
Foundations and TrendsR© in
Human–Computer Interaction
Vol. 2, No. 1 (2008) 1–93
c© 2009 G. Johnson, M. D. Gross, J. Hong and
E. Yi-Luen Do
DOI: 10.1561/1100000013

Computational Support for Sketching
in Design: A Review

Gabe Johnson1, Mark D. Gross2,
Jason Hong3 and Ellen Yi-Luen Do4

1 Carnegie Mellon University, USA, johnsogg@cmu.edu
2 Carnegie Mellon University, USA, mdgross@cmu.edu
3 Carnegie Mellon University, USA, jasonh@cs.cmu.edu
4 Georgia Institute of Technology, USA, ellendo@gatech.edu

Abstract

Computational support for sketching is an exciting research area at
the intersection of design research, human–computer interaction, and
artificial intelligence. Despite the prevalence of software tools, most
designers begin their work with physical sketches. Modern computa-
tional tools largely treat design as a linear process beginning with
a specific problem and ending with a specific solution. Sketch-based
design tools offer another approach that may fit design practice better.
This review surveys literature related to such tools. First, we describe
the practical basis of sketching — why people sketch, what significance
it has in design and problem solving, and the cognitive activities
it supports. Second, we survey computational support for sketching,
including methods for performing sketch recognition and managing
ambiguity, techniques for modeling recognizable elements, and human–
computer interaction techniques for working with sketches. Last, we
propose challenges and opportunities for future advances in this field.

1
Introduction

People often sketch when solving problems. Some sketches are personal;
others are collaborative. Some sketches help people make quick calcula-
tions and are quickly forgotten; others serve longer-term purposes. For
professional designers, sketching serves as a means for thinking about
problems as much as it does for communicating proposed solutions. For
people who are not designers, sketching is a natural means for quickly
recording spatial information such as directions to a point of interest.

Design can be seen as an iterative process of problem-framing and
exploring possible solutions within the current conception of the prob-
lem. Sketching allows people to visually represent ideas quickly, without
prematurely committing to decisions. A sketch is not a contract: it is
a proposal that can be modified, erased, built upon. The rough look of
hand-made sketches suggests their provisional nature.

Some theories of cognition give the human mind two distinct tasks:
to perceive the world via our senses, and to reason about what our
senses provide. In contrast, the late psychologist Rudolf Arnheim argues
that perception and thinking are inseparable: “Unless the stuff of the
senses remains present the mind has nothing to think with” [11]. Visual
thinking is valuable in evaluating what is and designing what might be.

2

3

Sketching allows people to give form to notions that are otherwise imag-
inary; the act of seeing fuels the process of reasoning.

The term “sketch” is used in many ways in vernacular and academic
work. Some speak of sketching as a process — we sketch out an idea
by talking about it, drawing pictures, or play-acting while considering
possible solutions or problem formulations. Alternately we may use the
term “sketch” to mean the product of an exploration, as when we make
a prototype out of modeling clay, cardboard, or code.

In this survey, we define a sketch based on the utility hand-made
drawings afford: sketches are quickly made depictions that facilitate
visual thinking. In this way, sketches may include everything from doo-
dles to roughly drawn circuit diagrams to an architect’s quick isomet-
ric projection. We restrict neither the drawing medium nor the subject
matter. Sketches are most often two-dimensional graphic depictions,
but often incorporate textual annotations.

Sketching has been a topic of interest to computer scientists and
HCI practitioners for quite some time. Early efforts such as Sketch-
pad [161] and GRAIL [39] hinted at the potential of pen-based inter-
faces. In fact, many of today’s sketch-related research challenges were
suggested by these systems 45 years ago.

Recently there has been a recurrence of interest in supporting
sketching with computation. Computers can recognize user input and
let people interact with drawings in ways that are impossible with
paper alone, augmenting the sketching process in various ways. A
rough sketch may contain enough information to infer the user’s inten-
tions. The drawing could then come alive, for example providing a
simulation. Alternately the user’s sketch may serve as a search query.
Beyond recognition, a computer can render, rectify, or beautify a user’s
sketchy input into some other representation. Computation also sup-
ports editing operations that are impossible with physical sketches, for
example, enabling collaborators in different locations to share an elec-
tronic drawing surface.

Researchers from many disciplines have contributed to knowledge
about sketching and computational techniques for supporting it. Their
diversity makes it difficult to get a complete sense of what has been done
on this topic. This review draws from journals, conference proceedings,

4 Introduction

symposia and workshops in human–computer interaction, cognitive
science, design research, computer science, artificial intelligence, and
engineering design. These fields certainly overlap; however research in
sketching lacks a unifying publication venue.

Some who study sketching as an element of design practice pub-
lished in the Design Studies journal. Sketching has become a recurring
theme at HCI conferences like CHI, UIST, IUI, and AVI, and visual
languages conferences such as IEEE’s VL and VL/HCC. The Associ-
ation for the Advancement of Artificial Intelligence (AAAI) held sym-
posia on diagrammatic representation and reasoning [49] and sketch
understanding. The community brought together by the AAAI sketch
understanding symposia continues meeting at the annual Eurograph-
ics Sketch-Based Interaction and Modeling workshop (SBIM). Related
work has been published in computer graphics venues such as Comput-
ers and Graphics and the NonPhotorealistic Animation and Rendering
conference. There is also a substantial amount of work published in
various journals for electrical, mechanical, or software engineering.

Surprisingly, few surveys on sketch recognition and interaction have
been published. Readers interested in pen computing in general may
find Meyers’ earlier review helpful [109]. That survey covers pen-related
hardware, handwriting recognition, and presents a brief history of the
traditional and computational use of pens but only briefly mentions
sketching. Ward has compiled an online annotated bibliography of pen
computing references that spans most of the 20th century [176].

1.1 A Brief History of Pen and Sketching Systems

Sketchpad was the first to demonstrate many techniques in computer
science, human–computer interaction, and computational design [161].
It was an interactive design system allowing an engineer to create
models by drawing with a light pen on a graphical display. The user
could apply constraints (such as “make this line parallel to that line
and maintain that relation”) that relieved the burden of manually
maintaining such relations. Figure 1.1 shows the user defining the
shape of a rivet through a combination of drawing and constraint
specification.

1.1 A Brief History of Pen and Sketching Systems 5

RAND’s GRAIL system (GRAphical Input Language) interpreted
stylus input in a particular visual programming language for creat-
ing control sequence flowcharts [39]. GRAIL allowed users to quickly
specify these programs graphically, rather than textually. To provide
input, users drew or wrote freely on a digitizing tablet. GRAIL then
attempted recognition using domain and contextual information to
determine what the input meant (see Figures 1.2 and 1.3). The user
could add semantically meaningful model data (boxes, arrows, writing)
and issue commands (erase a line, move a box, change the data type
of a node) without explicitly entering a mode.

Fig. 1.1 Sketchpad supported users in creating design drawings using pen input (right hand)
and constraints (specified by buttons aligned vertically at left).

Fig. 1.2 On left, a GRAIL user draws a model element in place. At right, the rectified
element is displayed as a box.

6 Introduction

Fig. 1.3 GRAIL’s sketch interpretation is context sensitive. At left the user crosses out the
connector, which is interpreted as a delete command, shown at right.

Alan Kay discussed Sketchpad and GRAIL in a 1986 lecture. A
portion of that talk is available on the Internet as part of the New
Media Reader [83, 177]. Kay shows the video of these pioneering
systems and provides insightful commentary, reminding viewers that
much of the work in computer support for sketching has roots from
several decades ago.

There was no widely used pointing device until the Macintosh
brought about the mouse’s widespread adoption in the mid 1980s.
Owing to the success of the mouse, pen and sketch-based interaction
was largely ignored for years. This began to change when commercial
pen computing products came to market in the early 1990s, bolstered
by the prospect of interaction based on handwriting recognition.
Companies such as GO and GRiD developed and sold pen-based
tablet devices. IBM’s early ThinkPad computers (700T and 710T) were
tablets. Yet these products fared poorly, and by 1995 many pen com-
puting ventures had gone out of business. Pen computing did find a
niche in the personal digital assistant (PDA) market with devices such
as the Apple Newton and subsequently the more popular Palm Pilot.
However, today’s PDAs typically favor on-screen keyboards over sty-
lus input. Tablet PCs are currently gaining popularity, primarily for
making hand-written notes.

1.2 Sketching Challenges in HCI

The strength of sketching input lies in the speed and fluidity with which
people can express, interpret, and modify shapes and relationships

1.3 Research Themes in Sketch-Based Interaction 7

among drawn elements without necessarily attending to details such
as alignment or precise measurement. These strengths can also be seen
as the weaknesses of sketching. The equivocal, imprecise nature of free-
hand drawing that so benefits humans is exactly why machines have
difficulty recognizing sketches.

Those who aim to create useful and usable systems based on sketch
recognition face a set of challenges including:

• Make hardware to support pen-based interaction.
• Build comprehensive, robus toolkits for building sketch-based

systems.
• Create robust sketch recognition algorithms.
• Develop user friendly methods for training and modeling rec-

ognizable content.
• Design better interaction techniques for sketch-based

systems.

This review elaborates on each of these challenges. Progress in one
area will likely require simultaneous work in others. For example, in
order to fully explore interaction design issues in recognition-based
interfaces, we first need sufficiently robust and accurate sketch rec-
ognizers. In order to build recognizers capable of interpreting sketches
made by any person in any domain we must have methods for mod-
eling domain content. This in turn requires appropriate hardware and
interaction methods.

1.3 Research Themes in Sketch-Based Interaction

This review details the primary themes of research shown in Figure 1.4:
support for design, hardware, sketch recognition, and human–computer
interaction techniques.

Traditional sketching : (Section 2) Sketching plays a crucial role in
the practice of design. Sketching helps designers think about problems
and offers an inexpensive but effective way to communicate ideas to
others. The practice of sketching is nearly ubiquitous: One recent study
of interaction designers and HCI practitioners found that 97% of those
surveyed began projects by sketching [116]. We must understand the
purpose and practice of sketching as it is done without computation if

8 Introduction

Traditional
Sketching

Recognition

HCI

Hardware

Display
Technology

Sensing
Technology

3D Input Enhanced
Pens

Multi-touch,
multi-user

Interface
Widgets

Design
Heuristics

Interaction
Idioms

How to
recognize

Feature-
based

analysis

Image-
based

analysis

Higher-
order

reasoning

Describe
what to

recognize

Drawn
example(s)

Textual
description

Idea
exploration

Prototyping
and

Fabrication
Ergonomics

Support Visual
Thinking

Fig. 1.4 Research themes for sketch-based interaction in design.

we hope to effectively support it with computation. Most research in
computational support for design sketching has focused on the early
phases when designers are exploring high-level ideas. Fewer sketch-
based design systems support later stages of design when decisions must
be formalized. This section provides a basis for thinking about how,
why, and when (and when not) we may augment sketching with com-
putation. This discussion covers the cognitive affordances of sketches
and describes several empirical studies.

Hardware: (Section 3) Physical devices supporting pen-based input
have existed since RAND’s digitizing tablet was developed in the
1950s. Sensing technology (input) comes in many forms. Sutherland’s
Sketchpad system in the early 1960s accepted input from a light
pen [161]. Some devices promote using fingers rather than pens, trading
accuracy for convenience. Pen-based devices range in size from small
(such as PDAs or “pentop computers”) to medium (Tablet PCs) to
large (electronic whiteboards). Other hardware considered by sketch-
ing researchers includes electronic paper and ink. The device’s size and
means for providing input dictate how and where it may be used,
and how mobile it is. New kinds of devices will lead to new ways of
interaction.

Sketch recognition: (Section 4) Recognition is central to many
research systems in sketching. For this reason, a large portion of this

1.3 Research Themes in Sketch-Based Interaction 9

review is allocated to discussing sketch recognition. Some drawn marks
indicate domain elements, others should be taken as commands, while
others are annotations. As with other recognition-based modes of inter-
action such as speech, sketch-based systems must have a model of
what is to be recognized, as well as algorithms for performing that
recognition. Some recognition techniques rely on input features such
as corners, lines, and pen speed. Other techniques compare the image
formed by user input with known elements. Still other techniques use
artificial intelligence methods such as Bayesian Networks for reasoning
about likely sketch interpretations. To recognize input the system must
first have a model of what may be recognized. Models are frequently
made by drawing examples. Other useful modeling strategies involve
textual languages describing the shape and relationships among visual
elements.

Human–computer interaction: (Section 5) User interfaces based on
recognizing human speech, gestures, and sketching pose interesting
challenges for researchers in human–computer interaction. New sketch-
ing input hardware, for example, may promote new interaction styles
or allow people to interact with computers in new contexts, or collabo-
rate in new ways. Because sketch input may be ambiguous, the interface
should not necessarily treat it in the discrete, deterministic way that
mouse and keyboard input is treated. Further, resolving ambiguity may
be delegated to the user, which requires good interaction design.

2
Traditional Sketching

Sketching is the traditional method for early-phase design when both
problems and solutions are unclear. Whereas some might view design as
a process that begins with a fixed problem definition and progresses by
optimization within constraints to refine the problem solution, to oth-
ers, the practice of design is as much a matter of defining the problem
as solving it.

Sketching enables people to work with abstract and uncertain ele-
ments, interpreting and re-interpreting marks on the page that may be
ambiguous or hold alternative contending semantics. Sketched figures,
pictures, and maps help people to focus their thoughts or to explain
ideas to others [36].

We talk about different kinds of renderings: artistic sketches,
study sketches, drawings, diagrams, schematics, blueprints, and so on.
Although the boundaries are not always clear, each is characterized by
the means of production, the kind of information it communicates, and
the role it plays in problem-solving.

Sketches support quick, informal information processing. We may
write a phone number on the whiteboard near our desk rather than
typing. Or, we may choose to make quick calculations or “To-Do” lists

10

2.1 Sketching in Design 11

(a) Project management diagram showing
task precedence of two projects. Hastily
drawn boxes and arrows represent
abstract activities.

(b) An architect’s floor plan sketch. It
includes text, spatial information, and
symbols representing household items
like a piano or dining table.

Fig. 2.1 Sketches vary in domain and in the visual characteristics of marks.

on a sheet of paper because they are portable and easy to make. In
his book How to Solve It, George Polya recommends drawing figures
to help understand and solve problems in mathematics [134]. Sketches
help us to visualize and restructure problems to make solutions more
readily apparent. For example, the drawings in Figure 2.1 were made
by practitioners in different domains. Each depiction helps designers to
think about problems or possible solutions.

There is still a gap between what we know about how and why
people sketch and what kinds of things we can do to support it com-
putationally. To provide a basis for discussing computational support
we first survey the design and cognitive aspects of traditional sketching
done with physical media.

2.1 Sketching in Design

While designing, we iteratively explore and refine the problem defi-
nition and proposed solutions. Sketching supports this creative search
process. We set out on our design task with some high-level goals. How-
ever, due to the ill-structured [157] and “wicked” nature of design [137],

12 Traditional Sketching

we encounter unforeseen opportunities and constraints as designing
progresses. Those opportunities and constraints may be implicit in
the original problem description, but designers expose them as they
explore. The discoveries are incorporated into the understanding of the
problem and potential solutions. Design problems are “not the sort of
problems or puzzles that provide all the necessary and sufficient infor-
mation for their solution [28].” So it goes with sketching. We draw
different views of our model, which allows us to perceive the problem
in new ways.

Designers engage in a sort of “conversation” with their sketches in
a tight cycle of drawing, understanding, and interpreting [148]. Gold-
schmidt describes this as switching between two reasoning modes: “see-
ing that” and “seeing as” [51]. Seeing that is the process of recognizing
the literal, descriptive properties of the drawing. Seeing as is figura-
tive and transformative, allowing the designer to re-interpret parts of
the sketch in different ways. For example, a designer may draw a sofa
and see that the wood constituting the back rest and the rear supports
come into contact. In this way, the designer can see how the two parts
could be redesigned as one. The designer may be able to extract more
information from the sketch than is consciously put into it [52].

Care must be taken to support this reflection when making design
software that employs sketch recognition. If the system interprets draw-
ings too aggressively or at the wrong time, it may prevent the human
designer from seeing alternative meanings; recognize too little and
the software is no better than paper. This is discussed further in
Sections 4.1 and 4.3.

Expertise plays a role in sketching as well. Design students begin to
sketch from the first day. Proficiency in sketching goes beyond applying
marks to the page — one must also interpret and re-interpret drawings
in order to use them effectively. Suwa and Tversky studied differences
between student and professional architects, finding that profession-
als had greater skill in transformative reasoning [162]. Buxton points
out the importance of recognizing the disparity between sketchers who
can expertly see as and see that, and those who can not [21, p. 118].
Trained designers skillfully examine the content from multiple perspec-
tives, extracting different interpretations.

2.2 Prototyping and Fidelity 13

Experimental and observational evidence suggest that people of
comparable skill use consistent methods when making drawings. This
consistency applies to the motor action of drawing [171] and to higher-
level semantic notation. For example, the type of an architectural draw-
ing (e.g. floor plan, elevation, bubble diagram) can be discerned by
identifying particular visual elements the designer employs [36, 121].

2.2 Prototyping and Fidelity

Newman and Landay conducted ethnographies of web designers, focus-
ing on the use of informal design techniques [122]. The designers
were observed making models in various media (such as on paper or
with a computer) at various levels of fidelity. Designers always sketch
at the beginning of a web design project, exploring numerous high-
level options. Frequently this early sketching phase is accompanied
with construction of low-fidelity prototypes made on paper or with
Microsoft PowerPointTM [12]. As the design progresses and designers
begin making incremental edits, they move to higher fidelity mod-
els. Client meetings are an important forcing function in web design
projects. When meeting with clients, designers want to show polished
prototypes produced with computer software. Therefore, designers used
electronic tools earlier in the process than they would otherwise have
preferred.

Today, most software tools support incremental refinement and
specification of details but do not adequately support idea generation
or exploration [163]. Designers who begin using software tools in the
early phases of design tend to make superficial explorations of possi-
ble solutions. Further, because tools are poor for exploration but good
for specifying details (font, line weight, and color), designers tend to
focus on nuances that are not yet important. Observing that current
tools are inadequate for creative pursuits, researchers have developed
calligraphic tools such as SILK and DENIM, which aim to support the
early phases of design [92, 99].

Paper sketches dominate the early phases of design as people gen-
erate new ideas, in a process Goel terms “lateral transformations” [50].
But as soon as the web designer believes he or she will make incremental

14 Traditional Sketching

revisions (which Goel calls “vertical transformations”) they switch to
a computer tool.

It is not always best to use high-fidelity models for testing designs.
Walker and Takayama observed web site developers performing usabil-
ity tests of ongoing interface designs. They found that high-fidelity,
computer-based models are not significantly better than low-fidelity,
paper-based models when testing design ideas [174]. This finding sup-
ports the conventional wisdom that inexpensive and quickly made low-
fidelity prototypes are appropriate in iterative design, building, and
testing.

2.3 Sketches as a Symbol System

Goodman provides a comprehensive framework for analyzing the prop-
erties of various symbol systems, including sketches [53]. Goel places
sketching in Goodman’s framework, noting that sketches have over-
loaded semantics, they are ambiguous, dense, and replete [50]. These
properties describe one particular sense of sketching in which the
drawer’s marks may be idiosyncratic.

Sketches have “overloaded semantics”: The same symbol may mean
different things depending on context. Further, a sketched symbol may
be “ambiguous,” meaning that the symbol affords more than one plau-
sible interpretation. Figure 2.2 illustrates these properties. A lumpy
shape can be used to indicate many things including clouds, trees,

(a) Overloaded
semantics: The cloud and
tree have similar shapes
but different meanings
due to context.

(b) Ambiguity: Changing
the drawing slightly
changes our interpretation.
The object on the left may
be a cloud, or it may be a
cartoon thought bubble.

(c) Additional information
helps us reason about the
intended identity of
elements. Text inside the
cloud indicates it is a
cartoon thought bubble.

Fig. 2.2 Overloaded semantics and ambiguity.

2.3 Sketches as a Symbol System 15

or thought bubbles. We interpret the shape differently depending on
context.

Sketched symbols are “dense,” indicating there is a continuous range
between instances of the same symbol. While there may be minute
visual discrepancies between symbol instances, Goel claims that such
symbols are also “replete”: no aspect of the sketched symbol may be
safely ignored (Figure 2.3).

The pen strokes constituting a sketch serve various functions. Ink
may indicate abstract domain symbols (e.g. diode, treble clef), object
boundaries, actions (e.g. arrows indicating containment or movement),
dimensions and units, annotations, region texturing, and so on. Some
parts of a sketch are more dense and replete than others. For example,
a diode’s properties do not change if it is drawn with a slightly larger
triangle. However, subtle variations in how a desk lamp is drawn might
lead to substantially different aesthetic responses to it.

Gross and Do discuss some properties of hand-drawn diagrams from
the perspective of building tools to support design drawing activi-
ties [59]. The authors distinguish sketches from diagrams, noting that
diagrams are “composed of primitive elements chosen from a small uni-
verse of simple symbols — boxes, circles, blobs, lines, arrows.” This list
is certainly not exhaustive, but it does illustrate the general idea that
diagrams have a limited vocabulary. In practice, sketches and diagrams
from various dialects may be combined (e.g. mathematical notation on
the same page as circuit diagrams and hand written notes).

Freehand diagrammatic drawings are abstract, ambiguous, and
imprecise. Abstract symbols denote elements whose identities or
properties are not (yet) important or known. For example, Figure 2.1(a)
shows a project management diagram of two hypothetical projects. The

Fig. 2.3 Different instances of the same stick figure vary along a continuum (dense). How-
ever, the visual properties of individual symbols may (or may not) communicate additional
information (replete). Is the figure at the right waving?

16 Traditional Sketching

activities composing each project are abstract — they could represent
anything. The value of the sketch is that it shows the project’s network
topology and does not draw attention to what the specific activities are.

An ambiguous symbol has many plausible interpretations. The floor
plan sketch in Figure 2.1(b) shows several rectangles indicating rooms,
furniture, shelves, or counters. Human observers can confidently dis-
ambiguate the intended meaning of some rectangles, but others remain
unclear. The bottom-right of the sketch shows two armchairs and a
sofa with an ambiguous rectangle in the middle that could plausibly
represent either a rug or a coffee table.

Last, freehand diagrams are imprecise. Imprecision allows designers
to work with rough values (e.g. “about two meters wide”) and avoid
premature commitment. Imprecision also indicates that the design is
by no means final.

The notational properties of sketches make them powerful tools for
supporting visual thinking. Designers may leverage ambiguities in their
sketches to see new meanings, for example. However, these same prop-
erties present challenges for accurate software recognition.

The degree to which a drawing is ambiguous, imprecise, and
abstract varies among instances, and people might interpret them dif-
ferently. A rough sketch is useful to designers, especially for brain-
storming and incremental development of ideas. But in order for the
sketch to be transformed into a finished product (e.g. for manufactur-
ing), it must be made unequivocal, precise, and concrete. The process
of moving from the informal sketch to the formal specification involves
drawings that are semi-ambiguous, partially precise, and with some
abstractions given definite identities.

2.4 Cognitive and Mechanical Aspects of Drawing

Larkin and Simon compared diagrammatic notation with sentential
(written or spoken) systems, suggesting that spatial notation often
affords more efficient information processing than an equivalent written
statement [93]. Efficiency of information processing refers to how much
computation is necessary to translate input into understanding. For
example, we may state the relationship between supply and demand in

2.4 Cognitive and Mechanical Aspects of Drawing 17

P = 0.8 Q + 5

P = -1.5 Q + 30 0 5 10 15 20

5

10

15

20

25

30

(a) Written (sentential) form. (b) Graphic (diagrammatic) form.

Fig. 2.4 Sentential and diagrammatic representations of supply and demand provide equiv-
alent information.

a market economy with a mathematical (sentential) description as in
Figure 2.4(a). Market equilibrium is found where the values of supply
and demand intersect. In a sentential representation, we must calcu-
late to find equilibrium. However, given a graph (diagrammatic) as in
Figure 2.4(b), we directly see where the supply and demand curves
intersect and immediately read the associated values. Even though the
representations provide equivalent information, the diagrammatic form
can be more efficient, depending on the viewer’s goals.

When people sketch, they “incorporate relevant information and
omit the irrelevant” [168]. Drawing allows people to use paper as
external storage, reducing and augmenting cognitive load. Diagram-
matic notation schematizes domain information [170]. Hand-drawn
route maps, for example, are usually made with a simple visual vocab-
ulary consisting of rectangles or circles indicating buildings, lines or
arcs representing paths, and junctions where paths intersect [169]. The
shape and curvature of buildings and paths is drawn approximately.
Given a well-drawn map, humans have little trouble reconciling differ-
ences between the map and the physical world it represents.

Spatial representations offer a powerful means for learning in many
domains. Sketching allows learners to represent concepts as they
understand them, and allows more experienced people to spot incon-
sistencies or areas where additional learning is needed [42].

18 Traditional Sketching

Van Sommers extensively studied how people draw [171]. This
includes the mechanics of using one’s arm, wrist, hand, and fingers
when drawing. His research examines the effects of culture, handed-
ness, and expertise on how drawings are made. He found that of the
many possible ways of making a drawing, subjects tended to use con-
sistent strategies. For example, subjects were asked to trace over short
lines scattered about a large sheet of paper. The lines did not overlap
and represented the full range of rotations. Right-handed drawers had
a strong tendency to draw from left to right and top to bottom. Left-
handers also showed the tendency to draw top to bottom but showed
a slight preference toward drawing right to left.

Sezgin gives a compelling example of consistent stroke order-
ing [151]. Participants were asked to draw common objects such as
the stick figure shown in Figure 2.5 thirty or more times. This stick
figure has six components: the head, a torso, two arms, two legs. The
lines can be drawn in 720 distinct sequences (6! = 720). However, par-
ticipants used only about five of those component orderings to draw
the figure. Further, each participant showed a strong individual bias to
draw the symbol using the same sequence (e.g. head, torso, legs, and
finally the arms).

A drawer’s preferred direction of making strokes depends on the
semantics of whatever is being drawn. Van Sommers shows that
although people will choose to draw arbitrary lines according to a
preference (largely determined by handedness), people will deviate from

Fig. 2.5 A stick figure with six components can be drawn in any one of 720 possible orders,
but only about five are used in practice [151]. Two of those orders are shown in this sketching
style diagram.

2.4 Cognitive and Mechanical Aspects of Drawing 19

those preferences when drawing things that hold meaning. Participants
were asked to draw common things, including a rake and cigarette
smoke. We know from experience that a rake is held at the top with
the rake’s fingers contacting the ground. Cigarette smoke rises. Van
Sommers’ participants generally drew the rake from top to bottom, but
the smoke from bottom to top. He posits this is because our knowledge
of an object’s properties informs the way we draw it.

Stroke ordering can also be affected by perceptual properties of a
drawing, even if the drawing’s meaning is not clear. Van Sommers asked
experiment participants to trace over the picture in Figure 2.6. Each
“grape” in a cluster has a boundary. The number represents the mean
position in the drawing sequence. The grape “on top” is usually drawn
first, with neighboring grapes drawn next.

Van Sommers uses the term anchoring to explain the sequence that
some strokes are made. Anchoring is an example of a control strategy
for making marks. The grape “on top” serves as a convenient anchor for
drawing its neighbors. It is easier to control the start and end locations
of a mark if there is already something to attach it to. Another control
strategy for making marks is containment. In depictions with a struc-
ture enclosing something else (such as a bowl of fruit), the container is

Fig. 2.6 “Grape Clusters” drawn by right-handed participants in van Sommers’ study show-
ing the mean position in the drawing sequence.

20 Traditional Sketching

typically drawn first. Anchoring and containment may be useful control
strategies for improving sketch recognition efficiency.

Some researchers have noted the prominent place of sketching in
design and have studied sketching as a tool. A series of experiments
by Goel looked at the cognitive affordances of sketching [50]. These
studies compared traditional pencil-and-paper sketching with sketches
made with a computer drawing application. Participating designers
were asked to design an artifact using either a software paint pro-
gram or using pencil and paper. The software tool was modified to
only support structured input such as straight lines, rectangles, and
ellipses. He found that the structured notation system (computer appli-
cation) did not afford the same level of rapid exploration of design ideas
as using an unstructured system (pencil-and-paper freehand sketch-
ing). Sketching supports designers in easily trying many ideas, which
Goel calls lateral transformations. This is distinguished from vertical
transformations, characterized by refining ideas rather than exploring
new ones.

The transformation types identified by Goel correspond to the activ-
ities done at different stages of design described by Newman and
Landay [122]. Early in the design process designers are concerned with
idea generation and exploration (lateral transformations). Later on
designers make iterative revisions and refinement (vertical transforma-
tions). The goal of many computational sketching tools is to support
lateral transformations.

2.5 Summary: Traditional Sketching and Computation

If we hope to effectively support sketching with computation, we must
first understand the practical aspects of traditional sketching.

Sketching is an important — perhaps necessary — tool for doing
design. It gives us a way to quickly make provisional drawings, which
help us efficiently make sense of spatial, relational information. Sketches
let us make marks that are as vague or specific as we need. Because
sketched elements can easily be ambiguous, rough drawings afford dif-
ferent interpretations. We may therefore reflect on our sketches and
see new meaning in existing marks. People sketch in part because they

2.5 Summary: Traditional Sketching and Computation 21

do not know exactly what they are making — sketching facilitates
exploration.

Low-fidelity prototypes are especially important as tools to test
ideas during early design. This is because they are easy to make,
allowing designers to quickly expose problems before committing to
decisions. Sketching is a common method of creating such prototypes.

In order for computers to recognize sketches, we must develop tech-
niques to transform imprecisely made marks into discrete symbols.
However, some of the properties that make a sketch useful for a human
(overloaded semantics, ambiguous, imprecise, etc.) complicate the task
of computer recognition.

We can make use of consistencies in how people draw to inform
recognition. First, we observe that some kinds of sketches are made
using restricted visual vocabulary, e.g., diagrams of electronic circuits
or web page layouts. Second, consistencies in the mechanical act of
drawing (such as anchoring and containment) can be used to further
guide recognition. For example, recalling Figure 2.5 we know that peo-
ple are likely to use only a small number of ways to draw a stick figure
even though there are hundreds of possible stroke orderings. This can
help make recognition strategies more efficient by utilizing commonly
used patterns before less frequently used ones.

3
Hardware Support for Sketching

Today’s pen hardware is largely oriented toward reading and writing
text. However, when considering hardware support for design activities,
we may compare current computational hardware with the physical
artifacts designers use in practice. Designers can quickly draw on sheets
of paper, and flip through them easily. Or we might pin the papers next
to each other on a wall to compare and contrast ideas. The tip of the pen
instantly deposits as we draw exactly where we have made contact with
the page. We can use two hands to rotate the paper to a desired angle or
use secondary devices such as a straight edge in aid of careful drawing.

It would be simplistic to argue that computational support for
sketching should exactly mimic practices supported by physical media.
However, current hardware lacks the portability, responsiveness, and
feel of tools of traditional design practice. Commercial development
and research continue to improve hardware support in these categories.

Many devices such as PDAs, tablet-style computers, and wall-
size interactive screens feature some kind of pen (stylus) or touch
input. While pen-based systems have been available to researchers for
decades, only since the mid-1990s have systems become inexpensive
and common.

22

3.1 Computationally Enhanced Pens and Paper 23

Hardware for sketching can be separated into two groups: those that
support input only, and those that support input and output.

Some digitizing tablets afford input by letting people write or draw
with a stylus. These are not output devices — they do not display
the user’s marks. Sketches are also input by scanning drawings. For
example, PARC’s research system ScanScribe analyzes marks made
with everyday pen and paper to produce a computationally enhanced
version of the drawing [141]. It is common for a single device to provide
both input and output where the drawing surface is the same as the
display surface, as exemplified by Tablet PCs.

Here, we consider hardware that is appropriate for use in sketch-
based interactive systems. This hardware ranges from small (pen com-
puters, PDAs) to medium (tablets, desktop workstations) to large
(table top or whiteboard systems).

3.1 Computationally Enhanced Pens and Paper

We begin our discussion of sketching hardware with commercially avail-
able devices such as the Anoto Pen [7]. They are slightly larger than
ordinary pens, but small and light enough to use like any other pen.
They mark the paper with ink, letting users keep a paper record of
their use. Pen activity can be transmitted as it is used, or stored for
later use.

The Anoto Pen is used on special paper featuring a pattern of tiny
dots. Each sheet has a unique pattern. A small infrared camera moni-
tors a region near the pen’s tip. Firmware decodes the local pattern of
dots and determines where the user is marking.

Device producers have licensed Anoto’s technology and produced
their own pens, such as Logitech’s io2 or LeapFrog’s Fly pen. The Fly
recognizes a limited set of user actions and provides audio feedback
with a small speaker housed inside the pen. For example, the user can
draw a simple calculator on Anoto paper and then use it to perform
basic arithmetic. The pen speaks the calculations it makes.

Paper Augmented Digital Documents (PADD) are a class of “dig-
ital documents which one can manipulate either electronically or on
paper” [62]. It provides ways to bridge the gap between virtual and

24 Hardware Support for Sketching

physical paper. For example, ModelCraft enables users to manipulate
electronic 3D models using paper as the input device [158]. Paper-
Point allows control and annotation of PowerPoint presentations using
printed copies of slides [156]. West et al. describe their Anoto-based
MEMENTO system that elders use to create digital scrapbooks using
paper [178]. MEMENTO and PapierCraft and other augmented paper
technologies leverage the convivial, easy-to-use aspects of pen-and-
paper while enabling people to easily manipulate virtual artifacts.

Another enhanced ink pen device was the CrossPad, sold from 1998
to 2001 [30]. It allowed users to write on a traditional pad of paper using
an ink pen. The pen’s location was calculated by a receiver clamped
to the writing pad. Ink data could later be transferred to a PC, which
performed handwriting recognition.

3.2 Input Surfaces and Styluses

Many digitizing tablets sense pressure [109]. Designers often use heavier
lines to indicate object boundaries, and lighter lines to indicate subtle
(but potentially important) texturing, shading, or curvature. Devices
that sense pressure can allow designers to create thicker or darker lines
without changing drawing tool modes.

Pressure sensing has been implemented in a number of ways, for
example, two conductive layers with current flowing in orthogonal
directions. The layers do not touch and may be separated with a non-
conductive layer of fluid. When something (a pen, a finger) contacts the
upper surface, voltage changes are measured at layer edges. The con-
tact location is calculated by interpolation. Other touch surfaces sense
electrical properties of things contacting them — this is why a gloved
finger will not work on many laptop trackpads. WacomTM tablets and
similar inductive devices depend on a special stylus that resonates in
an electromagnetic field generated by the tablet surface. Still other
tablets detect acoustic [33] or optical disturbances for calculating input
position.

Some sensing surfaces report a single location of contact, but multi-
touch surfaces identify more than one input coordinate. Recent multi-
touch systems have become popular, including Han’s Frustrated Total

3.3 Distinction Between Pen and Mouse 25

Internal Reflection technique [65] and Microsoft’s Surface system [110].
MERL’s DiamondTouch is a multi-touch tabletop display that also sup-
ports multi-user interaction. DiamondTouch discerns individual users
based on different capacitance levels as the user completes a circuit
between the surface and a pad placed on their chair.

Input surfaces that are intended to be used with fingers or hands
offer different interaction experiences than pen-oriented drawing sur-
faces. For example, users may trace shapes with a single finger, use two
fingers to zoom in or out, or use whole-hand gestures for issuing other
commands. These interaction techniques may provide opportunities for
developing innovative sketching applications.

3.3 Distinction Between Pen and Mouse

Regardless of sensing technology, all these devices allow users to pro-
vide input in a way that is much closer to traditional writing than a
mouse allows. Although pen and mouse input share many properties
(both allow users to interact with 2D displays) they have several key
differences.

Mouse input affords motion sensing while pen input affords position
sensing [67]. In other words, while mice produce the relative change in
(x,y) locations, pens directly provide absolute (x,y) locations. Users
can configure tablets to report relative position, thereby behaving like
a mouse.

Form is also extremely important. A stylus affords people to use
the fine motor abilities of their fingers to control the tip of the pen,
whereas hand and forearm muscles dominate mouse usage. Fingers can
be used to move the mouse, but not with the same dexterity possible
with a pen. Depending on the type of work, a pen may be ergonomically
superior to a mouse, or the other way around.

Digitizing tablets can detect more than the stylus position. Some
devices sense stylus pressure, its angle relative to the tablet, or its
rotation. The nonwriting end of the stylus is sometimes used as an
alternate tool mode (e.g. as an eraser).

Some styluses have buttons. While buttons are an indispensable
part of a mouse, they are often difficult to use on the barrel of a

26 Hardware Support for Sketching

(a) Pressing a mouse button exerts force
perpendicular to the operating plane.

(b) Pressing a stylus button is likely to cause
accidental pen tip movement.

Fig. 3.1 The force required to press a mouse button compared with a stylus button.

pen [132]. The force of a mouse button click is orthogonal to the device’s
plane of use and has negligible effect on target accuracy. However, press-
ing buttons on a stylus can move the tip of the pen, making it difficult
to press the button while pointing at particular objects (see Figure 3.1).
Further, pressing a button on a computer stylus usually requires the
user to adjust the pen in hand. This action may be distracting and
uncomfortable for long term use.

3.4 Large Displays for Drawing

Groups of people often gather around traditional whiteboards to brain-
storm or exchange ideas. They draw pictures and diagrams, maintain
lists of text, and so on. Whiteboards are also effective for leaving asyn-
chronous messages in the physical workspace where co-workers can
see them. People sometimes photograph whiteboards or scan pages of
sketches in order to record works-in-progress.

Electronic whiteboards such as the SmartBoard or those produced
by PolyVision more readily afford interactive usage than ordinary
whiteboards. For example, collaborative systems such as Colab [160]
and Tivoli [131] support meetings as people maintain checklists or col-
laboratively draw. Systems can dynamically change their displays as
people interact with them, resizing or moving objects, or checking items
in a list [117]. Large displays let more people have simultaneous access
to the drawing surface, which presents challenges in sensing, and dis-
tinguishing between different users’ pens.

3.4 Large Displays for Drawing 27

Fig. 3.2 Lee’s portable projection approach enables detection of drawing surface size and
orientation as well as pen input. This is effective on flat surfaces as in (a) or curved surfaces
as in (b).

Large displays have historically lacked portability, requiring a good
deal of time to install and calibrate. However, Lee recently demon-
strated a portable approach for projecting images on large surfaces
such as walls or tables, shown in Figure 3.2 [95]. The projector emits
patterns of time-multiplexed visible and infrared light. The infrared
light is decoded by sensors, providing a host computer with fast and
accurate location detection. The system uses sensors embedded in the
display surface to calculate the surface size and orientation relative
to the projector. Sensors may also be embedded in objects such as
pens, enabling alternate methods of user input. Equipping a pen with
a focusing lens allows it to become a short-distance pointing device as
in Figure 3.2(b) [96, p. 62].

At least two methods for capturing marks on ordinary whiteboards
utilize physical ink-like markers. The first uses traditional markers
whose activity can be detected by nearby sensors or cameras as the
user works, such as the Mimio commercial system. Whiteboard markers
are placed in sleeves whose position is calculated by the system hard-
ware. Ju et al. used a Mimio in the WorkspaceNavigator [77]. PARC’s
ZombieBoard [112, 140] used the second method: scanning the white-
board optically using a still camera. The ZombieBoard enabled users to
interact with the computer by drawing special symbols. For example,
users could delimit a region of the whiteboard to be scanned by draw-
ing its boundary. To invoke the scan, the user would draw a button on
the region boundary and draw an X or check mark inside.

4
Sketch Recognition Techniques

Just as speech and gesture recognition gives us powerful new interaction
avenues, sketch recognition allows a different paradigm for interact-
ing with computers. This section summarizes strategies for performing
sketch recognition.

An important subset of sketch interpretation is handwriting and
character recognition, which is responsible for converting a person’s
handwriting into text. Microsoft’s Tablet PC API includes handwrit-
ing recognizers for several languages, as well as symbol and gesture
recognizers for notation systems such as music or mathematics. The
recognition supported by the Tablet PC and other commercial hand-
writing recognizers (e.g. Apple’s Inkwell [10]) is more closely aligned
with what Larkin and Simon refer to as “sentential” [93], as user input
is expected to proceed in a linear, serial fashion. This contrasts with
“diagrammatic” representations that are expressed over a 2D plane.

Modern pen-based computer systems like PDAs or Tablet PCs have
handwriting recognition software that has usable accuracy rates. Recog-
nition accuracy is typically measured by the deviation between what
the user intended and the machine’s interpretation. Error tolerance
refers to the recognition inaccuracy rate a user is willing to accept.

28

29

One study involving a modified typewriter found that typists do not
notice a word 0.5% error rate, 1% is manageable, but 2% is unaccept-
able [25, p. 79]. It is unclear if there are similar accuracy thresholds
for sketching, though studies have been conducted for related recog-
nition tasks. For handwriting recognition, adults find 3% minimally
acceptable, with 1% considered “very good” [91]. The acceptable accu-
racy level depends a great deal on the expected benefit of the task.
Users will accept 20% error rates if the tool brings greater productivity,
but are intolerant of errors1 when the perceived benefit is smaller [44].
Another study examining user acceptance of hand gesture recognition
error rates found users would tolerate mis-recognition up to 10% when
equivalent keyboard commands could be employed [81].

There are a number of methods for improving recognition. Many
PDAs recognize characters from a constrained symbols set (Latin
letters, Arabic numerals), using different areas of the input surface
for drawing numbers and letters. This approach is not natural, but
many users quickly learn the alternate way of writing. In contrast,
Microsoft’s Tablet PC handwriting recognizer allows people to write
in their own handwriting, at any location or angle. Microsoft’s recog-
nizer incorporates a language model (e.g. spelling, grammar) to guide
interpretation.

Recognition is the centerpiece of many software prototypes that
support sketching. Although the research focus of many systems is not
recognition, such systems use automatic interpretation of sketches to
explore new methods of interacting with computers and new ways of
designing [60, 61, 99]. Such projects rely on reasonably accurate recog-
nizers. Recognition is therefore a topic that affects nearly all aspects of
research on sketch-based systems. For this reason, a substantial portion
of this review is devoted to aspects of sketch recognition. This includes
timing issues, determining what to recognize and how those elements
can be recognized, and interaction issues (see Table 4.1).

1 It is unclear if the values described in these articles measure character or word recognition
error rates. Santos et al. describe handwriting recognition error rates of approximately 10%
in terms of characters [139].

30 Sketch Recognition Techniques

Table 4.1 Topics in sketch recognition.

Topic Section Remark
When to recognize 4.1 Recognition is powerful but may also distract users

from their task.
What to recognize 4.2 Sketches may represent objects (e.g. tables and

chairs) and spatial or functional relationships
between those objects (e.g. chairs positioned
around table perimeter).

How much to
recognize

4.3 Sometimes only a portion of a sketch need be
recognized.

How to segment 4.4 Sketches contain many different symbols that may
overlap. Recognizers must isolate groups of marks
for consideration.

How to recognize 4.5, 4.6, 4.7 Many recognition techniques exist, and are reliant
on segmentation methods.

Training
recognizers

4.8 In order to recognize something we first need a
concept of whatever is to be recognized.

Managing
recognition error

5.1 Recognition sometimes results in inaccurate,
ambiguous, or undesired results.

Reacting to
recognition

5.2 Upon recognition the system must determine how to
respond: provide visual feedback, issue a search
query, or take no outward action.

Toolkits for
recognition

5.3 Software packages facilitate easier engineering of
new recognition systems.

4.1 When to Invoke Recognition

It is important that sketching systems aid design exploration and not
simply computerize it [120]. For example, a sketch recognition system
might zealously identify parts of the user’s drawing as it is made, replac-
ing the rough sketch with lines or curves. This removes the opportunity
for reflection and re-interpretation that is so important to the early
phases of design [51, 147, 163]. Premature recognition may interrupt
the designer’s flow of thought and interfere with the task at hand.
Instead we may want the computer to eavesdrop silently, and provide
help only when we need it.

A system can provide the user feedback of sketch recognition on dif-
ferent occasions: (1) immediately after receiving a single stroke of input,
(2) as the user works, when feedback may be appropriate, (3) only upon
request, or (4) never. Many interfaces attempt immediate recognition
of gestures for invoking commands, such as with marking menus [87]
or PDA device character input [127]. This is commonly called eager

4.2 What Should be Recognized 31

recognition [20]. Other systems [4, 59, 72] perform recognition in the
background, deferring judgment until adequate information is avail-
able. This is termed lazy recognition. Most modern research prototypes
take this approach. Last, some systems wait until the user explicitly
requests recognition [92], or avoid recognition entirely [43]. Combina-
tions of these approaches are common.

One method for identifying sketch input is to sidestep the recogni-
tion process altogether and tell the system what you are about to draw
by choosing from a list or pressing a button. Forbus and colleagues
take this approach as they “engineer around the need for recognition”
in their nuSketch Battlespace system (nSB) for managing courses of
action for military commanders [43]. In order to position an object
such as an armored unit or a movement path, the nSB user selects
an item from a palette of glyphs and draws on the map. The system
interprets the user’s ink differently depending on which type of object
is selected. For example when placing military units, the ink’s centroid
is taken as the intended location; when defining a region for those units
to defend, the boundary is used.

4.2 What Should be Recognized

User input in sketch-based applications may be provided in two broad
categories. The first category, often referred to as digital ink, includes
stroke timing information. Time data might be used by sketching appli-
cations to determine how quickly the user was drawing, or when strokes
were made relative to one another. Many recognition algorithms depend
on the presence of time information. The second category describes user
input for which time data is unavailable. This category of sketch input
is used by applications that depend on scanned or photographed input.
Section 4.5 describes the differences between these two categories of
sketch input from the recognizer’s perspective.

Different kinds of design drawings (“model ink”) in many domains
might be recognized: artistic sketches, study sketches, drawings, dia-
grams, schematics, blueprints, and so on. In addition to model ink
comprising those drawing types, user input may be interpreted as a
command (“command ink”). The particular rules about what should be

32 Sketch Recognition Techniques

recognized depends on the domain (architecture or circuit design), kind
of model (floor plan or timing diagram), and other application-specific
requirements. Sketches often contain hand-written labels or annota-
tions, which are common targets of pen-based recognition.

Diagrams usually have a domain-specific grammar describing how
vocabulary items relate [90]. For example, boxes may connect to other
boxes via lines, those lines may have arrowheads to indicate direc-
tion. Diagrams are good candidates for recognition because the various
elements and their relations can be described formally. Table 4.2
summarizes various recognizable classes.

Artistic sketches and those drawings meant to authentically con-
vey three dimensional form comprise a different recognition challenge.
Nealen et al. (who are concerned with modeling 3D form) suggest
that “sketching a shape is inverse NPR (NonPhotorealistic Render-
ing)” [119]. Drawings indicating physical form are not symbolic in the
way diagrams are, and not all drawings of 3D objects are necessarily
meant to capture literal shape. For example, many consumer products

Table 4.2 Kinds of elements to be recognized.

“What” to recognize Examples Remark
Genre Mathematical graph,

architectural floor
plan, web site layout,
circuit design.

It may be sufficient to recognize a
sketch is of a certain kind without
asking the user. The program
could assume the sketch is in a
certain domain.

Characters (writing) Alphanumerics, math
symbols.

Usually with other characters, in
words and sentences.

Geometric shapes Dots, lines, rectangles,
blobs.

Geometric shapes are often drawn in
relation to others.

Spatial features A is contained in, is
above, is larger than B.

Spatial relations among elements
may influence recognition.

Entities Domain-specific notation
such as diodes,
transistors.

Contextual clues can help
disambiguate semantics of domain
symbols.

Artistic nuance Shadows, textures, color. Ink that modifies an existing
element, perhaps suggesting 3D
shape.

Commands Object selection, delete,
copy, move, etc.

Command ink specifies operations on
the drawing.

Intention Drawing’s function or
behavior, e.g. circuit
breaker.

Requires detailed domain knowledge
and reasoning.

4.3 How Much Recognition is Appropriate 33

Fig. 4.1 A sketched circuit breaker [159].

come with assembly instructions featuring simplified diagrams of 3D
objects to draw attention to only those features and relationships rel-
evant for assembly.

Perhaps the most useful aspect of a sketch is the intention it cap-
tures. The circuit breaker shown in Figure 4.1 probably would not
work correctly if it were manufactured exactly as shown, yet the intent
of the drawing is clear to a person familiar with such engineering
sketches [159].

4.3 How Much Recognition is Appropriate

The nuSketch Battlespace system shows that a sketch-based system
need not support recognition at all [43]. It aims to enable users to
quickly work with spatial data and issue commands that operate on
that data. To support this goal, nSB only utilizes some properties of
the user’s ink. For example, the boundary or center of the ink may be
important, but the system need not recognize the ink as a particular
symbol.

Designers often create paper “storyboards” for showing high-level
structure or expected behavior without needing to specify details.
DENIM (for web site designers) and DEMAIS (for multimedia design-
ers) allow users to create such storyboards [16, 99]. Both these systems
recognize a limited subset of the user’s sketch input. Ink that is not
interpreted as belonging to a special set of gestures or symbols is simply

34 Sketch Recognition Techniques

left on the canvas. This allows designers to capture ideas by sketching
naturally without being interrupted by unwanted feedback.

4.4 Segmentation and Grouping

Segmentation and Grouping are related processes of breaking down
user input and finding related ink. Segmentation involves partitioning
undifferentiated sketch input into parts (analogous to identifying word
boundaries in speech recognition [25]). Grouping is the process of form-
ing logical collections of data (analogous to determining which spoken
words compose a sentence).

It is sometimes appropriate to break apart continuous pen strokes
into multiple segments, for example in recognizing cursive writing,
or finding corners in continuous pen strokes. Alternately, it may be
necessary to group related strokes in order to recognize compound
objects such as a triangle drawn with three distinct strokes. To fur-
ther complicate matters, there may be a number of reasonable ways
to segment user input [104], based on information such as pen speed,
stroke order, perceptual qualities, domain knowledge or curvature [84].
Multi-modal systems may be able to use additional information such
as a user’s speech or pointing gestures to help segment and recognize
sketches [8, 126]. Which segmentation technique is appropriate depends
on what kind of sketch input the application expects. The technical
challenge is simplified if the system requires users to complete each
symbol before moving on to another, or if each symbol must be drawn
using a conventional stroke order. However, such requirements work
against the goal of supporting unconstrained, fluid sketching.

The following describes three strategies for segmenting and grouping
continuous input strokes. They include the use of temporal data, per-
ceptual organization, and delimiter-based approaches.

4.4.1 Temporal Segmentation Techniques

A common and effective method for segmenting ink is to use time.
Temporal data comes in (at least) three flavors. First, we may look at
the order strokes are made. For example, the letter t is usually drawn
with the vertical stroke followed by the horizontal crossing. Second,

4.4 Segmentation and Grouping 35

timing information for individual (x,y) points tells us how fast the
user was drawing at any given location, which helps identify corners.
Last, a significant delay between individual strokes may be interpreted
as a delimiter between elements, just as a pause in speech may indicate
two distinct sentences.

Even for simple sketches there may be a very large number of possi-
ble ways to segment ink. We can use stroke ordering to reduce compu-
tational complexity of grouping and recognition [152]. Sezgin notes that
common depictions (like stick figures) tend to be drawn using one of a
small set of stroke orderings. However, it is also common for people to
begin drawing one recognizable entity X, move to another, and return
to complete X later on. For example, many people cross their t’ s and
dot their i’ s after writing all letters of a word. In Sezgin’s terms, the
user’s marks are interspersed.

Another use of time for grouping ink looks at the velocity of the
stylus as the user moves it, to identify locations of interest such as
corners [31, 150], or places where the drawer may be taking extra care
to be precise.

A series of strokes with short intervals may constitute a recognizable
entity. For example, people may draw a compound entity like a televi-
sion as a square enclosing a circle with a V -shaped antenna along the
top. People tend to draw the three parts right after one another, and
then pause to think about what to do next. A significant pause between
pen activity might delimit objects. Such timeout-based approaches are
easy to implement but some users find it imposes an unnatural feel to
the application [40, 182].

4.4.2 Perceptual Organization

Spatial data can also help with ink grouping. A simple location-based
approach forms groups based on ink proximity: if stroke A overlaps or
comes close to overlapping stroke B, group them together. However,
this strategy breaks down if distinct entities overlap.

Gestalt psychologists offer the laws of perceptual organization to
explain how people make sense of visual scenes. Humans perceive scenes
not only using what is shown but also with “invisible extensions as

36 Sketch Recognition Techniques

Fig. 4.2 Some principles of perceptual organization [78]. (a) Proximity: elements near one
another are seen as belonging to a group. (b) Similarity: objects sharing features such as
shape belong in the same group. (c) Symmetry: two shapes symmetric about horizontal and
vertical axes, suggesting they belong together. (d) Continuation: the simplest explanation
is two straight lines, not four lines meeting in the middle. (e) Closure: a large circle emerges
from an arrangement of smaller circles.

genuine parts of the visible” [11]. The rules of perceptual organiza-
tion include proximity, similarity, closure, continuation, and common
fate [78] (see Figure 4.2).

Perceptual organization supports grouping at many levels. At a
low-level, we can use perceptual rules to analyze the relationship
among individual ink strokes to find plausible groupings for recogni-
tion. Mahoney and Fromherz show how perceptual organization rules
can reduce the number of plausible stroke groupings into a ranked list
of groups, which helps improve recognizer efficiency [103]. For example,
an object may be drawn on top of background elements, as illustrated
by the stick figure and horizon from Figure 2.2. Because the horizon
has strong continuity from the left to the right of the stick figure, it
is plausible the two halves should be grouped. The marks forming the
stick figure are in close proximity, and share similar sizes, suggesting
they may form a logical whole.

4.4 Segmentation and Grouping 37

PerSketch and ScanScribe explore how perceptual organization rules
can be used on a number of levels [143, 144]. Drawings are analyzed in
a manner approximating Marr’s three-stage visual information process-
ing theory [106]. In the early phase, ink is broken into “elemental curve
fragments” called Prime objects (Primitive objects in ScanScribe). In
the middle stage, Prime objects are put into plausible groups using per-
ceptual organization rules. These groups are called Composite objects.
Composite objects may include Primes as well as other Composites. In
the last stage, domain rules are applied to combinations of Compos-
ite objects, identifying which combinations of composite objects are
reasonable according to the subject matter (e.g. chemical modeling or
electrical engineering).

Gennari et al. [48] propose a segmentation approach based on find-
ing dense areas of ink and areas where the perceptual qualities of the
ink changes. The Gennari system analyses input as the user draws,
calculating features such as ink density. This approach is designed to
work for node-and-edge diagrams whose symbols do not overlap.

4.4.3 Context-Aware Segmentation

Particular aspects of the domain’s graphical language may afford the
opportunity to use clever strategies for segmenting ink. This section
describes two methods for forming groups of marks by analyzing ink.

Kara and Stahovich’s SimuSketch is a sketch-based interface for
creating graphical node-and-edge network diagrams in the Simulink
application. Simulink supports users in simulating dynamic systems
with a visual programming approach wherein boxes (nodes) represent
functions or processes, and connectors (edges) represent inputs and
outputs. SimuSketch looks for markers in the input sequence — easily
identifiable symbols used to group other (nonmarker) ink. In particular,
SimuSketch looks for edges between nodes (see Figure 4.3).

Shilman’s work on parsing handwritten notes incorporates context
awareness for discerning the structure of a sketched document [154] (see
Figure 4.4). Shilman’s algorithm integrates two related tasks in docu-
ment analysis. The first challenge is to discern marks as either writing or
pictures. The second challenge is handwriting layout analysis-grouping

38 Sketch Recognition Techniques

Fig. 4.3 SimuSketch exemplifies delimiter-based, multi-phase parsing of sketches. The first
stage identifies arrows as delimiters. In the second stage, clusters of remaining ink are
recognized as domain symbols.

Fig. 4.4 Analysis of hand-written notes discern writing from drawings. Left: the original
electronic document. Right: the same document after handwriting has been recognized [154].

ink that has been identified as writing into compound entities such as
words, sentences, and paragraphs. By combining these two processes,
Shilman et al. can perform a limited feature-based recognition on ink
in order to test if it is text. The intuition is that “if you look at a
page of ink with squinted eyes or from a distance, you can distinguish
writing from drawing by its regular, linear structure.” This approach
uses features such as stroke length and curvature as well as information
derived from the spatial and temporal relationship between fragments
of ink. Marks are labeled as either “text” or “drawing” using these local
and global features with a decision tree classifier.

4.5 Overview of Recognition Techniques 39

4.5 Overview of Recognition Techniques

This section gives a brief overview of various approaches for performing
sketch recognition.

Regardless of the input device, we identify two broad categories of
sketch recognition: online and off-line. Online recognition is analogous
to your friend watching you sketch. Your friend may see how fast you
make a stroke, in which order you make marks, and perceive what you
say and how you gesture as you sketch. Interpretation happens as the
drawing is made. Off-line recognition is analogous to your friend seeing
your sketch for the first time after you have finished it. Recognition
happens after the drawing is complete, irrespective of the order or speed
strokes were made. While off-line recognizers only have access to the
finished drawing, online recognizers potentially have access to data such
as pen pressure, time, speech, and gesturing.

Pen input is generally captured as a sequence of time-ordered 2D
coordinates. Other data such as pressure or (in a multi-user environ-
ment) user identity may be available depending on the input hardware.
A single sequence of ink captured while the stylus is touching the draw-
ing surface is commonly called a stroke.

Online recognition strategies are further divided into two categories:
single-stroke and multi-stroke recognizers. Single-stroke recognizers are
appropriate for tasks such as interpreting freehand gestures. Single-
stroke approaches are simpler to implement than multi-stroke strate-
gies because user input is clearly divided into pieces. This process
could be relatively simple: a multi-stroke recognizer might simply
expect multi-stroke objects to be drawn in a prescribed fashion.
Or, multi-stroke recognizers might be more complex, for example
hypothesizing which individual strokes (or segments of strokes) belong
together, using Markov models or Bayesian Networks to aid hypothesis
testing.

We need some way of representing the entities for recognition. By
“entity” we refer to classes that may be recognized: boxes, lines, chairs,
AND-gates, and so on (see also Table 4.2). The examples a recognition
system has learned are called classes, and user’s input are candidates.
Three methods of presenting classes are covered here: hard-coded,

40 Sketch Recognition Techniques

visual example, and textual description. Particular instances of these
methods are described later.

4.5.1 Hard-Coded Recognizers

One common approach is to hard-code recognition routines directly. For
simple or limited graphical vocabularies this may be appropriate. A cir-
cle (or a zero, or the letter “O,” or the sun, etc.) can be recognized with
a short program looking for input points that are roughly equidistant
from the stroke’s centroid. However, ad-hoc, hard-coded recognizers are
difficult to maintain and extend. For example, if we wish to extend our
circle recognizer to interpret a sun with rays of light coming out of it,
we would have to also recognize lines, then coordinate the recognizer to
consider those particular lines together with the circle, and ensure that
the lines are positioned and angled correctly. Further, sketch recogni-
tion applications must be able to discern different kinds of elements.
The recognizers for each of these elements may conflict. A new recog-
nizer may cause an existing recognizer to stop working correctly, leading
to maintenance, debugging, and testing problems.

4.5.2 Visual Matching

Another strategy for representing classes is to create a library of drawn
examples. Some techniques that use this approach are the Ledeen recog-
nizer [123], the Rubine recognizer [138], Quill (based on Rubine) [102],
Kara’s recognizer [80], and the $1 Recognizer [179]. The accuracy of
some of these approaches can be improved if multiple training examples
are provided. Other techniques require only a single training example.

Some of these approaches are feature-based. Such strategies compute
properties such as stroke length, stroke path, minimum or maximum
angle, or aspect ratio. A user’s candidate entity is compared with classes
using these features. An alternate approach is to treat visual examples
as graphical templates, where candidates and classes are compared using
some form of distance function.

User tests of recognition systems employing visual libraries com-
monly include 30 or fewer classes [80, p. 13]. For many applications
a database of that size is appropriate. It is unclear how large these

4.5 Overview of Recognition Techniques 41

database can be: on one hand, human users have limited ability to recall
how uncommon symbols must be drawn; on the other hand, recogni-
tion systems must search its (potentially extensive) library for matches.
The larger the database, the greater probability of matching multiple
classes, possibly leading to ambiguity.

Library-based recognition schemes differ in how quickly the algo-
rithm searches its class database. Quill and the Rubine Recognizer
compare user input to each symbol, while other strategies (such as
Kara’s recognizer) use efficient methods that exclude large portions of
the library before performing computationally intensive comparisons
on the remaining symbols. All of the methods discussed in the previous
paragraph provide interactive performance on the target hardware. For
example, the 1$ recognizer produced results within about one second
using a consumer-grade PDA from 2006 with 16 symbols in the recog-
nition library [179].

4.5.3 Textual Description

Classes may be described textually using a programming language [17,
26, 63, 128]. These notations have two primary strengths. First, humans
can read them. The television symbol described in Section 4.4.1 may
be described with natural language as “a square with a slightly smaller
circle positioned at its center.” A formal symbolic language for that
statement is still quite legible (assuming one understands the function
semantics):

(define television

(and (centered square circle)

(slightly-smaller circle square)))

Another strength of this kind of notation is that it allows the devel-
oper to describe entities at a level of abstraction that accommodates
variability between entity instances. An abstract triangle is a three-
sided, two-dimensional convex shape whose internal angles sum up to
180◦. A particular triangle may have side lengths of 3, 4, and 5, and
be oriented so that its long edge is horizontal. We may define triangles
and other entities as abstractly or concretely as the language allows.

42 Sketch Recognition Techniques

4.5.4 Managing Ambiguity

Futrelle’s classification scheme of types of ambiguity in diagrams
includes two high-level categories: lexical and structural ambiguity [45].
Lexical ambiguity refers to the “word” level, when the meaning of a
particular symbol is in question. Structural ambiguity refers to confu-
sion arising from the composition of symbols.

Shilman augments this scheme with two additional types of
ambiguity that arise in sketch recognition: label and attribute ambi-
guity [153]. Label ambiguity is present when the symbol’s identity is
unclear. For example, a quickly drawn rectangle might be interpreted
as a circle. Attribute ambiguity refers to the features of a sketched ele-
ment: the exact location of a quickly drawn rectangle’s corner may be
unclear.

Two sketching systems that focus on managing ambiguity at
different stages of user interaction are BURLAP and SketchREAD.
A technique built into BURLAP [104] addresses domain independent
ambiguity management at the GUI toolkit level, while SketchREAD [4]
offers a method for using domain knowledge to disambiguate domain
symbols.

BURLAP is a calligraphic application based on SILK [92] that
enables people to draw user interfaces. As the user draws, BURLAP
forms a list of plausible interpretations. At some point the system may
need to pick one interpretation. Mankoff et al. call this process media-
tion, performed by agents called mediators. Some mediators may engage
the user by displaying a pick-list of choices or visually indicating the
ambiguity. Other mediators automatically execute and do not involve
the user.

BURLAP exemplifies a framework for mediating ambiguity in
recognition-based interfaces called OOPS [105]. OOPS consists of a
library of error correction and ambiguity management techniques that
work with existing GUI toolkits at the input-event level.

Alvarado and Davis’s SketchREAD system demonstrates a tech-
nique for modeling recognition ambiguity [4]. The SketchREAD appli-
cation is a domain-independent sketching tool. It accepts a textual
description of classes to learn to recognize in a particular domain [63]

4.5 Overview of Recognition Techniques 43

(see Section 4.8). SketchREAD uses Bayesian Networks to reason about
the user’s input based on domain understanding [5].

Bayesian Networks also allow us to encode relations of compound
objects that can further influence the belief in a hypothesis. Alvarado
and Davis give an example from a circuit design application [4]. A
diode is depicted as a triangle with a line tangent to one of the corners
and parallel to the opposing triangle edge (see Figure 4.5). A person
typically draws a triangle first. The system calculates the probability
P (triangle) that the marks depict a triangle. In circuit diagrams, trian-
gles are strongly correlated with diodes, so at this point there is a partial
hypothesis that the person is drawing a diode. Next, when the diode’s
line is drawn the system calculates P (line). Because a diode consists of
a triangle and a line, the Bayesian Network tests the hypothesis that
the drawing is a diode by calculating the joint probability of the triangle
and line interpretations. Even if one of the two parts (triangle or line)
were drawn sloppily, the higher-level hypothesis diode can guide us to
a meaningful interpretation. If additional information is present (such
as connecting wires), additional belief values can be used to support or
reject the hypothesis that the drawing depicts a diode.

A nice property of this recognition strategy is that it supports effi-
cient re-interpretation on an ongoing basis as the user continues to
work. The system endeavors to make sense of each new input stroke,
making use of established interpretations and associated probabilities.
While näıve systems may exhaustively test all possible interpretation
hypotheses, SketchREAD’s hypothesis pruning enables the system to
test only the most likely interpretations. SketchREAD’s interpretation
speed scales roughly linearly with the number of strokes, compared to
the exponential runtime used by some other approaches.

Fig. 4.5 A diode is drawn as a triangle with an adjacent line.

44 Sketch Recognition Techniques

4.6 Pattern Recognizers

Various methods have been investigated for performing recognition
of sketch input. The methods covered have been known variously as
character recognizers, glyph recognizers, and pattern recognizers. They
operate on isolated strokes or segments of strokes and do not perform
higher-level reasoning based on domain semantics or context.

All these recognition approaches work using the same general strat-
egy, and although each has its own strengths and weaknesses, no single
one is best for everything. The general strategy has not changed since
the earliest online character recognition systems [56, 123]. The first
step is to learn a dictionary of classes. These serve as instances of the
elements the recognizer can handle. The recognition system converts
user input into candidates. The candidate is then compared to classes
in the dictionary, producing a similarity metric for each comparison.
Sketch-based applications can use higher-level methods to reason about
the most likely choice or choices. Alternately, the best match from the
low-level recognizer might be used.

While the recognition strategies described below share a high-level
strategy, they differ in how they represent candidates and classes and
how they are compared.

4.6.1 Ledeen Recognizer

The Ledeen character recognizer is efficient and easily trained [123].
User input is scaled to fit inside a three-by-three grid of nine cells.
Each stroke’s starting cell is noted, and each stroke’s path through the
grid is encoded. This approach accommodates multiple stroke input
but does not specify how multiple strokes should be grouped to be
considered together. Newman and Sproull suggest considering multiple
strokes together if less than half a second of latency separates strokes.

Some user input is not easily handled with this scheme. For example,
straight vertical or horizontal lines would require scaling one dimen-
sion significantly more than another, leading to an unreliable path
order. Dots also give this approach trouble. Problematic strokes like
dots and vertical or horizontal lines are recognized by special-case
algorithms instead of the 3×3 grid approach. GRAIL employed a

4.6 Pattern Recognizers 45

multi-stroke, context-sensitive recognition strategy very similar to the
Ledeen recognizer [56].

4.6.2 Rubine Recognizer

Rubine’s feature-based recognition approach was demonstrated by a
system called GRANDMA (Gesture Recognizers Automated in a Novel
Direct Manipulation Architecture). The features involve geometric
properties of single strokes such as start/end locations, total gesture
length, sine/cosine of initial angle, and so on. Each feature must be
calculable in constant time to ensure efficiency.

Some features are more effective than others for classifying a given
symbol. If a number of examples are provided (typically 15 or more
produce good results), the trainer uses linear discriminant analysis to
determine the most effective features for classifying a particular entity.

Rubine’s work was extended with a recognition system called gdt
(later renamed Quill) [102], and added several feature types such as
aspect ratio and curviness. Quill was incorporated into SATIN [69], a
toolkit for building sketch-based applications.

4.6.3 Kara’s Recognizer

A recognition technique developed by Kara and Stahovich [80] dif-
fers from stroke-oriented, feature-based approaches such as Rubine’s.
Instead, it compares the spatial distance between down-sampled bitmap
representations of symbols. Kara’s recognizer does not rely on geomet-
ric features like corners, angles or lines, and operates on input regardless
of temporal information. Further, it accommodates multi-stroke enti-
ties as easily as single-stroke entities.

The technique first applies a polar coordinate transformation about
a cleverly chosen pivot point. Input is incrementally rotated from −π

to +π radians and compared with a class entity to determine a rotation
that best aligns two symbols. This “pre-recognition” step helps exclude
unlikely matches.

After rotating the user’s input the algorithm creates an n×n down-
sampled bitmap (n = 48 works well). Next, the recognizer applies four
spatial distance classifiers to compare user input against known classes.

46 Sketch Recognition Techniques

The results of each classifier are converted into comparable forms and
combined to produce a single recognition value describing the similarity
between the user input and classes.

4.6.4 Cali Recognizer

Fonseca et al.’s nontrainable Cali recognizer can identify geometric
shapes at any angular orientation or aspect ratio [40, 41]. These shapes
may consist of any number of strokes, as they are segmented based on
a timeout (see Section 4.4.1). To identify the shape (triangle, cross,
etc.) Cali first finds geometric properties based on the input: the con-
vex hull, the largest triangle and quadrilateral inscribed inside the hull.
Additional geometric properties are calculated based on these shapes,
including areas and perimeter values and aspect ratios. These values
are then used to search through prior statistical data regarding the
shapes to be recognized. This approach uses fuzzy logic to determine
membership in statistical equivalence classes. For example, the recog-
nizer for the shape “Line” reports true if the input’s aspect ratio “is
very thin.”

A trainable variant of Cali compared several learning algorithms for
building the statistical equivalence classes: K-nearest neighbors, induc-
tive decision trees, and Naive Bayesian Networks. Testing showed Naive
Bayesian Networks the easiest to train with the best recognition rates.

4.6.5 $1 Recognizer

The $1 Recognizer [179] is notable because of its ease of use, algorith-
mic elegance and power. This technique is designed for use on PDA-like
devices that accept pen-based, gestural input for characters and com-
mands. The $1 Recognizer requires only a single training example to be
effective. Users may easily create their own gestures — it is trainable
on the fly.

The algorithm processes candidate and class input the same way. It
begins by resampling input into a number of points (n = 64 was found
adequate). This enables $1 to compare strokes of different sizes and
drawing speeds. Next, the input is rotated so the angle formed by the
input’s centroid and initial point is 0◦. After rotation the input is scaled

4.6 Pattern Recognizers 47

nonuniformly to fit inside a square. Like the Ledeen algorithm, the $1
Recognizer must handle certain classes of input (e.g. straight lines)
differently because scaling the input nonuniformly would distort it too
much. Last, the candidate is compared to each class in the dictionary
by summing the error of corresponding points.

4.6.6 Graph Matching Techniques

The techniques discussed earlier are best used for online recognition
because they require timing data regarding stroke path (e.g. Ledeen’s
approach) or where strokes begin and end (e.g. $1 or Kara recogniz-
ers). But online recognition is not always possible. A designer may scan
a paper sketch and expect to use it as the basis for further work. In
such cases, off-line recognition might be employed. Graph-based recog-
nition techniques are commonly used for this purpose in the document
analysis and engineering diagram research community.

The first step in graph-based off-line recognition is to convert the
input image from a raster to a vector representation [166]. Vector
endpoints and junctions form graph nodes, and edges represent lines
between them. Because graph nodes contain additional information
such as (x,y) position, these structures are called attributed relational
graphs.

A full drawing’s corresponding graph can be searched for identifiable
portions, or subgraphs using subgraph isomorphism algorithms [97].
Lladós has proposed an heuristic technique for error-tolerant pattern
matching using subgraph isomorphism [101]. For example, suppose we
are interested in finding the pattern shown in Figure 4.6(a) in the
test image shown in Figure 4.6(b). After converting both the exam-
ple pattern and the test image to attributed relational graphs, this
technique begins searching through the test image graph for sequences
that resemble the example pattern’s graph. When this algorithm finds
a near match, it employs edit operations on the test image graph to
force an exact match. Recognition confidence is measured in terms of
how much the observed graph must be edited in order to match the
expected graph. As shown in Figure 4.6(c), the approach is rotation
and scale invariant and tolerates some degree of distortion.

48 Sketch Recognition Techniques

Fig. 4.6 Example of graph-based pattern matching [101]. An example pattern is shown in
(a). The complex test image in (b) contains several distorted, scaled and rotated instances
of the pattern. Portions of the example pattern found in the test image within acceptable
error tolerance are shown in (c) with thick lines.

4.7 Recognition of 3D Scenes

Although many sketches represent abstract entities that lack physical
form (e.g. UML diagrams), many others have physical, 3D inter-
pretations. In this section, “recognition” refers to reconstructing 2D
sketch input as 3D models. In this sense the recognition is syntac-
tic (e.g. identifying a rectangular parallelepiped) rather than semantic
(e.g. identifying a shoe box). Reconstruction of 3D scenes has been
studied in the robotics and computer vision community as well as by
CAD researchers.

Three-dimensional recognition is essentially “reverse projection.”
The strokes on the drawing surface provide (x,y) data but not depth
(z) [100]. Because z could take on any value there are an infinite number
of ways the 2D drawing could be turned into a 3D model. Fortunately
knowledge of solid geometry restricts the possible interpretations: the
surface of a 3D object cannot pass through itself, so any interpre-
tation that involves self-intersecting surface planes is invalid. There
are many ways to compute particular z values for sketched 3D mod-
els. Analytic approaches include line and junction coding [23, 71] and
solving linear equations [55]. Other approaches attempt to fit sketch
input to likely constructions such as primitive 3D structures such as

4.7 Recognition of 3D Scenes 49

cylinders [175], or by finding likely geometric constraints like parallelism
and symmetry [155]. Many 3D sketch recognition systems employ a
combination of these approaches.

People can recognize sketches as long as they are made from a famil-
iar vocabulary. We also make inferences about 3D shape based on 2D
perceptual qualities such as parallelism, right angles, and alignment to
primary axes. Further, drawings of 3D objects often use shading to show
shadows and contours. Frequently when people draw a 3D object, they
draw only the visible contours, leaving the rest to the imagination. It is
not difficult to look at a box and be able to “see” the edges and corners
that are obscured by the solid geometry (although the imagined edges
might in fact be wrong). Some have developed heuristic methods for
hidden-line inference [82, 115] that “reconstruct” a 3D object without
access to a complete 2D wireframe. A wireframe model shows edges in
a “see-through” view; hidden lines are shown through surfaces.

Design software need not reconstruct full 3D models to be useful.
Instead, the recognition system could build a 2.5D interpretation of a
2D sketch. A 2.5D model contains depth information only for geom-
etry visible from a single vantage point, so the recognition system is
relieved of the difficult task of inferring the full 3D structure. Recent
work from Microsoft Research Asia demonstrates an interactive 2.5D
recognition and rendering system [22]. Figure 4.7 shows sample output
of this approach.

4.7.1 3D Curve Analysis

Three-dimensional recognition begins much the same way as 2D recog-
nition. Individual marks constituting a drawing are classified into

Fig. 4.7 “Sketching reality” allows users to create 2.5D architectural models by
sketching [22].

50 Sketch Recognition Techniques

features such as lines, curves, and junctions. The recognizer must
determine the relationship between these features. For example, if a
line represents an edge between two faces, what is the dihedral angle?
There are a number of ways to perform this analysis. Two are discussed
briefly below.

One approach to 3D stroke analysis is to label drawn and emer-
gent elements such as lines, vertices, and faces. The Huffman–Clowes
method [23, 71] identifies various ways’ faces of a drawn polyhedron
may relate (see Figure 4.8). This helps reconstruct the 3D geometry of
the object based on the 2D drawing. A Huffman–Clowes label indi-
cates whether the line represents a concave or convex edge. Edges
are labeled “obscuring” if one of the adjoining faces is not visible.
Given a line drawing, there may be more than one possible way to
assign Huffman–Clowes labels [165] (see Figure 4.9). Schweikardt and
Gross used Huffman–Clowes to interpret sketches of 3D objects in their
Digital Clay system [149].

Fig. 4.8 An illustration of Huffman–Clowes labels. Arrows indicate edges whose faces are
obscured. + and − identify edges as convex and concave.

Fig. 4.9 A Necker Cube illustrates difficulty when forming 3D interpretations of 2D line
drawings. The wireframe shown in (a) can be interpreted in two equally valid ways, shown
in (b) and (c) with hidden edges removed.

4.7 Recognition of 3D Scenes 51

Shpitalni and Lipson use regression to classify input strokes and
clustering to identify 3D vertices shared by multiple lines. Stroke
classification fits input to conic sections using a linear system of
equations [155]. This approach is effective for detecting straight lines,
parabolic arcs, and hyperbolae. A sharp (or filleted) corner, for exam-
ple, can be found with a hyperbolic conic section. After detecting
curves, neighboring curve endpoints are merged when appropriate.

4.7.2 Gesture-Based 3D Recognition

One way to provide input for a 3D sketching system is gestural com-
mands for creating or editing solid geometry models. SKETCH [182]
and SKETCH-N-MAKE [19] recognize gestural commands to represent
certain 3D forms. For example, when the user draws two parallel lines,
the system generates a cylinder. The drawing direction defines whether
the solid is additive (upward gestures) or subtractive (downward
gestures).

4.7.3 Direct and Indirect Solid Model Drawing

Teddy [75] interprets user input as the outline of an object. The object
is then inflated to provide a smooth, blobby object. Subsequent edits
are done by explicitly changing modes and entering commands as
appropriate. For example, an object in Teddy may be extended by
drawing an attachment point on the existing object followed by an
outline of the new part of the object.

Not all the user’s marks denote object boundaries. Designers draw
shadows, stipple dots, or little lines to indicate curvature or surface
texture. Cohen leverages this to create 3D models from sketches by
drawing shadows of objects [24]. In this system, ink is interpreted either
as solid model geometry or as the shadow of that geometry projected
onto a floor plane below.

4.7.4 Imposing and Inferring 3D Axes

Finding depth values for vertices in a 3D sketch is easier if the drawing
conforms to an axis system, and if the object’s faces are known to be
generally parallel to these axes. It may be reasonable to impose a 3D

52 Sketch Recognition Techniques

axis scheme on the user. Alternately, the system can interpret a user’s
drawing and infer an axis system.

Chateau allows people to design 3D objects (like French villa-style
buildings) using a constrained vocabulary of lines and angles [72]. In
Chateau, ink is interpreted as wireframe elements that may connect to
existing pieces on an explicit “drawing plane.”

A coordinate system helps orient the user’s marks so the overall
geometry can be found. However, some 3D sketching systems do not
provide a default 3D axis. The user may draw objects from any per-
spective. One approach forms an Angular Distribution Graph (ADG)
showing how often lines are drawn at each angle [100, 108]. The ADG
allows the software to infer a coordinate system based on an analysis
of the drawing itself.

Tsang presents two methods for guiding 3D reconstruction [167]. In
their system, recognition works in the context of two kinds of guides.
First, a 2D image may be imported and placed in the drawing envi-
ronment. The position and curvature of sketched input is influenced by
these images. Second, the system analyses the drawing and suggests
3D wireframe models from a database composed of prior work by the
user or by third parties.

4.7.5 Styling Based on Existing 3D Geometry

In many 3D sketching systems, the visual representation is often
beautified during reconstruction from 2D to 3D. Beautification may
substantially change the character of the drawing so it no longer looks
“sketchy.”

The work by Nealen and colleagues builds on the Teddy-like
approach of generating smooth 3D objects based on a sketch [118, 119].
Users may draw on the surface of 3D objects as a way to issue modeling
commands. To stretch a region of interest, the user first draws on
the object to create the control points, then drags them to stretch
the surface.

Often designers create new instances of known object types. For
example, when designing the shape of computer speakers, designers
work from experience with other speakers. By providing a 3D wireframe

4.8 Recognition Training and Domain Modeling 53

that is approximately the same shape as the desired object, a designer
can sketch around the wireframe to create a new shape [79, 111]. The
user’s marks are recognized in the context of the wireframe, enabling
the designer to quickly create a new styled instance of an existing class
of objects without having to first make the wireframe.

A related approach is shown in the domain of organic plant mod-
eling [6]. Instead of a geometric wireframe, this approach applies a
mathematical model specifying the target domain based on knowledge
of plant biology. This technique allows designers to quickly converge
on a specific, highly refined 3D model by sketching. To be sure, this
advantage comes at the cost of generality.

4.8 Recognition Training and Domain Modeling

In order for a sketch recognizer to interpret user input it first needs a
representation of whatever elements it is intended to identify. There are
two broad categories of methods for acquiring the model from users.
The first is to provide drawn examples; the second is to provide written
descriptions.

Many of the pattern recognizers discussed here provide user inter-
faces for capturing training examples. In general these all work the
same way: users provide pen input and then label that input. The
Rubine recognizer and Quill require multiple training examples to
determine which analyzed features should be used to classify candidate
input.

An alternative approach to providing drawn examples is to describe
symbols with some sort of text description [107]. Costagliola et al.
refer to these as Sketch Grammars, or SkGs for short [27]. An SkG is a
BNF-like description of how low-level elements like lines and circles can
combine to form higher-level elements. The combinations are described
in terms of geometric shapes and constraints describing their relative
lengths, positions, and angles. Once an entity’s grammar is defined it
may be used to compose more complex elements. The grammar-based
recognition approaches covered here all share similar constraint
types such as parallel, perpendicular, above, below, smaller-than, and
centered-inside.

54 Sketch Recognition Techniques

Current work on sketch parsing leverages prior work from the visual
languages community. Lakin describes visual language parsing as “the
process of recovering the underlying syntactic structure of a visual
communication object from its spatial arrangement.” Lakin’s vmacs
system [90] supports users in providing unstructured graphic input that
can optionally be parsed by a visual grammar in order to formally
describe the structure of the depiction.

Grammar-based diagram parsing by Futrelle and Nikolakis focused
on parsing scientific figures as they appear in publications [46]. This
research used vector graphics rather than rough sketches, but it could
be applied to interpreting hand-drawn diagrams.

Compound objects were defined in the Electronic Cocktail Napkin
(ECN) as a set of elements and spatial relations [60]. The ECN
generated symbolic constraint descriptions from the user’s sketch input.
The user could then modify the description by adding or deleting
constraints, or generalizing or making them more specific. The ECN
used a hybrid recognition approach involving a low-level pattern-based
recognizer to identify symbols and a high-level grammar-based
approach to recognize pattern configurations.

Constraints are often used to prescribe relations between elements
during design (“ensure line A remains perpendicular to line B, even if
line B moves”). But constraints may also be used to describe relations
exhibited by recognizable elements. Rather than using constraints as
rules for enforcing some conditions, they can be used to search for
configurations that match known elements. Pasternak’s ADIK system
searches constraint declarations as a method for performing diagram
recognition [128]. To use the above example, a user may define a plus
symbol using constraints such as “line A is perpendicular to line B.”
Other constraints would specify the relative size and positions. ADIK
constraints also specify tolerances so hand-made drawings could be
recognized.

Hammond’s LADDER language [63] builds on work pioneered by
systems like ADIK by enabling users to textually describe how domain
elements are drawn by stating the element composition and constraints
governing those elements. LADDER allows programmers to prescribe
how the element should be recognized, displayed, and how users could

4.8 Recognition Training and Domain Modeling 55

interact with the elements once recognized. For example, an object’s
“editing” definition may specify whether an object may be rotated.

Recognizers like Ledeen or Rubine learn based on drawn examples.
A challenge with those approaches is that they must determine which
features of the drawing are important and which are not, generally
without user assistance. The salient features are extracted from train-
ing examples. Grammar-based approaches may be difficult to write,
especially if recognizable classes have visual features that are cum-
bersome to describe verbally. After all, drawings (sometimes) encode
nuances that are difficult to describe in words.

A third approach builds on the two others described above by
combining the benefits of grammatical descriptions with drawn exam-
ples. Shilman describes a system similar to LADDER that incorpo-
rates the use of a statistical model for parameterizing the spatial rela-
tions between drawn elements [153]. Typically, a relationship such as
“A is directly above B” is interpreted as either true or false based
on some threshold values that give definition for the word directly.
Shilman’s approach allows the system to learn statistical distributions
based on training set examples. In this case, the statement “A is directly
above B” can take on various levels of truth. Shilman uses a labeling
scheme based on a näıve Bayesian classifier.

Another hybrid approach involves generating grammars based on
analysis of sketches [64, 172]. Users provide either a sketch or a textual
description of a new element to recognize. The system then generates a
shape that is close to (a “near miss”) the user’s original input. The
user then adds or removes constraints as necessary to improve the
match. This iterative process of shape generation and constraint refine-
ment continues until the system produces a satisfactory model from the
description of constraints.

This section has discussed several aspects of sketch recognition,
including when, what, and how much to recognize. Algorithms for seg-
mentation and reasoning have also been reviewed. Last, we described
approaches for training recognition systems to learn symbols, make
use of contexts, and understand domain semantics. The challenges in
this section are primarily technical. The following section continues the
topic of sketch recognition from the perspective of human interaction.

5
Interaction in Sketch-Based Software

The computational support for sketching discussed in previous sections
dealt with a wide range of topics, from hardware to data structures and
algorithms. While previous sections focused on the technology itself,
here we look more closely at people’s interaction with sketches as medi-
ated by computational systems.

Traditional design software uses a familiar array of interaction con-
trols and idioms: buttons, toolbars and palettes, menus, double-clicking
and right-clicking mouse buttons, scrollbars, keyboard shortcuts, and
so on. With few exceptions, these approaches give the user unambigu-
ous methods to express their intentions.

However, sketching design tools must “interpret” user input as mes-
sages that could have multiple meanings. If the user encircles an object,
the system must decide if this constitutes selection, or if the circle is
part of the existing object, or if the circle is part of some other object,
or if the new ink is an annotation. The semantics of sketched user
input may depend heavily on the domain as well as the functionality
the application supports.

There are several high-level classes of operations the system might
need to interpret: model, environment, and recognition/rectification
operations.

56

5.1 Managing Recognition Error 57

Model operations are those marks that specify creation of new, or
modify existing, portions of the model. Some actions (such erasure)
require a target or operand, suggesting the need for sketch-based selec-
tion techniques. Freehand annotations are important for informal work:
they allow designers to record provisional ideas in context. Such notes
might be considered part of the model. If the hardware supports it,
pen properties such as pressure or angle could be used in subtle ways
to signal different kinds of input — soft marks could indicate texture
or shading, for example.

Environment operations are messages that change the state of the
design tool itself in some way. They may specify changes in viewing
parameters such as zooming, rotating, panning, or switching between
“rough” and “rectified” renderings. Users might issue commands for
performing some task immediately, from simple requests like printing to
more involved tasks such as invoking a simulation. Environmental com-
mands are often issued using buttons or menus, or they may be issued
by gestures. However, interface components designed for keyboard
and mouse hardware may be inappropriate for use in sketch-based
systems.

Recognition operations allow users to initiate or interact with a pro-
cess. Some systems enable users train the recognizer by specifying new
objects or relationships among objects, which requires training tech-
niques. The sketching system may also let users to trigger the recog-
nizer rather than recognizing automatically. Some recognition systems
are noninteractive and simply use the “best” interpretation. Other sys-
tems are interactive, enabling the user to choose among alternatives.
As with some model operations, users may be allowed to select specific
portions of their drawing for recognition.

The distinction between the above operation classes is often blurred.
For example, a gesture to erase an object (a model operation) must be
recognized before it is executed.

5.1 Managing Recognition Error

In any but the most trivial of tasks, sketch recognition will occasionally
fail. Either the recognizer does not correctly interpret the user’s sketch,
or the recognizer is unable to produce an interpretation. Perhaps the

58 Interaction in Sketch-Based Software

user’s sketch was drawn in such a way that even a human observer
could not correctly interpret it. Maybe the user drew something the
recognition system was not intended to handle. Regardless of the reason
for the failure, it is important to manage problems that arise due to
failed recognition. The particular strategy for managing error depends
in part on when the system employs recognition.

Consider an application whose recognition process assigns a numeric
confidence value describing how well a candidate entity matches entries
in the recognition library. The multiple matches are put into an n-
best list ordered by confidence levels. When the recognizer is obliged
to report the most likely interpretation, it can simply respond with
the item with the highest confidence value. Alternately the recognizer
could respond with multiple interpretations [4, 60], but most applica-
tions are not designed to accommodate that. Recognition results may
be inappropriate or inaccurate in a number of ways, summarized in
Table 5.1.

The system may attend to inappropriate or inaccurate recognition
automatically or interactively. Interactive methods include suggestive
interfaces that provide alternative interpretations [72]. Some systems
like BURLAP [104] use both automatic as well as interactive methods.

5.2 Reacting to Sketch Input

The system must determine when and how to react once it recognizes
sketched elements. One action is to give the user feedback of recognition
results. Textual, visual, and audio feedback have been used. Another
type of action triggered by recognition is to invoke a command or pro-
gram. Finally, recognized ink may be transformed into an interactive

Table 5.1 Categories of sketch recognition difficulties.

Incorrect: The user drew X but the recognizer confidently found Y .
Ambiguous: The user drew X, but the recognizer is unable to confidently

discern the possible interpretations of X, Y , or Z.
Uncertain: The user drew X, but the recognizer could not confidently

find any interpretation.
Unintended: The system correctly recognized X but the user was not ready

to work with recognized elements yet.

5.2 Reacting to Sketch Input 59

object whose behavior is consistent with whatever it depicts, such as a
sketched scrollbar turning into a manipulable scrollbar [92].

Taking action based on recognition events can be problematic
because of the inherent ambiguity and uncertainty of sketches. Passive
feedback of recognition (such as an n-best list menu) can be ignored.
However, some forms of feedback may have lasting effects: a sketched
gesture inaccurately recognized as a delete operation cannot be easily
ignored.

The Electronic Cocktail Napkin could be configured to rectify (and
unrectify) user input but it is turned off by default [58, 59]. Rectifi-
cation (sometimes called beautification) represents the user’s input in
a less sketchy form, and is one method of providing visual feedback.
Some researchers feel that rectification is harmful because the input’s
rough character reminds viewers the design is unfinished. Alvarado’s
informal user studies of ASSIST suggests that the system should clean
up a drawing after the user finishes rather than rectifying as they
draw [2, p. 91].

Beautification is not always antagonistic to design, however. Pub-
lished diagrams are usually “cleaned up” such that lines are made rec-
tilinear, or other graphic elements are made the same size or similar
spacing. Pavlidis and Van Wyk describe a system for beautifying rough
drawings after they have been drawn [130]. This approach calls for auto-
matic inference and satisfaction of graphic constraints.

While some systems wait for users to explicitly request rectification,
Teddy renders user input as 3D shapes as they are provided [75]. Arvo
and Novins demonstrate a novel method of rectifying 2D user input
while maintaining the rough, hand-drawn qualities in the context of
interactive sketches [13]. The lines have a “shape memory” that gives
them a tendency to maintain their initial visual characteristics as users
stretch, move, and bend them.

Do investigated the context and intention of hand drawn design
diagrams in order to invoke appropriate tools [35, 36]. The Right Tool
Right Time system is based on the observation that as people sketch,
the symbols they draw might indicate the tools they need to support
their activity. For example, an architect who is thinking about what is
visible from a vantage point may draw sight lines on a floor plan. If the

60 Interaction in Sketch-Based Software

sketching program recognizes the user’s input as sight lines, it could
invoke a visual analysis program to show what can be seen from the
indicated point.

5.3 Toolkits for Sketch Recognition Systems

Modern toolkits support programming of standard WIMP applica-
tions with a standard set of widgets such as buttons, drop-down lists,
and scrollbars. These widgets are designed for use with a keyboard
and mouse, using conventional interaction idioms like double click-
ing and drag-and-drop. Evidence suggests that these interface widgets
and techniques are not always appropriate for sketch-based applica-
tions [3, 34, 142].

Microsoft’s Tablet PC API supports use of a stylus in pen-aware
applications. The Tablet PC API excels at measuring and rendering
user input. It also provides methods to access various features of free-
hand input such as sampling point locations, velocity, and pressure.
Plimmer and Freeman have developed InkKit, a toolkit for building
sketch recognition-based interfaces using the Tablet PC API [133].

SATIN [69] incorporates many engineering aspects of creating
sketch-based applications including support for pen-centric widgets like
pie menus (Figure 5.1) or pluggable recognizers (like Quill/gdt [102]).
SATIN served as the basis for applications like DENIM [99] and
SketchySPICE. However, no further applications have been built using
this toolkit. A discussion of recognizers from various points of view
(users, designers, and programmers) is presented in [70].

(a) Pie menu extension to the Firefox
web browser.

(b) Autodesk Maya pie menu.

Fig. 5.1 Pie menu implementations in two applications.

5.4 Sketches and Human–Human Interaction 61

The CrossY system features pen-centric user interface components
such as those shown in Figure 5.2 [9]. High-level interaction toolkits for
sketching incorporate not only widgets, but also support for ambiguity
management and alternative recognizers.

BURLAP’s mediation strategy (see Section 4.5.4) is part of the
OOPS toolkit for managing ambiguity [105].

The Electronic Cocktail Napkin [59] served as a platform for devel-
oping other tools such as Right Tool Right Time [36], Stretch-A-
Sketch [57], a Local Area Network designer [86], and others [60].

5.4 Sketches and Human–Human Interaction

People use sketches to interact with other people. When we draw a
map to help somebody navigate to a location, the marks we make
provide just enough information to communicate the route [169]. Such
maps are media for human–human communication, and they serve their
purpose well. When people make drawings to communicate everyday,
mundane information, they tend to use consistent notation. Even when
drawing to illustrate abstract concepts (such as “How a web search
engine works”) people use a limited visual vocabulary [66].

People interact with their sketches. This goes beyond the physical
act of drawing. When we sketch, we make marks on the page, look
at them, and potentially see new meanings in our drawing [52, 147].
We interact with sketches differently depending on many factors: size
of drawing surface, kind of pen, relevant domain, expected sketch life
cycle, how public or private it is, whether we are working alone or
collaborating, and so on.

When collaborators work on problems together, they often use
shared drawing surfaces like whiteboards or big sheets of paper. Mynatt
et al. [117] looked at how people use whiteboards in practice and devel-
oped the Flatland system to support those activities. Marks on white-
boards are informal, and depending on their location they may be pub-
lic. Whiteboards are used to record lists of ideas, items to buy, things
to do, and so on. They also serve as an informal record of what is going
on in the workplace. A colleague’s unerased drawing may spark conver-
sation among others long after the sketch’s original purpose has been
served.

62 Interaction in Sketch-Based Software

Computational whiteboard systems like Flatland, Colab [160], and
Tivoli [113, 131] leverage the informal, quick, semi-public properties
of traditional whiteboarding practice. At the same time, the marks
on the electronic whiteboard become interactive: lists can be sorted,
items checked off; text and drawings may be grouped, moved, scaled,
and rotated. Physical whiteboards are usable only by those present;
computational whiteboards may be used by distributed teams. This
functionality has been demonstrated both by commercial collaborative
conferencing tools and research prototypes such as the Workspace
Navigator [77].

5.5 Pen Interaction Techniques for Sketch-Based Systems

An important consideration for developing new technology is the cog-
nitive load a tool imposes [125]. Oviatt’s study of high school mathe-
matics students suggests that using a pen-based application on a tablet
computer is significantly worse than working problems using traditional
pencil and paper. Using the tablet, students took longer to complete
math problems, and they did not like using the technology. Anthony
et al. conducted a similar study comparing how students write equa-
tions using different input paradigms. The input methods included a
standard WIMP interface and freehand writing performed with a com-
puter stylus [8]. They found that students preferred pen input, and
hand-wrote equations faster and more accurately than using the key-
board and mouse dialog. Paper and pencil was preferred to electronic
writing, but pens of either sort are preferred over keyboard and mouse
input. Both studies support the observation that the more attention
users must allocate to using the tool, the less attention they can give
to the problem at hand.

More natural interaction techniques must be developed in order
to reduce cognitive load. Several methods have been shown to work
well for pen applications. Marking menus are a good example [87].
Traditional menus provide a list of options, growing downwards and
to the right. For pen devices with co-located input and output (such
as a Tablet PC) the user’s hand may obscure the menu. Pie menus (a
type of marking menu) appear centered at the pointer location, with

5.5 Pen Interaction Techniques for Sketch-Based Systems 63

options distributed radially (see Figure 5.1). The user’s hand may still
be partially in the way, but at least part of the menu remains visible.
The benefit of the marking menu is that people can learn to perform
gestures without reading the option labels if the options appear in
consistent locations. The need for a visual menu eventually disappears,
leaving only the gesture. Pie menus are used in applications such as
Maya [14], games such as the Sims [38], and are available as add-ons to
web browsers. This approach works well, but has two drawbacks. First,
it is not clear how the menu should be invoked. Second, gestures must
be discovered, learned, and remembered.

Ramos et al. [136] further explored the use of pressure data for pen-
based interaction. In addition to the stylus (x,y) position, pressure
serves as another dimension the user can freely manipulate. For exam-
ple, pressing lightly may produce a menu with one set of options, while
pressing hard offers a different option set. Pressure could be effective
as an input modality if used appropriately, including haptic and visual
feedback.

Traditional menus are typically invoked by clicking the mouse,
applying force orthogonal to the mouse’s plane of operation, which
does not cause the mouse to move. Some computer styluses have bar-
rel buttons that allow users to “right click,” but the force necessary to
depress the stylus button is liable to cause unintentional pen movement,
leading to mistakes [67].

Hinckley et al. [68] suggest the use of delimiters to trigger marking
menus. A delimiter is “something different” in the pen input that the
user is otherwise unlikely to draw but is easy to remember. One example
delimiter in their Scriboli system is a pigtail mark, a loop made at the
end of a selection gesture. This fluid motion lets the user indicate target
objects followed by a command to apply to those objects.

Others have developed interface idioms for supporting pen and
sketch input. Gedrics are gesture-driven icons for pen-based applica-
tions [47]. Each Gedric is associated with a class of tasks such as “chang-
ing font properties” in a text editor. To invoke a command, the user
draws a gesture on a Gedric. The system recognizes the gesture, giving
the icon meaning that can be activated by tapping it. On the “font”
Gedric, drawing a slanted line might italicize selected text; drawing a

64 Interaction in Sketch-Based Software

vertical gesture from the bottom to top increases text size. However,
while Gedrics help make some operations more convenient and reduce
clutter on user interfaces, they also require users to know how to turn
their intentions into a gesture.

While pointing and clicking is appropriate for tasks commonly per-
formed with mice, Accot and Zhai suggest “crossing” as an apt tech-
nique for stylus interaction [1]. The experimental drawing program
CrossY [9] demonstrates interface widgets that support crossing. To
activate a CrossY button, the user draws a line from one side of the
button to the other. Crossing makes it easy to take multiple actions
with a single fluid motion, for example changing pen color and thickness
by dragging the pen across adjacent CrossY widgets (see Figure 5.2).

The inherent ambiguity of sketching is also present in pen-based
interaction that is not intended to be sketchy, e.g. pressing a button
or choosing a menu item. When the user attempts to act on an object
the system may have to disambiguate the target. For example, when
pressing a button, the pen may accidentally slide off one into another.
This is called target ambiguity [104, 105].

An alternative to mediating ambiguity is to preempt it. Pegasus
and Chateau [72, 74] demonstrate a suggestive interface that predicts
what the user will draw and shows the outcomes of various possible
actions. If a pick-list mediator from BURLAP/OOPS is like asking
you to clarify what you have said, a suggestive interface is analogous

Fig. 5.2 CrossY interface widgets let users change multiple parameters with a single
stroke — pen color and thickness in this example.

5.5 Pen Interaction Techniques for Sketch-Based Systems 65

to completing your sentence before you finish. For example, Chateau’s
simplified domain of architectural design [72] is constrained to certain
configurations of walls and beams known to produce good results. This
technique is appropriate when the domain has a highly regular gram-
mar or when structural properties such as symmetry may be exploited.
Tsang and colleagues use a suggestive interface for their 3D sketching
system that can model shapes such as aircraft hulls [167]. The system
provides an overlay that guides users in providing additional sketch
input. Users found this conducive to providing precise input. The sys-
tem uses the incomplete sketch as a database query, finding similar
drawings, and suggests additional geometry that may be appropriate.

Bae’s 3D curve modeling system demonstrates how several cal-
ligraphic interaction techniques can be used together to provide a
highly fluid sketching environment [15]. The system, called ILoveS-
ketch, presents a physical sketchbook metaphor. Note that like Sketch-
pad, input is provided using a stylus, optionally modified by pressing
physical buttons with the nondominant hand (Figure 5.3). The inter-
face lacks the familiar on-screen buttons, scroll bars, and menus.
Instead, users give commands with gestures which are often context-
sensitive. For example, to browse earlier drawings the user “peels” back
virtual pages by dragging a corner; to erase an item the user draws a
“scratch-out” gesture. Many techniques implemented in ILoveSketch

Fig. 5.3 ILoveSketch presents an “as natural as possible” sketching system that brings
together many calligraphic interaction techniques [15].

66 Interaction in Sketch-Based Software

address challenges associated with sketching 3D objects. For example,
the system infers appropriate viewing angles by rotating or panning
based on the user’s work.

Alvarado provides a list of seven design guidelines for developing
Sketch Recognition User Interfaces, or SkRUIs [3]. These guidelines are:

(1) Display recognition results only when the user is done
sketching.

(2) Provide obvious indications to distinguish free sketching from
recognition.

(3) Restrict recognition to a single domain until automatic
domain detection becomes feasible.

(4) Incorporate pen-based editing.
(5) Sketching and editing should use distinct pen motions.
(6) SkRUIs require large buttons.
(7) The pen must always respond in real time.

While WIMP interfaces have been widely used since the mid-
1980s, sketch-based interfaces remain to be adopted. To develop bet-
ter interaction guidelines, interface design patterns and toolkits, the
research community must continue to build and evaluate sketching-
centric applications.

5.6 The “mode problem”

User interfaces often interpret input differently depending on which
mode a program is in. For example, a structured graphics program
may have input modes such as select, draw line, or fill color. Such a
tool allows users to indicate rectangular areas when the selection tool
is active. The same program also allows users to draw when the pencil
tool is active. In both cases the user presses a mouse button and drags
the cursor. But the program interprets user input in terms of the active
tool. Sometimes users are unaware of which mode the program is in, or
are unsure how to change to the desired mode. Managing modes often
introduces cognitive load by forcing users to think about the tool rather
than their work. This is called “the mode problem” [164]. It has been

5.6 The “mode problem” 67

a challenge since the beginning of interactive systems and is certainly
not particular to sketching software.

Sketchpad, arguably the first sketching system, addressed this by
letting the user control the mode with physical controls (buttons, toggle
switches, dials) with the left hand [161]. GRAIL users did not explicitly
enter modes to edit text and graphics. Instead, the meaning of user
input was inferred by analyzing ink and its context [39]. These two
early systems represent opposite extremes in ways to address the mode
problem. Sketchpad’s solution was explicit mode changes using nonpen
input; GRAIL’s solution was implicit mode changes done only with pen
input.

There seems to be no clear “right” way to address the mode prob-
lem. Implicit mode changes may seem more natural, but only if the
system correctly recognizes the user’s intention. Recognition techniques
are error-prone. Many systems therefore provide a combination of these
two ways or impose drawing conventions.

Saund and Lank explored automatically recognizing mode based on
the user’s input in context of what has already been drawn [142]. Their
inferred-mode protocol specifies an approach for analyzing the pen’s
trajectory and determining if an action may be taken unambiguously.
If the user’s intention is ambiguous, a mediator (such as those demon-
strated by BURLAP [104]) provides the user with methods to resolve
ambiguity.

Li et al. [98] compared mode-switching techniques for pen-based
user interfaces. These techniques included the pen’s button, press and
hold, using the nondominant hand to press a physical button, a novel
pressure-based method, and using the eraser end of the stylus. Inter-
estingly, using the nondominant hand to switch modes was the fastest,
the least error-prone, and best-liked method.

The “press and hold” approach is also used by Schilit et al. [145]
who call this a “dwell” gesture. Microsoft Windows for Tablet PCs uses
a dwell gesture for invoking right-click menus.

Scriboli’s delimiters address the mode problem by allowing users
to seamlessly switch between which objects to operate on and which
commands to invoke [68]. For sketch-based systems the mode prob-
lem arises partly because there are multiple types of pen input. Some

68 Interaction in Sketch-Based Software

ink is intended to stay on the page and represents words, pictures, or
other model elements (model operations). Other pen input indicates
selections or commands (environment operations).

Flow selection [76] allows users to seamlessly change modes from
drawing to selecting with a dwell gesture. Subsequent operations (such
as moving part of a line) are performed by moving the stylus without
lifting up. In the example in Figure 5.4, the selection strength depends
on distance to the place the user is pressing and how long the stylus
has been held down. Selection strength is then used by subsequent
operations such as moving or smoothing.

5.7 Application Areas of Sketching

5.7.1 Problem Solving

Sketching supports everyday problem solving. A homeowner may esti-
mate financial figures on the back of an envelope when managing house-
hold funds. A college student may draw a dorm room floor plan with
furniture in various configurations to determine what is possible and
desirable. Pencil and paper support these quick calculations very well.

One problem solving domain addressed by sketching systems is
mathematics. MathPad2 [94] and MathBrush [89] let students draw pic-
tures of natural phenomena and relate them to equations. For example,
a physical system involving a mass on a spring can be represented with
a drawing as well as with an equation as in Figure 5.5. The drawing

Fig. 5.4 Flow selection’s mode changes done by alternately holding and moving the sty-
lus [76]. Here the user positions the stylus near the middle of the figure’s mouth and (b)
moves it without lifting the pen (c). The user then holds the stylus still until the curve is
smoothed (d) before completing the process by lifting the pen.

5.7 Application Areas of Sketching 69

Fig. 5.5 A MathPad2 sketch showing hand-written equations corresponding to the drawing
of the mass-and-spring system at right, which the system can animate.

directly communicates qualitative aspects about the system such as
location and size of elements, while the equation governs the quantita-
tive properties such as the weight’s mass m, the spring constant k and
the time parameter’s range t.

Many sketching systems allow users to simulate models. The
MathPad2 sketch in Figure 5.5 can be set into motion using the draw-
ing as the initial condition, and the values m,k, and t to control the
animation.

Another example of problem solving addressed by sketching is
editing and annotating written documents using ink based writing or
gestures. XLibris is an electronic book that supports users in reading
documents and keeping notes on the pages, which the system automat-
ically organizes [145]. XLibris also recognizes certain ink commands as
search requests. For example, say an XLibris user reading this para-
graph circled, underlined, or highlighted the phrase “electronic book.”
This action silently triggers a database query. If a strong match is
found, a link appears in the margin along with the word’s definition.

5.7.2 Sketch-Based Prototyping

Sketching itself can be a form of prototyping. For example, user inter-
face designers often build low-fidelity paper prototypes to use for

70 Interaction in Sketch-Based Software

cognitive walkthroughs or usabilty studies. The “sketchy” appearance
may facilitate brainstorming or encourage people to make multiple
interpretations of what the sketch means [36]. Alternately, designers
may draw to unambiguously communicate specific designs [122].

Designers draw diagrams of how components fit together in order
to better understand how to make things. At some point designers
can move past sketching and build something — a user interface, a
physical mechanism, a computer program. Before the final product is
built, several prototypes are made to help clarify the problem domain,
manufacturing constraints, usability issues, and so on. Designers often
“go back to the drawing board,” iteratively sketching and building
prototypes.

Low-fidelity renderings of interfaces encourage discussion on the
high-level functions the UI is intended to support. Conversely, high-
fidelity prototypes encourage discussion of details that are not impor-
tant during brainstorming or early prototyping [18, 180].

SILK (Sketching Interfaces Like Krazy) allows designers to draw
user interfaces and storyboards and then interact with them [92]. SILK
recognizes sketches of a limited set of common user interface elements
such as buttons, scroll bars, and text areas. It then transforms the
sketch into a high-fidelity version of their drawn UI in the look-and-feel
of their choice. The user may elect to retain the sketchy look and still
interact with the recognized drawing. The sketch-to-prototype process
is fast: users created an interface with SILK in one fifth of the time they
needed to make the same interface with a structured interface builder.

DENIM is a system for prototyping web sites and individual page
layouts [99]. DENIM allows designers to informally and incrementally
create structures, first starting at one level of granularity, then moving
up or down as appropriate. The ability to “zoom” from level to level is
conducive to iterative web site design.

Other sketch-based systems have been developed for prototyp-
ing computer-based models including animations with K-Sketch,
multimedia authoring with DEMAIS, and software development with
MaramaSketch [16, 32, 61]. These tools allow designers to build proto-
types or storyboards of dynamic systems by creating sketches according
to conventional visual languages.

5.7 Application Areas of Sketching 71

One important property of physical sketches is their ability to record
how a particular design evolved. Designers often keep journals of draw-
ings and refer to them for reflection. Electronic sketching systems like
SILK, ART019 [181], and NetDraw [135] support capturing and retriev-
ing design histories of drawn objects.

5.7.3 Sketching 3D Artifacts

SILK, DENIM, and similar systems explored prototyping designs for
electronic media. Another class of sketching systems supports rapid
development of physical artifacts. Because physical objects are three
dimensional, sketching systems targeting such output frequently involve
3D modeling.

SKETCH [182] is a 3D modeling system that accepts gestural input
to perform modeling operations, rather than a traditional menu-based
approach. The implementation described assumes a 3-button mouse as
input, but the authors suggest that pen input would be better. The
multiple buttons are used to address the mode problem, with shape
operations performed with the left mouse button and camera operations
with the right mouse button. SKETCH-N-MAKE, an “art to part”
CAD system, added the ability to produce physical output [19].

SKETCH (and SKETCH-N-MAKE) define the characteristics of
the model via a sequence of operations (extruding, cutting, etc.) on
an existing model. This approach contrasts with a free-form drawing
approach whereby designers draw shapes in 2D and the CAD sys-
tem derives a 3D model. The free-form approach feels more “natural,”
approximating and augmenting pencil and paper.

Recently there has been progress in developing prototypes that
construct 3D models based on freehand 2D sketches [100, 108]. These
systems allow designers to directly specify shapes as they are conven-
tionally drawn, rather than relying on mapping gestures to modeling
commands.

Rapid prototyping machinery has become affordable. This gives
people additional tools for making things. The Furniture Factory and
Designosaur [124] projects are “sketch-to-fab” systems that enable peo-
ple, even children, to design simple artifacts such as doll house furniture

72 Interaction in Sketch-Based Software

or dinosaur skeleton models. The Furniture Factory recognizes the 2D
sketch as adjacent orthogonal planes, and selects appropriate jointing,
leading to a CAD model suitable for manufacture on a laser cutter.
Designosaur users sketch shapes of wooden “bones” and indicate loca-
tions for the bones to notch together.

5.8 Sketching in Playful Applications

Most of the systems described above have concerned the production
of functional artifacts such as web sites, mechanisms or math equa-
tions. We can learn a lot (even about “serious” interactive systems) by
building and evaluating systems that are playful.

ART019 [181] explores a novel sketch-based form of interaction for
artists. It provides the ability to visualize drawings over time and easily
combine model states from different moments in the drawing’s creation
history. For example, an artist may select a portion of a sketch by when
strokes were applied, rather than where they were applied. DiFiore and
Van Reeth [34] describe an interface for artistic sketch input for an
animation tool that is as fluid as pencil-and-paper while giving anima-
tors the added ability to freely deform and edit drawings in an artful
manner.

Crayon Physics Deluxe and Phun are aptly-named sketching pro-
grams wherein users draw shapes that are recognized as rigid bodies in
a physical simulation [37, 85]. The user controls game play by drawing
shapes that interact with one another, subject to physical constraints
such as gravity and rigid collisions (see Figure 5.6).

Paulson et al. [129] present a series of entertaining, educational
sketch-based systems for children to learn by drawing. Their APPLES
system lets users draw elements such as planets, black holes, and
arrows representing initial velocity vectors. The recognized drawing
then becomes alive, simulating gravitational pull and elastic collisions.

Another playful calligraphic application is Plushie, a system for
designing stuffed toys [114]. Plushie users draw shapes that automat-
ically turn into blobby, 3D objects rendered with cartoon-like, non-
photorealistic rendering. The system provides an intuitive drawing
environment where people can make engaging, complex 3D models.

5.8 Sketching in Playful Applications 73

(a) Crayon Physics Deluxe (b) Phun

Fig. 5.6 Two entertaining sketch-based physics simulation programs. Note the difference in
how the programs render objects.

Like Plushie, FiberMesh builds on prior work by Igarashi and col-
leagues [73, 118]. FiberMesh enables users to edit 3D free-form models.
Users enter one of several modes including deforming, rubbing, eras-
ing, and type change. All strokes remain on the model, giving the user
controls for later manipulation.

The “fun” applications presented here provide the basis for serious
research. The act of drawing — even if it is a simple doodle — may
help to clarify the designer’s thoughts [29]. One participant in Nealen’s
informal user study said, “One great thing about this system is that one
can start doodling without having a specific goal in mind, as if doodling
on paper. One can just create something by drawing a stroke, and then
gradually deform it guided by serendipity, which is very important for
creative work [118].”

This section has discussed interaction topics of computational sup-
port for sketching. We began by presenting interaction concerning
recognition. This includes ways for handling recognition errors, and how
the system can react to sketch input and present interpretation results
to the user. Several toolkits for developing sketch-based software were
presented. Application areas for supporting human communication and
design were described, with focus on areas where sketching is partic-
ularly useful. We discussed low-level interaction methods such as how
users may select and act on objects, or how they may explicitly or
implicitly enter modes.

6
Challenges and Opportunities

In the preceding five sections we have reviewed work on computational
support for sketching in design, beginning with GRAIL and Sketchpad
in the 1960s through work that is going on today. We have viewed the
field from various aspects: studies of “traditional” design sketching
done on paper without benefit of computation; hardware that has
been employed for computer supported sketching, techniques for, and
management of sketch recognition; and interaction in sketch-based
design software. Although we attempt in this review to cover the
main themes in computer supported sketching for design, the field has
grown large and diverse. We cannot hope to have captured all worthy
and relevant work.

Our efforts in assembling this review began with a question: After
forty years of research on computational support for sketching, why
there are so few real world applications of this technology? Although
the mouse has dominated computer interfaces since 1980, we see no sign
that in daily life people are ceasing to draw with pencil and marker,
on paper, and on whiteboards. Indeed, people draw on every available
surface. We posit that if computational support for sketching really
worked, it would be more widely adopted in a variety of applications

74

6.1 Future Work in Understanding Traditional Sketching 75

and domains. As this has not yet happened, we asked ourselves: What is
the state-of-the-art today, and what obstacles must be overcome before
freehand sketching interaction will make its way from the research lab-
oratory into the world of everyday use?

We found no simple single answer. However, our review of the lit-
erature in this field reveals research directions — and in some cases,
challenges — in several areas that if resolved provides opportunities to
develop successful real world applications. We summarize these below.
Overall we maintain the optimistic outlook that the day of real-world
sketching interfaces is still to come — whether just around the corner
or a decade or more away. Each year we see a growing number of pub-
lished papers and research projects. Hardware continues to advance,
albeit somewhat more slowly. Further, the research community work-
ing on sketch-based interaction is growing both in size and in diversity
of backgrounds.

6.1 Future Work in Understanding Traditional Sketching

Sketch-based software for design depends on research in two main areas.
The first area is an understanding of the roles and uses of sketching
in design: why, when, and how designers make quick drawings, and
the role they play in the enterprise of designing. The second area is
an understanding of the mechanics of sketching — how people make
meaningful marks with a stylus. Research in these closely related topics
can foster a better understanding of the computational mechanisms
that can be brought to bear to support, in various ways, the processes
of sketching for design.

6.1.1 Sketching in Design

The importance of sketching in design is asserted frequently in the lit-
erature, though few studies (including our own) go further than observ-
ing, as an argument for the authors’ pen-based software project, that
designers sketch. Yet, if we are to build sketching software that is truly
useful for designers, we must gain a more systematic understanding
of the ways that designers make diagrams, drawings, and sketches,
how these representations serve design reasoning, how and what they

76 Challenges and Opportunities

communicate, and how they can be integrated with other knowledge
and expertise. We cannot entirely separate the study of sketching —
as medium — from the study of design processes. Thus research in
computer support for sketching can benefit by engaging designers and
design researchers. Empirical studies of designers sketching, ethnogra-
phies, and analyses of user needs have already added to our knowledge.
Nevertheless a thorough understanding of the functions of sketching in
design will come only when we also engage designers in our quest.

6.1.2 Mechanics of Sketching

The mechanics of drawing and sketching is the second area where
advances in research will lead to real world applications. There is a
small but fascinating body of literature on how people draw things:
we mentioned van Sommers’ studies and there are others. Previously,
film and video has been used to look closely at drawing mechanics.
Now, pen technologies can fuel empirical studies on drawing ergonomics
using Anoto, Wacom, or similar capture devices. These technologies
can record drawing behavior that may be analyzed to better under-
stand patterns and preferences for certain kinds of drawing tasks. What
sequence do people choose in making a drawing, and what governs
this choice? What, if any, is the relationship between pen speed, pres-
sure, and the designer’s level of confidence or certainty in the draw-
ing? Answering these and other questions about drawing mechanics can
lead, among other things, to software that can more effectively use these
input data in building a more accurate model of the designer’s actions.

Better knowledge about drawing mechanics can also inform the
development of input and output hardware for sketching in design.
We have seen hardware platforms move from light pens and CRTs,
to expensive tethered digitizing surfaces, to low-cost tablets integrated
with displays, digitizing whiteboards, and most recently e-ink and elec-
tronic paper. For input technologies, costs drop as resolution, reli-
ability, and portability improve. Output technologies also improve
in resolution, color capability, power consumption, and readability
under diverse lighting conditions. The relatively recent introduction
of Anoto’s technology, introduced in 1998, reminds us that radically

6.2 Future Work in Computational Support for Sketching 77

different approaches in hardware are possible and can lead to quite
different applications. Two-handed interaction [88] is valuable in certain
tasks, as is the ability to draw on arbitrary surfaces or in space [146].
It is easy to underestimate the effects of hardware on the performance
of sketching systems: subtle ergonomic factors such as display screen
parallax or the pen’s feel on the drawing surface contribute to user
satisfaction. Designers want to be comfortable drawing for extended
periods of time, and even casual users are surprisingly sensitive to pen
and surface ergonomics.

Under the broad rubric of computational mechanisms to support
sketching in design, we have looked at (in Section 4) managing and
integrating recognition into sketch-based interfaces, and (in Section 5)
interaction techniques specific to sketching.

6.2 Future Work in Computational Support for Sketching

6.2.1 Recognition

Sketch recognition is a cousin to speech and gesture recognition, and
there are issues common to all recognition-based interaction, for exam-
ple segmentation, grouping, and managing conflicts, correction, con-
text, and n-best lists. Generally, the sketch recognition community
could benefit from a close comparative study of research on recogni-
tion in these other modalities. We found no empirical data on what
accuracy rate is acceptable in sketch recognition: How good must a
recognizer be? Although this is likely to vary according to user and
circumstance, the field would benefit by having benchmark data on
acceptable accuracy in sketch recognition, similar to studies of accep-
tance of handwriting recognition accuracy.

Recognizer training is another area where research could advance
support for sketching. Users are reluctant to devote time to training a
recognizer, and so methods for incorporating training into ordinary use
scenarios would be advantageous. Machine learning techniques might
be applied to extract patterns from sketch data obtained from large
numbers of users. When is it necessary to train a recognizer for individ-
ual users; when can a standard scheme serve all users? And when train-
ing is necessary, what interfaces are users most willing to tolerate? How

78 Challenges and Opportunities

can the number of needed training samples be minimized? Comparative
usability and performance evaluations of training methods could be
helpful.

Also related to recognition, when and under what circumstances
should an application attempt recognition? Just how eager or lazy
should a recognition engine be? When to be eager; when to be lazy?
What heuristics can an application use to determine its recognition
strategies? To what extent, and using what methods, can a system’s
knowledge of context support recognition? And finally, although many
different approaches to recognition have been pursued, the challenge of
recognizing sketches, whether domain-centric or domain-independent,
remains an open problem.

A special (but important) case of sketch recognition is the problem
of generating 3D models from 2D sketches. Again, many efforts have
tackled particular kinds of 2D-to-3D sketch recognition. Yet specific
constraints bound the capabilities of each of these projects: some sys-
tems make assumptions of orthonormal geometry; others handle curved
surfaces. We are still far from a general purpose system for generating
3D models from sketches. The challenges here include dealing with
incomplete drawings (e.g. lines truncated by the edge of the sketch);
incorrect drawings (not made to correct isometry or perspective); the
use of shading, hatching, and line weight to inform model-construction.
Here we also distinguish between projects that aim to recognize and
parse projection drawings made according to the traditional conven-
tions, and those (like SKETCH [182] and SketchUp [54]) that use an
artificial language of gestural commands to construct models.

6.2.2 Interaction Techniques

Another broad area where research can advance software support for
sketching in design is interaction techniques specifically tuned for the
pen. The early work at PARC that produced the WIMP interface led to
widely adopted conventions for using the mouse to interact with appli-
cations. We have yet to see a similar set of conventions that emerge
for using the pen to interact with applications, though as we saw in
Section 5, some work has been done along these lines. Pen interaction

6.2 Future Work in Computational Support for Sketching 79

techniques might leverage input data such as pressure [136] and pen
angle, in addition to the customary position, timing, and pen-up, pen-
down events. It may be fruitful also to look at the design of screen
widgets specifically for use with the pen, rather than assuming that
the widgets that work for the mouse are equally suited for pen-based
interaction. And work with gestures such as the “pigtail” or the tech-
nique of “crossing” screen items suggests that developing and adopting
a conventional language of pen gestures may be helpful [9, 68].

Stepping up a level from the pen and screen, support for sketching
will require other interaction techniques. For example, managing recog-
nition errors and ambiguities in a sketching program without unduly
distracting the designer remains a challenge. Research on interruption
management may be useful: the system could assess the user’s state
and decide when is an appropriate time to query for resolving an error,
conflict, or ambiguity.

6.2.3 Application Architectures

Perhaps one of the greatest obstacles to widespread adoption of sketch-
ing interaction is the underlying architecture of application software
and the software engineering assumptions that this entails. A strength
of sketching is that it can convey decisions on a spectrum from ambi-
guity and vagueness to precision and certainty. However, as long as
the underlying software does not support such a spectrum, it will be
difficult to take advantage of this feature. That is, whatever degree of
ambiguity or precision the user may wish to convey through the sketch
will be resolved before the application gets hold of it. In this review,
we have touched many times on the idea that sketches can capture the
user’s level of commitment and precision, but until application software
can use this information, the system’s capacity to capture and convey
it is wasted. Here we contrast speech and sketch recognition: It is a fair
assumption that a speaker has intended to make a specific and precise
utterance, and it is the job of the listener to recognize what that was.
As we have pointed out, in design this is not always the case.

Sketching, however, does not only happen at the early stages of
designing. Designers sketch throughout the process, and so software

80 Challenges and Opportunities

must also be able to capture and use sketch input even during later
stage design. The earliest, exploratory sketches may convey a wide
range of alternatives quickly. Drawings made in concluding phases
resolve detail and entail highly precise decision making. Effective
sketch-based applications must be able to support designers throughout
this process.

In the vein of innovative application architectures that take advan-
tage of sketching input, it is worth remarking that many of the inno-
vations in Sketchpad were programming language ideas, not what we
would now see as HCI ideas. The software architecture of Sketchpad —
a constraint solver at its core, an object-like representation of proto-
types and instances — these were deeply integrated into the design of
the program. It may take more than wrapping existing applications
with a “sketching interface” in order to reap the advantages of pen-
based interaction.

6.2.4 Toolkits

Most of the systems we reviewed here were built from scratch, using
only the most basic device and graphics libraries. Building from the
ground up can allow more divergent and potentially innovative work.
However, this comes at a heavy cost: a great deal of redundant effort
is spent by the sketching research community building similar low-
level functionality. In order to advance the field and build more robust
and sharable sketching applications, programmers can rely on toolkits
and libraries to perform many of the mundane and common tasks.
Several toolkits have been proposed and developed (e.g. SATIN and
InkKit [69, 133]) but these have not gained widespread acceptance. It
would be worth looking into why more researchers and developers have
not adopted these toolkits. What would be the required characteristics
of a successful toolkit for sketching — both research prototypes and
full-fledged applications — remains an open question.

6.3 Conclusion: In Support of Visual Thinking

Computational support for sketching has a long and interesting history
dating back to the early days of computing. Some of the first graphical

6.3 Conclusion: In Support of Visual Thinking 81

interfaces in the 1960s demonstrated compelling features that even
today are not wholly integrated into pen computing. Despite advances
in hardware (digitizing whiteboards, the WacomTM [173] and Anoto
pen technologies, the Tablet PC) sketching remains a niche area. Per-
haps it always will. On the other hand, it may be that overcoming a
number of obstacles would make pen-based sketch interaction far more
attractive in a range of application areas. People, after all, still draw.

Certainly for designers — and by this we mean not only those in
the “artistic” or “creative” professions but also chemical, electrical,
mechanical engineers, economists, anyone who uses graphical represen-
tations in their work — better computer support for sketching would
be a boon. Arguably, sketching and diagramming is not just a matter
of recording geometry of ideas that have been worked out in the head.
Rather, as Arnheim put it, drawing is a medium for visual thinking [11].
Seen in this way, supporting sketching for design goes beyond strategies
for more accurately capturing pen strokes or ink, or tuning recognition.
Truly inspired work on computational support for sketching will see its
task as supporting designers — and all users — in thinking visually.

References

[1] J. Accot and S. Zhai, “More than dotting the i’s — foundations for crossing-
based interfaces,” in CHI ’02: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 73–80, New York, NY, USA: ACM,
2002.

[2] C. Alvarado, “A natural sketching environment: Bringing the computer into
early stages of mechanical design,” Master’s thesis Massachusetts Institute of
Technology, 2000.

[3] C. Alvarado, “Sketch recognition user interfaces: Guidelines for design and
development,” in Proceedings of AAAI Fall Symposium on Intelligent Pen-
based Interfaces, 2004.

[4] C. Alvarado and R. Davis, “SketchREAD: A multi-domain sketch recognition
engine,” in UIST ’04: Proceedings of the 17th Annual ACM Symposium on
User Interface Software and Technology, 2004.

[5] C. Alvarado and R. Davis, “Dynamically constructed bayes nets for multi-
domain sketch understanding,” in International Joint Conference on Artificial
Intelligence, 2005.

[6] F. Anastacio, M. C. Sousa, F. Samavati, and J. A. Jorge, “Modeling plant
structures using concept sketches,” in NPAR ’06: Proceedings of the 4th
International Symposium on Non-photorealistic Animation and Rendering,
pp. 105–113, New York, NY, USA: ACM, 2006.

[7] Anoto, “Development guide for service enabled by anoto functionality,” Tech-
nical report, Anoto AB, 2002.

[8] L. Anthony, J. Yang, and K. R. Koedinger, “Evaluation of multimodal input
for entering mathematical equations on the computer,” in CHI ’05: CHI ’05
Extended Abstracts on Human Factors in Computing Systems, pp. 1184–1187,
New York, NY, USA: ACM, 2005.

82

References 83

[9] G. Apitz and F. Guimbretière, “CrossY: A crossing-based drawing applica-
tion,” in UIST ’04: Proceedings of the 17th Annual ACM symposium on User
Interface Software and Technology, pp. 3–12, New York, NY, USA: ACM,
2004.

[10] Apple Inc., “Apple Inkwell,” http://www.apple.com/sg/macosx/features/
inkwell/, 2007.

[11] R. Arnheim, Visual Thinking. London: Faber and Faber, 1969.
[12] J. Arnowitz, M. Arent, and N. Berger, Effective Prototyping for Software Mak-

ers. Morgan Kaufmann, 2006.
[13] J. Arvo and K. Novins, “Appearance-preserving manipulation of hand-drawn

graphs,” in GRAPHITE ’05: Proceedings of the 3rd International Conference
on Computer Graphics and Interactive Techniques in Australasia and South
East Asia, pp. 61–68, New York, NY, USA: ACM, 2005.

[14] Autodesk Inc., “Autodesk Maya,” 2008. http://autodesk.com.
[15] S.-H. Bae, R. Balakrishnan, and K. Singh, “ILoveSketch: As-natural-as-

possible sketching system for creating 3D curve models,” in Proceedings of
UIST’08 (to appear), 2008.

[16] B. P. Bailey and J. A. Konstan, “Are informal tools better?: comparing
DEMAIS, pencil and paper, and authorware for early multimedia design,”
in CHI ’03: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 313–320, New York, NY, USA: ACM, 2003.

[17] O. Bimber, L. M. Encarnacao, and A. Stork, “A multi-layered architecture for
sketch-based interaction within virtual environments,” Computers and Graph-
ics, vol. 24, pp. 851–867, 2000.

[18] A. Black, “Visible planning on paper and on screen: The impact of work-
ing medium on decision-making by novice graphic designers,” Behaviour and
Information Technology, vol. 9, no. 4, pp. 283–296, 1990.

[19] M. Bloomenthal, R. Zeleznik, R. Fish, L. Holden, A. Forsberg, R. Riesen-
feld, M. Cutts, S. Drake, H. Fuchs, and E. Cohen, “SKETCH-N-MAKE:
Automated machining of CAD sketches,” in Proceedings of ASME DETC’98,
pp. 1–11, 1998.

[20] D. Blostein, E. Lank, A. Rose, and R. Zanibbi, “User interfaces for on-line
diagram recognition,” in GREC ’01: Selected Papers from the Fourth Inter-
national Workshop on Graphics Recognition Algorithms and Applications,
pp. 92–103, London, UK: Springer-Verlag, 2002.

[21] B. Buxton, Sketching User Experiences. Morgan Kaufmann Publishers, 2007.
[22] X. Chen, S. B. Kang, Y.-Q. Xu, J. Dorsey, and H.-Y. Shum, “Sketching reality:

Realistic interpretation of architectural designs,” ACM Transations Graphics,
vol. 27, no. 2, pp. 1–15, 2008.

[23] M. B. Clowes, “On seeing things,” Artificial Intelligence, vol. 2, pp. 79–116,
1971.

[24] J. M. Cohen, L. Markosian, R. C. Zeleznik, J. F. Hughes, and R. Barzel, “An
interface for sketching 3D curves,” in I3D ’99: Proceedings of the 1999 Sym-
posium on Interactive 3D Graphics, pp. 17–21, New York, NY, USA: ACM,
1999.

84 References

[25] R. Cole, J. Mariani, H. Uszkoreit, A. Zaenen, and V. Zue, Survey of the State of
the Art in Human Language Technology. Center for Spoken Language Under-
standing CSLU, Carnegie Mellon University, 1995.

[26] G. Costagliola, V. Deufemia, F. Ferrucci, and C. Gravino, “Exploiting XPG
for visual languages definition, analysis and development,” Electronic Notes
in Theoretical Computer Science, vol. 82, no. 3, pp. 612–627, 2003.

[27] G. Costagliola, V. Deufemia, and M. Risi, “Sketch grammars: A formalism for
describing and recognizing diagrammatic sketch languages,” in International
Conference on Document Analysis and Recognition, 2005.

[28] N. Cross, “The nature and nurture of design ability,” Design Studies, vol. 11,
no. 3, pp. 127–140, 1990.

[29] N. Cross, “Natural intelligence in design,” Design Studies, vol. 20, no. 1,
pp. 25–39, 1999.

[30] Cross Pen Computing Group, “CrossPad,” 1998. Portable digital notepad.
[31] R. Davis, “Sketch understanding: Toward natural interaction toward natural

interaction,” in SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses, p. 4, New
York, NY, USA: ACM, 2006.

[32] R. C. Davis, B. Colwell, and J. A. Landay, “K-sketch: A ‘kinetic’ sketch pad
for novice animators,” in CHI ’08: Proceeding of the Twenty-Sixth Annual
SIGCHI Conference on Human Factors in Computing Systems, pp. 413–422,
New York, NY, USA: ACM, 2008.

[33] P. de Bruyne, “Acoustic radar graphic input device,” in SIGGRAPH ’80: Pro-
ceedings of the 7th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 25–31, New York, NY, USA: ACM, 1980.

[34] F. Di Fiore and F. V. Reeth, “A multi-level sketching tool for pencil-and-paper
animation,” in Sketch Understanding: Papers from the 2002 American Asso-
ciation for Artificial Intelligence (AAAI 2002) Spring Symposium, pp. 32–36,
2002.

[35] E. Y.-L. Do, The Right Tool at the Right Time: Investigation of Freehand
Drawing as an Interface to Knowledge Based Design Tools. PhD thesis, Geor-
gia Institute of Technology, 1998.

[36] E. Y.-L. Do, “Design sketches and sketch design tools,” Knowledge-Based
Systems, vol. 18, no. 8, pp. 838–405, 2005.

[37] E. Ernerfeldt, (Forthcoming), “MS Thesis on Phun,” Master’s thesis,
Ume̊a University, 2008.

[38] Electronic Arts Inc., “The Sims,” 2008. http://thesims.ea.com.
[39] T. O. Ellis, J. F. Heafner, and W. L. Sibley, “The GRAIL Project: An

experiment in man-machine communications,” Technical report, RAND Mem-
orandum RM-5999-ARPA, RAND Corporation, 1969.

[40] M. Fonseca and J. Jorge, “Using fuzzy logic to recognize geometric shapes
interactively,” The Ninth IEEE International Conference on Fuzzy Systems,
2000. FUZZ IEEE 2000, vol. 1, pp. 291–296, 2000.

[41] M. Fonseca, C. Pimentel, and J. Jorge, “CALI: An online scribble recognizer
for calligraphic interfaces,” in AAAI 2002 Spring Symposium (Sketch Under-
standing Workshop), pp. 51–58, 2002.

References 85

[42] K. D. Forbus, “Exploring spatial cognition through sketch understanding,” in
Spatial Cognition, http://conference.spatial-cognition.de/sc08/tutorials/T-1,
2008.

[43] K. D. Forbus, J. Usher, and V. Chapman, “Sketching for military courses of
action diagrams,” in Proceedings of Intelligent User Interfaces ’03, 2003.

[44] C. Frankish, R. Hull, and P. Morgan, “Recognition accuracy and user accep-
tance of pen interfaces,” in CHI ’95: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 503–510, New York, NY, USA:
ACM Press/Addison-Wesley Publishing Co., 1995.

[45] R. Futrelle, “Ambiguity in visual language theory and its role in diagram pars-
ing,” Proceedings. 1999 IEEE Symposium on Visual Languages, 1999, pp. 172–
175, 1999.

[46] R. P. Futrelle and N. Nikolakis, “Efficient analysis of complex diagrams using
constraint-based parsing,” in Proceedings of the Third International Confer-
ence on Document Analysis and Recognition (ICDAR’95), 1995.

[47] J. Geißler, “Gedrics: The next generation of icons,” in Proceedings of the 5th
International Conference on Human-Computer Interaction (INTERACT’95),
1995.

[48] L. Gennari, L. B. Kara, and T. F. Stahovich, “Combining geometry and
domain knowledge to interpret hand-drawn diagrams,” Computers and Graph-
ics, vol. 29, no. 4, pp. 547–562, 2005.

[49] J. Glasgow, N. H. Narayanan, and B. Chandrasekaran, eds., Diagrammatic
Reasoning: Cognitive and Computational Perspectives. MIT Press, 1995.

[50] V. Goel, Sketches of Thought. Cambridge, MA: MIT Press/A Bradford Book,
1995.

[51] G. Goldschmidt, “The dialectics of sketching,” Creativity Research journal,
vol. 4, no. 2, pp. 123–143, 1991.

[52] G. Goldschmidt, “The backtalk of self-generated sketches,” in Spatial and
Visual Reasoning in Design, Syndey, Australia: Key Center of Design Com-
puting, 1999.

[53] N. Goodman, Languages of Art: An Approach to a Theory of Symbols. Indi-
anapolis, Indiana: Hackett, Second ed., 1976.

[54] Google Inc., “Google Sketchup,” 2008. http://www.sketchup.com/.
[55] I. J. Grimstead and R. R. Martin, “Creating solid models from single 2D

sketches,” in SMA ’95: Proceedings of the Third ACM Symposium on Solid
Modeling and Applications, pp. 323–337, New York, NY, USA: ACM, 1995.

[56] G. F. Groner, “Real-time recognition of handprinted text,” Technical report,
RM-5016-ARPA, RAND Corporation, 1966.

[57] M. D. Gross, “Stretch-a-sketch, a dynamic diagrammer,” in Proceedings
of IEEE Symposium on Visual Languages and Human-Centric Computing,
pp. 232–238, 1994.

[58] M. D. Gross, “The electronic cocktail napkin: A computational environment
for working with design diagrams,” Design Studies, vol. 17, no. 1, pp. 53–69,
1996.

[59] M. D. Gross and E. Y.-L. Do, “Ambiguous intentions: A paper-like interface
for creative design,” in UIST ’04: ACM Conference on User Interface Software
Technology, pp. 183–192, Seattle, WA, 1996.

86 References

[60] M. D. Gross and E. Y.-L. Do, “Drawing on the back of an envelope,” Com-
puters and Graphics, vol. 24, no. 6, pp. 835–849, 2000.

[61] J. Grundy and J. Hosking, “Supporting generic sketching-based input of dia-
grams in a domain-specific visual language meta-tool,” in ICSE ’07: Inter-
national Conference on Software Engineering, pp. 282–291, Washington, DC:
IEEE Computer Society, 2007.

[62] F. Guimbretière, “Paper augmented digital documents,” in UIST ’03: Pro-
ceedings of the 16th Annual ACM Symposium on User Interface Software and
Technology, pp. 51–60, New York, NY, USA: ACM, 2003.

[63] T. Hammond and R. Davis, “LADDER, a sketching language for user interface
developers,” Elsevier, Computers and Graphics, vol. 29, pp. 518–532, 2005.

[64] T. Hammond and R. Davis, “Interactive learning of structural shape descrip-
tions from automatically generated near-miss examples,” in Intelligent User
Interfaces (IUI), pp. 37–40, 2006.

[65] J. Y. Han, “Low-cost multi-touch sensing through frustrated total internal
reflection,” in UIST ’05: Proceedings of the 18th Annual ACM Symposium on
User Interface Software and Technology, pp. 115–118, New York, NY, USA:
ACM, 2005.

[66] D. Hendry, “Sketching with conceptual metaphors to explain computational
processes,” in IEEE Symposium on Visual Languages/Human-Centric Com-
puting, pp. 95–102, Brighton, UK: IEEE Computer Society Press, 2006.

[67] K. Hinckley, “Input technologies and techniques,” in Handbook of Human-
Computer Interaction, (A. Sears and J. A. Jacko, eds.), Lawrence Erlbaum
and Associates, 2006.

[68] K. Hinckley, P. Baudisch, G. Ramos, and F. Guimbretiere, “Design and anal-
ysis of delimiters for selection-action pen gesture phrases in scriboli,” in CHI
’05: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 451–460, New York, NY, USA: ACM, 2005.

[69] J. Hong and J. Landay, “SATIN: A toolkit for informal ink-based applica-
tions,” CHI Letters (13th Annual ACM Symposium on User Interface Software
and Technology: UIST 2000), vol. 2, no. 2, pp. 63–72, 2000.

[70] J. Hong, J. Landay, A. C. Long, and J. Mankoff, “Sketch recognizers from the
end-user’s the designer’s and the programmer’s perspective,” in AAAI Spring
Symposium on Sketch Understanding, (T. Stahovic, J. Landay, and R. Davis,
eds.), Menlo Park, CA: AAAI Press, 2002.

[71] D. A. Huffman, “Impossible objects as nonsense sentences,” Machine Intelli-
gence, vol. 6, pp. 295–323, 1971.

[72] T. Igarashi and J. F. Hughes, “A suggestive interface for 3D drawing,” in
UIST ’01: Proceedings of the 14th Annual ACM Symposium on User Interface
Software and Technology, pp. 173–181, New York, NY, USA: ACM, 2001.

[73] T. Igarashi and J. F. Hughes, “Smooth meshes for sketch-based freeform
modeling,” in I3D ’03: Proceedings of the 2003 Symposium on Interactive 3D
Graphics, pp. 139–142, New York, NY, USA: ACM, 2003.

[74] T. Igarashi, S. Matsuoka, S. Kawachiya, and H. Tanaka, “Interactive beauti-
fication: A technique for rapid geometric design,” in UIST ’97: Proceedings of
the 10th Annual ACM Symposium on User Interface Software and Technology,
pp. 105–114, New York, NY, USA: ACM, 1997.

References 87

[75] T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: A sketching interface for
3D freeform design,” in ACM SIGGRAPH’99, pp. 409–416, Los Angeles, Cal-
ifornia, 1999.

[76] G. Johnson, M. D. Gross, and E. Y.-L. Do, “Flow selection: A time-based
selection and operation technique for sketching tools,” in 2006 Conference on
Advanced Visual Interfaces, pp. 83–86, Venice, Italy, 2006.

[77] W. Ju, A. Ionescu, L. Neeley, and T. Winograd, “Where the wild things
work: Capturing shared physical design workspaces,” in CSCW ’04: Proceed-
ings of the 2004 ACM Conference on Computer Supported Cooperative Work,
pp. 533–541, New York, NY, USA: ACM, 2004.

[78] G. Kanizsa, Organization in Vision: Essays on Gestalt Perception. Praeger,
New York, 1979.

[79] L. B. Kara, C. M. D’Eramo, and K. Shimada, “Pen-based styling design
of 3D geometry using concept sketches and template models,” in SPM ’06:
Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling,
pp. 149–160, New York, NY, USA: ACM, 2006.

[80] L. B. Kara and T. F. Stahovich, “An image-based, trainable symbol rec-
ognizer for hand-drawn sketches,” Computers and Graphics, vol. 29, no. 4,
pp. 501–517, 2005.

[81] M. Karam and M. C. Schraefel, “Investigating user tolerance for errors in
vision-enabled gesture-based interactions,” in AVI ’06: Proceedings of the
Working Conference on Advanced Visual Interfaces, pp. 225–232, New York,
NY, USA: ACM, 2006.

[82] O. A. Karpenko and J. F. Hughes, “SmoothSketch: 3D free-form shapes from
complex sketches,” ACM Transactions on Graphics, vol. 25, no. 3, pp. 589–
598, 2006.

[83] A. Kay, “Alan Kay lecture on early interactive computer systems,”
http://www.newmediareader.com/cd samples/Kay/index.html, 1986.

[84] D. H. Kim and M.-J. Kim, “A curvature estimation for pen input segmentation
in sketch-based modeling,” Computer-Aided Design, vol. 38, no. 3, pp. 238–
248, 2006.

[85] kloonigames.com, “Crayon physics deluxe,” http://www.kloonigames.com/
crayon/, 2008.

[86] K. Kuczun and M. D. Gross, “Local area network tools and tasks,” in ACM
Conference on Designing Interactive Systems, pp. 215–221, 1997.

[87] G. Kurtenbach and W. Buxton, “Issues in combining marking menus and
direct manipulation techniques,” in Symposium on User Interface Software
and Technology, pp. 137–144, ACM, 1991.

[88] G. Kurtenbach, G. Fitzmaurice, T. Baudel, and B. Buxton, “The design of a
GUI paradigm based on tablets, two-hands, and transparency,” in CHI ’97:
Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, pp. 35–42, New York, NY, USA: ACM, 1997.

[89] G. Labahn, S. MacLean, M. Marzouk, I. Rutherford, and D. Tausky, “A pre-
liminary report on the MathBrush pen-math system,” in Maple 2006 Confer-
ence, pp. 162–178, 2006.

88 References

[90] F. Lakin, J. Wambaugh, L. Leifer, D. Cannon, and C. Sivard, “The electronic
design notebook: Performing medium and processing medium,” Visual Com-
puter: International Journal of Computer Graphics, vol. 5, no. 4, 1989.

[91] M. LaLomia, “User acceptance of handwritten recognition accuracy,” in
CHI ’94: Conference Companion on Human Factors in Computing Systems,
pp. 107–108, New York, NY, USA: ACM, 1994.

[92] J. A. Landay, “SILK: Sketching interfaces like krazy,” in ACM CHI 1996,
pp. 398–399, Vancouver, Canada, 1996.

[93] J. Larkin and H. Simon, “Why a diagram is (Sometimes) worth ten thousand
words,” Cognitive Science Journal, vol. 11, pp. 65–99, 1987.

[94] J. LaViola and R. C. Zeleznik, “MathPad2: A system for the creation
and exploration of mathematical sketches,” ACM Transactions on Graphics,
vol. 23, no. 3, pp. 432–440, 2004.

[95] J. Lee, S. Hudson, and P. Dietz, “Hybrid infrared and visible light projection
for location tracking,” in UIST ’07: Proceedings of the 20th Annual ACM
Symposium on User Interface Software and Technology, pp. 57–60, New York,
NY, USA: ACM, 2007.

[96] J. C. Lee, “Projector-based location discovery and tracking,” PhD thesis,
Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh PA, USA, 2008.

[97] W. Lee, L. B. Kara, and T. F. Stahovich, “An efficient graph-based symbol
recognizer,” in EUROGRAPHICS Workshop on Sketch-Based Interfaces and
Modeling, (T. F. Stahovich and M. C. Sousa, eds.), 2006.

[98] Y. Li, K. Hinckley, Z. Guan, and J. A. Landay, “Experimental analysis of
mode switching techniques in pen-based user interfaces,” in CHI 2005, 2005.

[99] J. Lin, M. Newman, J. Hong, and J. Landay, “DENIM: Finding a tighter fit
between tools and practice for web site design,” in CHI Letters, pp. 510–517,
2000.

[100] H. Lipson and M. Shpitalni, “Correlation-based reconstruction of a 3D object
from a single freehand sketch,” in AAAI 2002 Spring Symposium (Sketch
Understanding Workshop), 2002.

[101] J. Lladós, E. Mart́ı, and J. J. Villanueva, “Symbol recognition by error-tolerant
subgraph matching between region adjacency graphs,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 23, no. 10, pp. 1137–1143,
2001.

[102] A. C. Long, J. A. Landay, L. A. Rowe, and J. Michiels, “Visual similarity of
pen gestures,” in CHI ’00: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 360–367, New York, NY, USA: ACM,
2000.

[103] J. V. Mahoney and M. P. J. Fromherz, “Three main concerns in sketch recog-
nition and an approach to addressing them,” in Sketch Understanding, Papers
from the 2002 AAAI Spring Symposium, 2002.

[104] J. Mankoff, “Providing integrated toolkit-level support for ambiguity in
recognition-based interfaces,” in CHI ’00: CHI ’00 Extended Abstracts on
Human Factors in Computing Systems, pp. 77–78, New York, NY, USA: ACM,
2000.

References 89

[105] J. Mankoff, G. D. Abowd, and S. E. Hudson, “OOPS: A toolkit supporting
mediation techniques for resolving ambiguity in recognition-based interfaces,”
Computers and Graphics, vol. 24, no. 6, pp. 819–834, 2000.

[106] D. Marr, “Early processing of visual information,” Philosophical Transactions
of the Royal Society of London B, vol. 275, pp. 483–519, 1976.

[107] J. Mas, G. Sánchez, and J. Lladós, “An adjacency grammar to recognize sym-
bols and gestures in a digital pen framework,” in Pattern Recognition and
Image Analysis, pp. 115–122, Springer, 2005.

[108] M. Masry, D. Kang, and H. Lipson, “A freehand sketching interface for pro-
gressive construction of 3D objects,” Computers and Graphics, vol. 29, no. 4,
pp. 563–575, 2005.

[109] A. Meyer, “Pen computing: A technology overview and a vision,” SIGCHI
Bulletin, vol. 27, no. 3, pp. 46–90, 1995.

[110] Microsoft Inc., “Surface,” http://www.microsoft.com/surface/, 2007.
[111] J. Mitani, H. Suzuki, and F. Kimura, “3D sketch: Sketch-based model recon-

struction and rendering,” in IFIP Workshop Series on Geometric Modeling:
Fundamentals and Applications, Parma, Italy, 2000.

[112] T. P. Moran, E. Saund, W. van Melle, A. U. Gujar, K. P. Fishkin, and B. L.
Harrison, “Design and technology for collaborage: Collaborative collages of
information on physical walls,” CHI Letters, vol. 1, no. 1, 1999.

[113] T. P. Moran, W. van Melle, and P. Chiu, “Spatial interpretation of domain
objects integrated into a freeform electronic whiteboard,” in Proceedings of
UIST’98, 1998.

[114] Y. Mori and T. Igarashi, “Plushie: An interactive design system for plush
toys,” in Proceedings of SIGGRAPH 2007, ACM, 2007.

[115] D. Mumford, “Elastica and computer vision,” in Algebraic Geometry and its
Applications, (C. L. Bajaj, ed.), Springer-Verlag, New York, 1994.

[116] B. Myers, S. Y. Park, Y. Nakano, G. Mueller, and A. Ko, “How designers
design and program interactive behaviors,” in Proceedings of IEEE Sympo-
sium on Visual Languages and Human-Centric Computing, (P. Bottoni, M. B.
Rosson, and M. Minas, eds.), pp. 177–184, 2008.

[117] E. D. Mynatt, T. Igarashi, W. K. Edwards, and A. LaMarca, “Flatland: New
dimensions in office whiteboards,” in CHI ’99: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 346–353, New York,
NY, USA: ACM, 1999.

[118] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, “FiberMesh: Designing
freeform surfaces with 3D Curves,” in ACM SIGGRAPH 2007, San Diego,
CA: ACM Transactions on Computer Graphics, 2007.

[119] A. Nealen, O. Sorkine, M. Alexa, and D. Cohen-Or, “A sketch-based interface
for detail-preserving mesh editing,” in SIGGRAPH ’05: ACM SIGGRAPH
2005 Papers, pp. 1142–1147, New York, NY, USA: ACM, 2005.

[120] N. Negroponte, Soft Architecture Machines. Cambridge, MA: MIT Press, 1975.
[121] B. Neiman, E. Y.-L. Do, and M. D. Gross, “Sketches and their functions

in early design: A retrospective analysis of two houses,” in Design Thinking
Research Symposium, 1999.

[122] M. W. Newman and J. A. Landay, “Sitemaps, storyboards, and specifications:
A sketch of Web site design practice,” in DIS ’00: Proceedings of the 3rd

90 References

Conference on Designing Interactive Systems, pp. 263–274, New York, NY,
USA: ACM, 2000.

[123] W. Newman and R. Sproull, Principles of Interactive Computer Graphics.
McGraw-Hill, Second ed., 1979.

[124] Y. Oh, G. Johnson, M. D. Gross, and E. Y.-L. Do, “The designosaur and the
furniture factory: Simple software for fast fabrication,” in 2nd International
Conference on Design Computing and Cognition (DCC06), 2006.

[125] S. Oviatt, A. Arthur, and J. Cohen, “Quiet interfaces that help students
think,” in UIST ’06: Proceedings of the 19th Annual ACM Symposium on
User Interface Software and Technology, pp. 191–200, New York, NY, USA:
ACM, 2006.

[126] S. Oviatt and P. Cohen, “Multimodal processes that process what comes nat-
urally,” Communications on ACM, vol. 43, no. 3, pp. 45–53, 2000.

[127] Palm Inc., “Palm Digital PDA,” http://www.palm.com/, 2007.
[128] B. Pasternak and B. Neumann, “Adaptable drawing interpretation using

object-oriented and constraint-based graphic specification,” in Proceedings of
the International Conference on Document Analysis and Recognition (ICDAR
’93), 1993.

[129] B. Paulson, B. Eoff, A. Wolin, A. Johnston, and T. Hammond, “Sketch-based
educational games: “Drawing” kids away from traditional interfaces,” in Inter-
action Design and Children (IDC 2008) (to appear), 2008.

[130] T. Pavlidis and C. J. V. Wyk, “An automatic beautifier for drawings and
illustrations,” SIGGRAPH Computer Graphics, vol. 19, no. 3, pp. 225–234,
1985.

[131] E. R. Pedersen, K. McCall, T. P. Moran, and F. G. Halasz, “Tivoli: An elec-
tronic whiteboard for informal workgroup meetings,” in CHI ’93: Proceedings
of the INTERACT ’93 and CHI ’93 Conference on Human Factors in Com-
puting Systems, pp. 391–398, New York, NY, USA: ACM, 1993.

[132] B. Plimmer, “Experiences with digital pen, keyboard and mouse usability,”
Journal on Multimodal User Interfaces, vol. 2, no. 1, pp. 13–23, July 2008.

[133] B. Plimmer and I. Freeman, “A toolkit approach to sketched diagram recog-
nition,” in Proceedings of HCI 2007, British Computer Society, 2007.

[134] G. Polya, How To Solve It. Princeton University Press, 1945.
[135] D. Qian and M. D. Gross, “Collaborative design with NetDraw,” in Proceed-

ings of CAAD Futures 1999 Conference, vol. CAAD Futures ‘Computers in
Building’, 1999.

[136] G. Ramos, M. Boulos, and R. Balakrishnan, “Pressure widgets,” in CHI ’04:
Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, pp. 487–494, New York, NY, USA: ACM, 2004.

[137] H. Rittel and M. Webber, “Dilemmas in a general theory of planning,” Policy
Sciences, vol. 4, pp. 155–169, 1973.

[138] D. Rubine, “Specifying gestures by example,” SIGGRAPH Computer Graph-
ics, vol. 25, no. 4, pp. 329–337, 1991.

[139] P. Santos, A. J. Baltzer, A. N. Badre, R. L. Henneman, and M. Miller, “On
handwriting recognition performance: Some experimental results,” in Proceed-
ings of the Human Factors Society 36th Annual Meeting, pp. 283–287, 1992.

References 91

[140] E. Saund, “Bringing the marks on a whiteboard to electronic life,” in CoBuild
’99: Proceedings of the Second International Workshop on Cooperative Build-
ings, Integrating Information, Organization, and Architecture, pp. 69–78,
London, UK: Springer-Verlag, 1999.

[141] E. Saund, D. Fleet, D. Larner, and J. Mahoney, “Perceptually-supported
image editing of text and graphics,” in UIST ’03: Proceedings of the 16th
Annual ACM Symposium on User Interface Software and Technology, pp. 183–
192, New York, NY, USA: ACM, 2003.

[142] E. Saund and E. Lank, “Stylus input and editing without prior selection of
mode,” in UIST ’03: Proceedings of the 16th Annual ACM Symposium on
User Interface Software and Technology, pp. 213–216, New York, NY, USA:
ACM, 2003.

[143] E. Saund, J. Mahoney, D. Fleet, D. Larner, and E. Lank, “Perceptual organiza-
tion as a foundation for intelligent sketch editing,” in AAAI Spring Symposium
on Sketch Understanding, pp. 118–125, American Association for Artificial
Intelligence, 2002.

[144] E. Saund and T. P. Moran, “A perceptually-supported sketch editor,” in ACM
Symposium on User Interface Software and Technology (UIST ’94), Marina
del Rey, CA, 1994.

[145] B. N. Schilit, G. Golovchinsky, and M. N. Price, “Beyond paper: Supporting
active reading with free form digital ink annotations,” in CHI ’98: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 249–256, New York, NY, USA: ACM Press/Addison-Wesley Publishing
Co., 1998.

[146] S. Schkolne, M. Pruett, and P. Schröder, “Surface drawing: Creating organic
3D shapes with the hand and tangible tools,” in CHI ’01: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 261–268,
New York, NY, USA: ACM, 2001.

[147] D. A. Schon, The Reflective Practitioner. Basic Books, 1983.
[148] D. A. Schon and G. Wiggins, “Kinds of seeing and their functions in design-

ing,” Design Studies, vol. 13, no. 2, pp. 135–156, 1992.
[149] E. Schweikardt and M. D. Gross, “Digital clay: Deriving digital models from

freehand sketches,” in Digital Design Studios: Do Computers Make A Differ-
ence? ACADIA 98, (T. Seebohm and S. V. Wyk, eds.), pp. 202–211, 1998.

[150] T. Sezgin, T. Stahovich, and R. Davis, “Sketch based interfaces: Early pro-
cessing for sketch understanding,” in The Proceedings of 2001 Perceptive User
Interfaces Workshop (PUI’01), 2001.

[151] T. M. Sezgin, “Sketch interpretation using multiscale stochastic models of
temporal patterns,” PhD thesis, Massachusetts Institute of Technology, 2006.

[152] T. M. Sezgin and R. Davis, “Sketch interpretation using multiscale models
of temporal patterns,” IEEE Computer Graphics and Applications, vol. 27,
no. 1, pp. 28–37, 2007.

[153] M. Shilman, H. Pasula, S. Russell, and R. Newton, “Statistical visual language
models for ink parsing,” in AAAI Sketch Understanding Symposium, 2001.

[154] M. Shilman, Z. Wei, S. Raghupathy, P. Simard, and D. Jones, “Discerning
structure from freeform handwritten notes,” in Proceedings of International
Conference on Document Analysis and Recognition (ICDAR) 2003, 2003.

92 References

[155] M. Shpitalni and H. Lipson, “Classification of sketch strokes and corner detec-
tion using conic sections and adaptive clustering,” Transactions of ASME
Journal of Mechanical Design, vol. 119, no. 2, pp. 131–135, 1996.

[156] B. Signer and M. C. Norrie, “PaperPoint: A paper-based presentation and
interactive paper prototyping tool,” in TEI ’07: Proceedings of the 1st Inter-
national Conference on Tangible and Embedded Interaction, pp. 57–64, New
York, NY, USA: ACM, 2007.

[157] H. A. Simon, “The structure of ill structured problems,” Artificial Intelligence,
vol. 4, no. 3, pp. 181–201, 1973.

[158] H. Song, F. Guimbretière, and H. Lipson, “ModelCraft: Capturing freehand
annotations and edits on physical 3D models,” in UIST ’06: Proceedings of
the 19th Annual ACM Symposium on User Interface Software and Technology,
2006.

[159] T. F. Stahovich, “Interpreting the engineer’s sketch: A picture is worth a thou-
sand constraints,” in 1997 AAAI Symposium on Reasoning with Diagrammatic
Representations II, pp. 31–38, 1997.

[160] M. Stefik, G. Foster, D. G. Bobrow, K. Kahn, S. Lanning, and L. Suchman,
“Beyond the chalkboard: Computer support for collaboration and problem
solving in meetings,” Communications of the ACM, vol. 30, no. 1, pp. 32–47,
1987.

[161] I. Sutherland, “SketchPad: A man-machine graphical communication system,”
in Spring Joint Computer Conference, pp. 329–345, 1963.

[162] M. Suwa and B. Tversky, “What do architects and students perceive in their
design sketches? A protocol analysis,” Design Studies, vol. 18, pp. 385–403,
1997.

[163] M. Terry and E. D. Mynatt, “Recognizing creative needs in user interface
design,” in C & C ’02: Proceedings of the ACM Conference on Creativity and
Cognition, 2002.

[164] L. Tesler, “The smalltalk environment,” Byte, vol. 6, pp. 90–147, 1981.
[165] C. Thorpe and S. Shafer, “Correspondence in line drawings of multiple views

of objects,” in Proceedings of IJCAI-83, 1983.
[166] K. Tombre, C. Ah-Soon, P. Dosch, G. Masini, and S. Tabonne, “Stable and

robust vectorization: How to make the right choices,” in Graphics Recognition:
Recent Advances, (A. Chhabra and D. Dori, eds.), vol. 1941 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, pp. 3–18, 2000.

[167] S. Tsang, R. Balakrishnan, K. Singh, A. Ranjan, and A. Ranjan, “A sugges-
tive interface for image guided 3D sketching,” in CHI ’04: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 591–598,
New York, NY, USA: ACM, 2004.

[168] B. Tversky, “What do sketches say about thinking?,” in AAAI Spring Sympo-
sium on Sketch Understanding, (T. Stahovic, J. Landay, and R. Davis, eds.),
Menlo Park, CA: AAAI Press, 2002.

[169] B. Tversky and P. U. Lee, “Pictorial and verbal tools for conveying routes,”
in COSIT-99, (C. Freksa and D. M. Mark, eds.), Vol. 1661 of Lecture notes in
Computer Science, Springer, Stade, Germany, pp. 51–64, 1999.

References 93

[170] B. Tversky, J. Zacks, P. U. Lee, and J. Heiser, “Lines, blobs, crosses and
arrows: Diagrammatic communication with schematic figures,” in Diagrams
’00: Proceedings of the First International Conference on Theory and Appli-
cation of Diagrams, pp. 221–230, London, UK:, Springer-Verlag, 2000.

[171] P. van Sommers, Drawing and Cognition: Descriptive and Experimental Stud-
ies of Graphic Production Processes. Cambridge University Press, 1984.

[172] O. Veselova and R. Davis, “Perceptually based learning of shape descriptions,”
in AAAI ’04: Proceedings of the National Conference on Artificial Intelligence,
San Jose, California, pp. 482–487, 2004.

[173] Wacom, “Wacom tablet,” http://www.wacom.com, 2007.
[174] M. Walker, L. Takayama, and J. A. Landay, “High-fidelity or low-fidelity,

paper or computer? Choosing Attributes when testing web prototypes,” in
Proceedings of Human Factors and Ergonomics Society: HFES 2002, 2002.

[175] W. Wang and G. Grinstein, “A polyhedral object’s CSG-Rep reconstruction
from a single 2D line drawing,” in Proceedings of 1989 SPIE Intelligent Robots
and Computer Vision III: Algorithms and Techniques, pp. 230–238, 1989.

[176] J. R. Ward, “Annotated bibilography in pen computing and handwriting
recognition,” 2008. http://users.erols.com/rwservices/biblio.html.

[177] N. Wardrip-Fruin and N. Montfort, eds., The New Media Reader. MIT Press,
2003.

[178] D. West, A. Quigley, and J. Kay, “MEMENTO: A digital-physical scrapbook
for memory sharing,” Personal Ubiquitous Computers, vol. 11, no. 4, pp. 313–
328, 2007.

[179] J. O. Wobbrock, A. D. Wilson, and Y. Li, “Gestures without libraries, toolk-
its or training: A $1 recognizer for user interface prototypes,” in UIST ’07:
Proceedings of ACM Symposium on User Interface Software and Technology,
pp. 159–168, New York, NY, USA: ACM, 2007.

[180] Y. Y. Wong, “Rough and ready prototypes: Lessons from graphic design,” in
CHI ’92: Posters and Short Talks of the 1992 SIGCHI Conference on Human
Factors in Computing Systems, pp. 83–84, New York, NY, USA: ACM, 1992.

[181] Y. Yamamoto, K. Nakakoji, Y. Niahinaka, and M. Asada, “ART019: A time-
based sketchbook interface,” Technical report, KID Laboratory, RCAST, Uni-
versity of Tokyo.

[182] R. C. Zeleznik, K. P. Herndon, and J. F. Hughes, “SKETCH: An interface for
sketching 3D scenes,” in SIGGRAPH 1996, 1996.

