that, compared to always requiring a PIN to unlock the phone, it 
was not less secure not to require a PIN at home (4) or based on 
computer usage (3.5). Furthermore, they reported that they wanted 
to use the features if the features were available on their phones (4 
for the location-based modification and 3.5 for the computer-
usage-based modification). These ratings were better than the 
ratings in the field study #2, which implies that the modifications 
in this iteration made the system a better fit to users’ needs. 

One interesting finding was that participants who were not using a 
security lock prior to this study also reported that they wanted to 
use CASA (4). P17 commented, “It is annoying to use security 
locks all the time, but whereas if I had such a system which 
requires pin only at unsecure places its usefulness adds more value 
when compared to the annoyance caused by it. So, I will definitely 
use it.” The ratings and this comment indicate the that current all-
or-nothing approach where users have to either enable security 
lock all the time or disable the lock completely, does not meet 
users’ needs well. Furthermore, the users indicated that they would 
adopt the system even if it would undermines usability so long as 
they see an appropriate balance between usability and security. 

Participants were also very positive about the notification feature. 
They rated the feature useful (4), and stated that they wanted to 
use the notification feature if it was available on their phones and 
computers (4). P13 commented, “I think it’s a great way to help 
with privacy.  I use both my computer and phone a lot and it 
would be very useful to have security.” On the other hand, P2 was 
concerned about distractions, saying, “The notification system is 
very useful […]. But at the same time, if you just unlock your 
phone and quickly get back to work, the notifications on the 
screen can be annoying at times.” Interestingly, despite the P2’s 
comment, users are unlikely to see the notifications when they 
activate their phones by themselves. Users would be looking at 
their phones when they activate their phones; thus, they are less 
likely to see the notification on their computers’ displays because 
it disappears after five seconds. Therefore, although there are 
some cases where the notifications distract users as pointed by P2, 
we believe that the distraction would be minimal. 

10. Discussion 
In this paper, we proposed a generic framework for active factor 
selection based on passive factors. Then, we investigated one 
possible implementation in this design space by building, 
evaluating, and iterating on a prototype that made use of location 
data as the passive factor. We believe that our prototype 
demonstrated the feasibility and usefulness of our framework. 

Investigating other points in this large design space will be 
beneficial in developing authentication systems that provide good 
security while putting minimum burden on users.  

Nevertheless, our work has several limitations. For example, for 
each factor, CASA needs estimates of P(s|u = !1), the probability 
that a person trying to be authenticated is not legitimate. Most 
active factors, such as passwords, have both theoretical and 
empirical estimates of this probability. In contrast, passive factors, 
which have not been investigated in the context of user 
authentication, have limited data. More investigation of passive 
factors is necessary to rigorously understand this space. 

As exemplified in our iterative design process, we can start with a 
reasonably good system design based on the CASA framework 
using approximations. Then, we can iterate on the system design, 
improving the approximation based on data obtained in user 
studies.  

Another limitation of our studies is the treatment of workplace. In 
our prototypes, we assumed that there would be reasonable 
physical security at workplaces.  This assumption is appropriate 
for many office workers, but may not be for those who do not 
have offices or other dedicated space at their workplaces. A 
possible solution for this issue is to ask users to configure places 
where they think they have reasonable physical security. It may 
also be possible to estimate the level of security of a place based 
on analysis from publicly available sources, such as foursquare. 

One line of future work is to evaluate other passive factors and 
user models. Prior work has investigated the security of some 
passive factors, such as behavioral biometrics. However, the 
security of other passive factors is not clear, especially when 
malicious attackers try to impersonate legitimate users. 
Furthermore, in this paper, we used a very simple model (two 
passive factors modeling three locations and computer usage). Our 
model had the benefit of being simple to implement and simple to 
understand. It is clearly possible to build more sophisticated 
models, combining more passive factors (e.g. last login time, 
number of times logged in at a given location). However, this 
approach raises new questions about how well users can 
understand what the system is doing, and could lead to frustration 
in case of poor prediction.  

Lastly, we believe it is worth investigating new “good enough” 
forms of active authentication.  For example, most active 
authentication schemes today are designed for high accuracy in 
differentiating between legitimate and illegitimate users. By 
leveraging multiple passive factors, it is possible to relax this 
constraint, requiring only “good enough” accuracy. 

11. Conclusion 
In this paper, we introduced Context-Aware Scalable 
Authentication (CASA), which envisions using multiple passive 
factors to modulate active factors to authenticate users. We 
proposed a generic probabilistic framework that enables the 
selection of appropriate active authentication factors given a set of 
passive authentication factors. We also developed prototypes 
exploring one point in this design space, investigating the 
feasibility and effectiveness of our proposed framework. The 
results of three field studies demonstrated that the prototypes 
could select active authentication factors based on passive factors 
while balancing security and usability of user authentication. 

In the first user study, we observed that the participants logged 
into their phone 60% of the time at their homes or workplace. This 

 
Figure 4. The average numbers of activations at workplace per 
day. The black portion denotes the cases where the system did 
not require a PIN because user’s computers was being used. 
The gray portion denotes the cases where the system required 
a PIN.  
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data indicated that there was substantial potential to improve both 
the usability and the security of a user authentication by choosing 
active factors based on users’ locations. In the second study, we 
developed a prototype that changes active factors (no 
authentication, PIN, and password) based on users’ locations. 
Through a field study, we observed that our prototype improved 
the security of user authentication at less frequently visited places 
(which consisted of 32% to 45% of all user authentications) 
without affecting usability of the rest of the user authentication at 
home or workplaces. Finally, in the third study, we showed an 
iterative design process to improve both usability and security of 
the prototype based on the results in the second study. We added 
computer usage as a passive factor at workplaces and implemented 
detection feature to mitigate the risk of very strong attacks that 
cost too much to be prevented. Our participants were very positive 
about our system. Participants including those who did not use any 
security lock prior to study, showed strong interest to use our 
system on their phones. 

Although there is ample opportunity for further investigation, we 
believe that this paper proposes a novel authentication framework 
and demonstrates its feasibility and the usefulness. We hope this 
work stimulates future research towards our vision of developing 
user authentication systems that require minimum but sufficient 
active factors. 
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