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Abstract 
Personal data is everywhere. The widespread adoption of the Internet, fueled by the 
proliferation of smartphones and data plans, has resulted in an amazing amount of 
digital information about each individual. Social interactions (e.g. email, SMS, 
phone, Skype, Facebook), planning and coordination (e.g. calendars, TripIt, 
Basecamp, online to do lists), entertainment (e.g. YouTube, iTunes, Netflix, Spotify), 
and commerce (e.g. online banking, credit card purchases, Amazon, Zappos, eBay) 
all generate personal data. 

This data holds promise for a breadth of new service opportunities to improve 
people’s lives through deep personalization, through tools to manage aspects of their 
personal wellbeing, and through services that support identity construction. 
However, there is a broad gap between this vision of leveraging personal data to 
benefit individuals and the state of personal data today. 

This thesis proposes unified personal data as a new framing for engaging with 
personal data. Through this framing, it synthesizes previous research on personal 
data and describes a generalized framework for developing applications that depend 
on personal data, exposing current challenges and issues. Next, it defines a set of 
design goals to improve the state of personal data systems today. Finally, it 
contributes Phenom, a software service designed to address the challenges of 
developing applications that rely on personal data. 
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1 Introduction 

In the last decade, our society has undergone a fundamental shift in day-to-day life 
starting with the widespread adoption of the Internet and rapidly accelerated by the 
proliferation of smartphones and data plans.  For a large and growing portion of the 
first world population, an incredible number of people’s daily tasks are now 
mediated by Internet-connected computing technology: social interactions (e.g. 
email, SMS, phone, Skype, Facebook), planning and coordination (e.g. calendars, 
TripIt, Basecamp, online to do lists), entertainment (e.g. YouTube, iTunes, Netflix, 
Spotify), and commerce (e.g. online banking, credit card purchases, Amazon, 
Zappos, eBay) are all activities that are increasingly digitally mediated. In addition, 
people are generating increasing amounts of files including documents, media, and 
contact lists. Fueled by convenience and increased efficiency, the way people do 
things today is markedly different from the prior decade.  

Through this lens, the massive accumulation of data that describes people’s behavior 
in these applications and services is merely a byproduct of this major societal shift: 
these applications capture who their users communicate with, what their users 
purchase, and what content they consume. But these large caches of data are hardly 
a coincidental byproduct: Facebook, Google, Amazon, and Netflix each owe their 
continued success in large part to the massive stores of personal data they have 
amassed that describe their users’ behaviors. These companies employ their users’ 
data to sell advertising, recommend content, and personalize interfaces. Often, 
companies use the amassed data while users remain uninvolved. Most users do not 
understand what data is being used, how it is being used, how they might be at risk, 
and how they might benefit from applications that use their data. 

People are understandably concerned, distrustful, and feel helpless when it comes to 
their data. Other than withdrawing altogether from our technology-drive society, 
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what choice do they have? As a result, most people have a fairly distanced 
relationship with the data about them: the typical person has effectively no 
relationship with their data. The concerned person tries to minimize what is 
collected, to say “no” whenever offered a choice that lets them still receive service 
without surrendering their data. Thus, the ecosystem of personal data appears quite 
dysfunctional: the people who are the subject of that data have limited access to it 
and try to minimize its existence while companies vie for users so that they can have 
unrestricted access to the data users will generate in their services.  

Simultaneously, there is a sense that this data holds immense value that when 
combined could unlock an exciting new future of highly personalized, meaningful 
personal computing experiences. Many applications and services have begun to 
demonstrate the personalized, holistic, and user-centric potential that individuals’ 
data has to offer. Personal assistants like Google Now, Siri, and Cortana use the data 
collected within their platforms to suggest contextually relevant information and 
answer queries. The Nest thermostat adapts to a user’s behavior and makes 
adjustments auto-magically. Gmail’s priority inbox feature uses a variety of heuristics 
like which emails the user reads first and who the user sends emails to in order to 
guess which emails the user wants to be prioritized. 

Yet, these examples feel like they fall short of the real potential of personal data. 
Researchers motivate their papers with promises for the awesome, intelligent, 
personalized future of computing. Science fiction envisions personal assistants that 
understand complex situations1, learning environments that can relate lessons to our 
actual life experiences2, and technology that can automatically assess and treat 
mental health conditions3. With a little imagination, there is the clear potential for 
technology to support tasks that are difficult for people to do today: Where should I 
go on vacation? How can I live more sustainably? Who should I room with in 
college? What thing should I buy to make my life better? What should I do 
differently to be a better boss/employee/ spouse/parent/friend? A future where 
technology can help us in these situations seems more plausible than it has ever been 
before. Following the path to realizing this vision will require major advances across 
computer science: speech interfaces, machine learning, robotics, sensing hardware, 
database systems, privacy and security, distributed systems. Furthermore, beyond 
computer science much of this personalization will require domain-specific 
knowledge and will likely require advances in those fields as well. 

To be able to attempt the advances required to enable this promising future requires 
engaging with the present-day dysfunctional landscape of personal data 
characterized above, itself a daunting task. Even worse, beneath the surface of the 
societal and social issues surrounding personal data is a similarly dysfunctional 
technological landscape. Science and engineering research answers well-defined 

                                                         
 

1 Her (2015) 
2 Star Trek (2009) 
3 Card, O. S. (1985). Ender's game (Vol. 1). St. Martin's Press. 
2 Star Trek (2009) 
3 Card, O. S. (1985). Ender's game (Vol. 1). St. Martin's Press. 
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questions, but in the case of personal data, the goal state is ill defined. Making an 
advance under these conditions first requires specifying a new frame for 
understanding what could and should be; a vision for the future of personal data. 

                                     

Figure 1: Personal data today is separated across the applications and services where each type of data 
originated (left). To unlock the full potential of personal data, it should instead be structured to prioritize 
the coherence of the heterogeneous data around each individual who is the subject of that data (right). 

Recent work by Pentland has proposed “a new deal on data,” specifying that users 
should be the owners of the data that describes their own behavior (Pentland, 2009). 
Following this theme, Estrin has proposed a vision of “small data” wherein each 
individual can leverage the traces of data about them in order to build insights about 
themselves (Estrin, 2014). These visions offer components of an intriguing future: 
who should own a person’s data (people should own their own data) and what people 
ought to do with their own data (people should be able to build insights about 
themselves from their own data).  

Building on this recent work, this thesis proposes the framing of unified personal 
data as an opportunity and a goal state for advancing the landscape of personal 
data. The unified personal data vision claims that an individual’s heterogeneous 
personal data should be tightly integrated and represented all together on the level of 
the individual (Figure 1 right), rather than each user’s personal data being disparate, 
disjoint, and siloed across each of the particular services and devices that an 
individual uses. This framing of unified personal data as a goal state for personal 
data signifies an important design contribution that advances many areas of 
computing. 

An entire host of challenges must be overcome to bring about unified personal data. 
Personal data is siloed within the services and devices where it was collected. 
Companies independently determine what data to collect, whether or not data can 
be accessible outside of the service, how long data will be kept, the terms of use for 
the data, and what format that data can be accessed in. Even if a user has the power 
to grant a developer access to her data, the challenges continue: bringing data 
together from multiple sources, doing something to process that data (e.g. machine 
learning), and applying the data are all a massive undertaking. Furthermore, there is 
very little structure or support for this process today.  
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Advancing the state of personal data will require a fundamental shift in the way that 
personal data is managed. Today, personal data is stored separately by each 
company that collected it, and then within each application or service it is separated 
by user. This approach is a natural fit for “big data” analysis: a company can use the 
data they have amassed across all of their users to gain insights on user behavior.  

If the goal is to gain insights about individuals, the current approach is a bad fit. The 
amount of effort required to participate in the quantified self movement helps to 
illustrate just how inhibitive the current approach is: to get even a partial view of 
one’s own data requires technical skills, and a fair amount of invested time in order 
to write the code that brings together data from these disparate sources and do 
something interesting with that data. While motivated individuals are able to draw 
together some of their data and even generate their own insights from it4, these 
systems tend to be built in an ad hoc fashion (e.g. connecting to specific sets of 
services, designed to run in specific programming environments). Even for 
individuals with technical skills, these can be difficult to build on, and for those 
without technical knowledge most tools that bring together multiple sources of 
heterogeneous data are out of reach. 

Though these observations might seem obvious in retrospect, they were not. In my 
early days as a doctoral student at Carnegie Mellon, colleagues and I would 
hypothesize many ideas of the form “I bet if you had [X], [Y], and [Z] data, you 
could infer [A].” Finally, I tried one, a comparatively simple one: “I bet if you had a 
person’s communication logs you could infer the strength of their relationships with 
all of their contacts.” In fact, we expected it was going to be so simple that the real 
research contribution would not be the relationship model, but instead the 
contribution was going to be “inferred relationship strength can be used to set 
sharing preferences.” As chapter 3 details, this was in fact not a simple task, and the 
result left much to be desired. Furthermore, following up with more data from more 
sources was not feasible. The resources required to make even some simple additions 
were too great. Why was this so difficult, so resource intensive? What changes are 
necessary to improve this state of personal data?  

This dissertation seeks answers to those questions by stepping back to take a holistic 
look at the ecosystem of personal data. To accomplish this, I employ a 
multidisciplinary human-computer interaction approach, integrating inquiry 
techniques from both computer science and design to make advances in both 
disciplines.  

                                                         
 

4  See http://blog.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life/ and 
http://feltron.com/ for two notable examples. 
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Figure 2: The conceptual framework of the steps involved in developing software that depends on 
personal data: data is collected from some number of data sources, the collected data is transformed 
into the appropriate level of abstraction or meaning for the target application, and the data is 
incorporated in that target application. 

Another important outcome of this dissertation is a conceptual framework that 
describes the general process that is required to develop software that depends on 
personal data (see Figure 2). The conceptual framework consists of two components. 
The first component is a continuum of personal data from very low-level (e.g. raw 
sensor data) to very high level (e.g. is the user experiencing major depression?).  The 
second component is a set of three steps that are required to develop applications 
that depend on personal data. First, capture or collect the necessary personal data. 
Second, transform the collected personal data into the required level of abstraction 
or meaning for how it will be used. Third, apply the transformed data to the target 
application. While these three steps may seem simple on the surface, chapter 4 
highlights a variety of challenges that highlight the complexity of engaging in this 
process. The conceptual framework is a useful tool for engaging a conversation 
around the process of developing applications with personal data, and exposes some 
critical issues for working with personal data, which limits what is reasonably 
possible for researchers and application developers to accomplish today. By distilling 
these challenges, this dissertation proposes a set of goals for achieving the vision of 
unified personal data.  

Finally, this dissertation describes the design and implementation of Phenom, a 
service designed to make progress towards these goals by modularizing the process of 
working with personal data. Phenom dramatically reduces the effort that is required 
for a developer to incorporate personal data in an application. By employing a 
semantic data store and focusing on an integrated, flexible, and modular approach 
to handling personal data, Phenom radically changes how easy it is for a developer 
to program applications that depend on personal data, demonstrating a first step 
towards the vision of unified personal data.  
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1.1 Research Contributions 
This dissertation offers the following technical and design contributions to HCI: 

1. A proposal for unified personal data; a reframing of many HCI challenges, 
human needs, and technical opportunities that can all be advanced through a 
more holistic view of all of the individual data amassing around people as 
their personal data that should be brought together and structured such that 
it works for them and remains under their control. 

2. The notion of personal data as a continuum, and a conceptual framework 
that unpacks the implicit process involved in working with personal data. 

3. A set of design goals for improving the ecosystem of personal data. 
4. The design of Phenom: a service that supports software development with 

personal data. Phenom modularizes the collection, interconnection, 
processing, and querying of personal data to solve a key set of challenges 
involved in developing applications that use personal data. 

5. The implementation of a proof of concept of Phenom, which demonstrates its 
viability and utility as a personal data service. 

1.2 Dissertation Overview 
Chapter 2 highlights many research domains that have incorporated personal data 
(often implicitly) in their work, including a variety of my own projects across those 
domains. Personal data underlies multiple threads of research, and in many cases 
progress in those domains appears stifled because of the limitations of the state of 
personal data today. Despite these limitations encountered and the commonalities 
across fields, it appears that no efforts have been made towards connecting these 
domains and engaging holistic thinking on the ecosystem of personal data. The 
vision of unified personal data offers a new frame for viewing people’s collections of 
personal data, one that offers benefits to the various research domains that have 
helped to define personal data and that employ it to offer an advance.  

Chapter 3 offers a detailed case study of the process and findings of my own research 
to connect communication behavior to social sharing preferences. The practical 
challenges faced in that work highlight many of the shortcomings of engaging in 
research with personal data. 

Chapter 4 synthesizes the landscape of personal data mapped out in the previous 
two chapters to engage personal data from a holistic perspective. This synthesis 
produces a set of general steps that are required for making use of personal data: 
collecting the data, making higher-level sense of the data, and applying the processed 
data to an application. It identifies a set of challenges and issues that inhibit work 
with personal data, using the framework to illustrate these challenges. Finally, it 
proposes a set of design goals that offer an agenda for improving the personal data 
ecosystem. 
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Chapter 5 describes Phenom, a service that I developed to support the process of 
developing applications based on the vision of unified personal data. Phenom 
addresses some of the most prominent challenges of working with personal data by 
offering a modular approach that separates the steps of the personal data 
development process. Phenom unifies personal data on the level of the individual, 
supporting rich interconnections in the data and reuse of components across 
completely independent applications. 

Chapter 6 concludes the dissertation with an eye towards the future of personal data 
research. 



 

 
 

 

 

  

2 Situating Unified Personal Data 
within the Landscape of 
Research that Leverages 
Personal Data 

Traditionally, scientific and engineering research both focus on answering well-
formed research questions; the mantra “what is your research question?” is 
universally familiar and relevant. And yet sometimes identifying what the question 
should be is itself a major research challenge. These situations can be daunting from 
the perspective of science and engineering research. Design research, in contrast, 
focuses on the search for a question that is worth answering. Design researchers refer 
to this as framing a goal state that supports an advance toward a preferred state of 
the world. It asks about relevance and improvement to the world as the most critical 
criteria. To understand this approach requires a basic understanding of the concept 
of design thinking.   

When describing design, Herbert Simon wrote “To design is to devise courses of 
action aimed at changing existing situations into preferred ones,” (Simon, 1969). 
This places design thinking in a subjective space with a focus on what might be 
better for the world. Rittel and Webber advanced this idea with their work on 
“Wicked Problems,” large-scale social issues like urban crime, that are not easily 
addressed through science or engineering inquiry, but that are approachable 
through design thinking (Rittel & Webber, 1973). These challenges cannot be 
accurately modeled (and thus cannot be solved by scientific or engineering methods 
alone) because of the conflicting perspectives of the stakeholders involved. The 



Chapter 2: Situating Unified Personal Data within the Landscape of Research that Leverages 
Personal Data 

 20 

complex open system of multiple stakeholders with conflicting goals and 
innumerable possible solutions described by Rittel and Weber are applicable when 
considering the ecosystem of personal data5.  They describe how design thinking 
makes advances on these types of problems by proposing solutions that offer a 
unique framing of the problem to be solved, and that it is only through the 
articulation of a solution that researchers can even know the problem they want to 
address.  

Speaking on how design functions as a reflective practice, Donald Schön argues for 
the importance of framing problems, and specifically that the process of design 
thinking is about picking a specific frame to engage (Schön, 1983). Design thinkers 
employ a process of reflecting-in-action and reflecting on action as they generate and 
assess many possible frames (i.e. the futures they might want to achieve). More 
recently, Kee Dorst considered different forms of reasoning (deduction, induction, 
and abduction) to position design thinking with respect to the kinds of reasoning 
frequently encountered in science and engineering (Dorst, 2011). Dorst builds on 
Schön’s concept of framing, identifying that framing is a form of perspective-taking, 
with many different perspectives possible. He discusses how designers systematically 
cycle through many possible desired outcomes in order to discover a path forward 
that can resolve a problematic situation. 

This thesis proposes unified personal data as a mechanism to unlock the promised 
future of personalized computing experiences. The articulation of this goal (a 
preferred future) and this mechanism (unified personal data) is a match to Dorst’s 
conception of framing in design thinking. Framing the vision and the opportunity of 
unified personal data is a core contribution of this dissertation that unfolds through 
chapters 2, 3, and 4. The messy and iterative nature of this process does not easily 
lend itself to the serial format of this dissertation, and this chapter relies in part on 
the overview offered in Chapter 1 to offer a structure to this framing. 

To begin this framing, this chapter provides a broad survey of research domains that 
have led to the conception of unified personal data as a solution. Across computing 
research, researchers have been implicitly examining the need and benefit of 
personal data from a variety of perspectives over many years. Despite the common 
interest in personal data shared by each of these domains, and perhaps because of 
the lack of a broader cross-discipline unified personal data framing, the contributions 
between them have been mostly disconnected: progress in one personal-data-focused 
sub-discipline typically has little impact on the work in other sub-disciplines. 
Treating personal data holistically as a research community rather than as a 
disconnected (or loosely connected) combination of research topics may provide the 
long-term support necessary to push forward the evolution of personal data. 

The bulk of this chapter highlights each of these domains and connections between 
them (see Figure 3), focusing on challenges that each domain has encountered 

                                                         
 

5 see chapter 4 for a discussion of some of the stakeholders for personal data 



Chapter 2: Situating Unified Personal Data within the Landscape of Research that Leverages 
Personal Data 

 21 

related to personal data. Highlighting these challenges serves several purposes in this 
dissertation. First, understanding the personal-data-related challenges in each field 
offers multiple perspectives that contribute to the problem framing. Additionally, 
understanding how each of these fields relates to personal data offers the ability to 
contextualize advances made in the space of personal data with respect to each 
discipline.  

The end of this chapter offers an overview of various personal-data-related research 
projects that I have worked on. While many of these projects also have separate 
research contributions of their own, in the context of this dissertation these projects 
can be seen as design probes. Through this lens, each of these projects has offered a 
different perspective towards framing the opportunity of unified personal data, 
which I have synthesized in chapter 4. 

 

 

Figure 3. A map highlighting research domains across HCI that generate, make use of, or investigate 
personal data, and the interconnections between them.  

2.1 Personal Information Management 
The research area of Personal Information Management studies how people acquire, 
organize, maintain, and retrieve the many different types of information that they 
use in their day-to-day lives. In many ways, the field draws inspiration from 
Vannevar Bush’s seminal paper “As We May Think” (Bush, 1945). Bush describes 
the hypothetical Memex, a microfilm-based system for storing and retrieving the 
multitude of information that people handle throughout their lives. The first work 
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actually referencing PIM appeared in the 1980s6, evolving as a research area around 
the same time as HCI. 

Jones’ survey chapter of PIM (W. Jones, 2007) describes three “senses” of Personal 
Information: 

1. The information people keep for their own personal use (e.g. contact lists, 
financial records, time-tracking logs) 

2. Information about a person but possibly kept by and under the control of 
others. (e.g. invoices from purchases made on Amazon, electronic medical 
records)  

3. Information experienced by a person even if this information remains outside 
a person’s control. (e.g. the news stories a person views online, the items a 
person browses on Amazon but does not buy) 

As Jones identifies, the study of PIM primarily focuses on the first sense, but 
acknowledges the relevance of the second and third as well. Put another way, PIM is 
primarily a study of how humans use the tools available to them in order to store 
information that they would like to access in the future, including contacts 
(Whittaker, Jones, & Terveen, 2002), calendar appointments (Starner, Snoeck, 
Wong, & McGuire, 2004), to do items (Bellotti, Dalal, Good, Flynn, & Bobrow, 
2004), email (Ducheneaut & Bellotti, 2001), and the myriad pieces of unstructured 
information that we collect (Bernstein, Van Kleek, Karger, & Schraefel, 2008) and 
the possibility of finding the structure in that data (Chang et al., 2013). Other recent 
work in PIM has explored the concept of unifying different types of heterogeneous 
personal information (Karger & Jones, 2006). The problems cited in this work offer 
support for the design goals specified in chapter 4. 

PIM research offers an important component to the broader context of personal 
data research. First, PIM research provides an important examination of the 
interface between the user and the storage and retrieval of their personal data. In 
PIM research the specific interaction is about users explicitly storing pieces of their 
personal data for the purposes of retrieving it themselves later: there is no additional 
processing happening on the data while it is stored. However, PIM research can 
contribute insights into how best to collect hand-labeled ground truth data. This is 
particularly important for training models on personal data. With personal data the 
ground truth labeling task is more constrained than in the general case because with 
personal data models the person labeling the data typically needs to be the person 
who that data is about. 

Today, there is much more personal information for users to manage than ever 
before. The volume of data has grown both because there are more types of digital 
personal information (e.g. media collections, shopping behavior, and taxes), and also 

                                                         
 

6 See (W. Jones, 2007) for a helpful explanation of the study of PIM that offers some connections 
between Vannevar Bush’s “As We May Think” and the modern study of PIM starting in the 
1980s. 
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because there are more data in existing channels (e.g. growing histories of email 
interaction, and more and more email each year). The result of this is that people 
have more personal data than ever to keep track of and many of the “things” are 
stored on different third-party services. A major challenge for PIM is to provide 
people with easy and relevant access to their data. This dissertation focuses on 
offering new ways of connecting relevant data together, even across different third-
party services, which is one component of the challenge facing PIM. Furthermore, 
this dissertation proposes a unified approach to track and store people’s interactions 
with their data, which is another aspect of PIM.  

2.2 User Modeling 
Research related to the goal of creating software that responds and reacts to 
characteristics of the user first appeared in the 1970s in several different application 
domains. Some of this work had a goal of creating intelligent tutoring systems that 
would use the student’s behavior within a tutoring system to personalize the 
software’s behavior for that student (Burton & Brown, 1979). Other work was 
focused on dialog systems that would tell different things to different users based on 
what the software could infer the user already knew (Allen, 1979; Cohen & Perrault, 
1979; Perrault, Allen, & Cohen, 1978), or by using characteristics of the user to guess 
what the user’s intention was (Rich, 1979a, 1979b). In these early modeling systems, 
the modeling components were not distinct from the rest of the application, but as 
the field grew user modeling systems were made more modular. The first wave of 
modularization was in the form of shell applications that would be a part of the 
application. Fueled by the advent of the internet, the next wave was server-based 
user models that could support multiple distributed client applications (Kobsa, 2001).  

User modeling has grown with the rest of computing to include modeling in mobile 
and ubiquitous contexts. The info-bead user modeling approach (Dim, Kuflik, & 
Reinhartz-Berger, 2015) is one such system, which represents different pieces of user 
context as info-beads that can be connected together through info-links to form info-
pendants. The complete collection of info-beads and info-pendants can be combined to 
form user models and group models, which can be used to personalized specific 
systems. This modular approach can enable the reuse of info-beads and info-pendants in 
different deployments of the info-bead user modeling approach. Though the 
architecture and the approach to modularity in the info-bead approach are different 
from the implementation of Phenom described in chapter 5, the value placed on 
modular components that can be used across different applications and Phenom’s 
bots (see section 5.1) share a common inspiration. 

User modeling has also begun to expand to include the idea that user data can come 
from across the user’s lifetime. PortMe (Kay & Kummerfeld, 2010) is a user model 
framework that is designed to support models that are based on the user’s lifetime of 
personal data. PortMe provides an interface so that users can view and interact with 
details of user models that are based on their own data, and relies on the PersonisAD 
user model server (Assad, Carmichael, Kay, & Kummerfeld, 2007) for the 



Chapter 2: Situating Unified Personal Data within the Landscape of Research that Leverages 
Personal Data 

 24 

underlying user model representation. This concept of holistically thinking about 
personal data that spans a person’s entire life is core to engaging some of the 
fundamental issues with personal data, and it informs the design goals in chapter 4. 

Where PIM research was mostly focused on a user-centric perspective of explicitly-
collected personal data, User Modeling is different in many ways. Instead User 
Modeling takes a primarily system-centric perspective, focusing instead on 
developing domain-specific models based on user behavior. 

User modeling brings to personal data research a demonstrated process for making 
end-to-end systems that leverage a user’s behavior to model a specific item, and 
incorporate that model into the application. Though these tend to be closed systems 
(i.e. data is collected from, modeled by, and applied to a single application), work in 
user modeling represents concrete examples of leveraging personal data to create 
models and apply those models to specific applications. 

One important challenge facing work in user modeling is deploying the models. This 
is essential for being able to build on the models (either in research or in commercial 
contexts), and also for understanding the real-world validity of the models beyond 
the more controlled environment of a traditional study. Phenom, the system 
described in this dissertation, offers an architecture that supports deploying models 
that depend on a user’s personal data. 

2.3 Recommender Systems 
Recommender systems emerged in the early 1990s, growing out of user modeling 
into a space that was more directly focused on user experience. Specifically, early 
recommender systems set out to address a clear problem: as more and more people 
started using the internet, the amount of content was growing considerably and 
information overload was setting in (Konstan & Riedl, 2012). Tapestry (Goldberg, 
Nichols, Oki, & Terry, 1992), the first recommender system, targeted email 
overload. That work also introduced the phrase collaborative filtering, which has 
been an essential technique used by many recommender systems. In the twenty years 
since, recommender systems have grown massively and are deployed across many 
commercial systems offering personalized recommendations and predictions across 
many different domains from media consumption (i.e. news, movies, books) to 
recommending social relationships (i.e. dating websites, following people on Twitter).  

For personal data research, recommender systems (similar to user modeling) 
demonstrate the potential for closed systems to leverage personal data to enable real-
world personalization. One interesting dimension that recommender systems bring 
to the conversation around personal data is the concept of collaborative filtering: 
dynamically using labeled data captured from a breadth of users to predict another 
user’s behavior or interests. This also draws together one aspect of the research on 
personal information management: the manual labeling of data by users. 
Recommender systems, particularly those based on collaborative filtering, 
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demonstrate interactions where users can provide labels for their personal data and 
receive direct benefits in turn for that labeling. 

A key challenge facing recommender systems is to integrate different kinds of 
recommender approaches including content-based approaches (i.e. using 
information about the content), collaborative approaches (i.e. collaborative filtering), 
and contextual approaches (i.e. situational information about the user) (Konstan & 
Riedl, 2012). This goal is an important component of the personal data vision as 
well. In most recommender systems, the personal data that is used by the system is 
personal data that was generated within the system (e.g. ratings, viewing behavior, 
sharing behavior). However, to fully realize the potential of contextual approaches, 
recommender systems will need to start to depend on data from outside of their 
systems as well. Work on context-aware recommender systems represents a 
movement in that direction (Abbar, Bouzeghoub, & Lopez, 2009; Adomavicius & 
Tuzhilin, 2011). Most context-aware recommender systems to date focus on 
immediate context, like the time of day or location (Matyas & Schlieder, 2009; Oku, 
Kotera, & Sumiya, 2010). Moving forward, recommender systems will need to 
broaden their focus to include a more holistic view of the user’s data and begin to 
make use of logs of personal data that show routines, changes in behavior, and 
trends over time (Bobadilla, Ortega, Hernando, & Gutiérrez, 2013). As a result, the 
work of this dissertation is of direct interest to recommender systems. 

2.4 Lifelogging 
The research topic of lifelogging first emerged in the mid-1990s and in many ways 
started as a combination PIM, multimedia, and ubiquitous computing, sharing the 
same basic PIM inspiration of Bush’s Memex (Bush, 1945), but dramatically 
increasing the amount and kinds of data that might be captured in such a system (i.e. 
location, video, workstation logging) (Lamming et al., 1994). Other early work in the 
topic of lifelogging includes Lifestreams, which proposed a new metaphor for 
dynamically organizing a person’s data (Freeman & Fertig, 1995; Freeman & 
Gelernter, 1996). While the Lifestreams work was particularly focused on 
documents, it sets out a list of six observations that motivated their work, and remain 
relevant today: 

1. Storage should be transparent 
2. Directories are inadequate as an organizing device 
3. Archiving should be automatic 
4. The system should summarize multiple related documents in a concise 

overview 
5. Computers should make reminders convenient 
6. Personal data should be accessible everywhere 

With a small amount of interpretation, when placed in the context of today’s 
landscape of personal data many of these observations remain applicable and the 
spirit of the goals expressed through those observations have not been met. 



Chapter 2: Situating Unified Personal Data within the Landscape of Research that Leverages 
Personal Data 

 26 

Unified on the concept of “total capture” with a primary goal of serving as a 
memory aid, a variety of lifelogging systems appeared to focus on capturing as much 
data as possible about individuals’ behavior (Hodges et al., 2006; Hori & Aizawa, 
2003) and providing usable ways of accessing that data (Adar, Karger, & Stein, 1999; 
Dumais et al., 2003; Gemmell, Bell, & Lueder, 2006; Gemmell, Bell, Lueder, 
Drucker, & Wong, 2002). This style of lifelogging work attracted criticism and lost 
favor in the research world when it became apparent that the collection of these 
huge archives of disparate data did not lead to compelling applications (Sellen & 
Whittaker, 2010). Despite these criticisms, a number of commercial systems have 
emerged in recent years that enable the “capture” portion of lifelogging (e.g. 
Narrative camera7, Saga mobile app8). One notable exception to this criticism is in 
more specific populations where there has been demonstrated value in lifelogging, 
for example in people with memory impairment (Browne et al., 2011; Lee & Dey, 
2008), or serving as a tool for helping and understanding children with autism 
(Marcu, Dey, & Kiesler, 2012). 

In many ways, lifelogging is an attempt at finding a solution (developing the 
technology) without fully understanding the problem (validating the application 
area). lifelogging as a research area communicates an underlying hunch that there 
must be value in the data that characterizes our lives. However, it lacks a clear need 
that collecting this data will fill. 

Lifelogging is a different perspective on personal data: the idea that individuals will 
drive the collection of their own personal data, perhaps without a specific purpose in 
mind. This contrasts against User Modeling and Recommender Systems where the 
user may not even know that data is being captured and used by the system. 
lifelogging research is in some ways similar to PIM: a user-centric focus on the 
collection and retrieval of personal data. However, where lifelogging and PIM differ 
is in the volume and use of the data: PIM collects a comparatively small amount of 
data that the user expects to need later, where lifelogging collects as much data as 
possible, typically without a specific use in mind. 

Lifelogging research faces a difficult duality. On one hand, there is a general hunch 
that there is value contained within personal data, and it is impossible to harness that 
value (or even to understand what that value is) without first collecting large amounts 
of data. On the other hand, lifelogging is a cautionary tale of finding a solution 
without knowing what problem it solves. One way for personal data to address these 
issues is by making it easier for developers and researchers to experiment with 
different ways of finding value in personal data. Lowering the barrier to entry is 
likely to surface many more ideas and enable a real-world validation of their utility. 
This dissertation explores opportunities for reducing the burden on developers for 
carrying out these steps. 

                                                         
 

7 http://getnarrative.com/ 
8 http://www.getsaga.com/ 
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2.5 Context-Aware Computing 
The field of context-aware computing is a research domain that was established in 
parallel with and closely related to ubiquitous computing in the early 1990’s to 
develop computing systems that could capture, process, and react to a person’s 
immediate context (Schilit, Adams, & Want, 1994). A widely used definition of 
context comes from (A. K. Dey, 2001): “Context is any information that can be used 
to characterise the situation of an entity. An entity is a person, place, or object that is 
considered relevant to the interaction between a user and an application, including 
the user and applications themselves.” Dey also offers a definition of context-aware: 
“A system is context-aware if it uses context to provide relevant information and/or 
services to the user, where relevancy depends on the user’s task.” These definitions 
are quite general, and Dourish (2004) argues that full context-awareness is 
intractable, as the relevance of context surely changes from moment to moment. 

The Context Toolkit is a very prominent piece of work in this domain (A. Dey, 
Salber, & Abowd, 2001). The Context Toolkit was a response to the problem that 
developing context-aware applications was far too difficult because the components 
of a context-aware system were not modular enough to facilitate reuse. This 
observation and the resulting requirements for dealing with context are in many 
ways analogous to the observations made in this dissertation with respect to personal 
data: developing with personal data is also very difficult, and one of the sources of 
that difficulty is also the lack of modularity and the exposure of too much 
complexity.9 

Context-aware computing is largely motivated by vision proposed by Weiser’s “Sal” 
story (Weiser, 1991) where as a user moves through her day, technology is seamlessly 
integrated into her day, to the point where the technology becomes unremarkable 
and invisible in use. Despite the fact that an important component of realizing this 
vision will require longer-term knowledge, for example knowledge of a person’s 
routine behavior (Tolmie, Pycock, Diggins, Maclean, & Karsenty, 2002), context-
aware computing has traditionally focused on immediate context based on data that 
was collected in the short term, often based only on instantaneous sensor readings. 
This represents an entire category of data that describes information about a person, 
and thus fits into the category of personal data. 

From the perspective of personal data, context-aware computing research 
contributes technical solutions for transforming sensor data into more meaningful 
personal data. In this way, context-aware computing makes possible the automatic 
collection of new kinds of personal data, or of improving the accuracy or coverage of 
that data. 

                                                         
 

9 There is far too much work in the realm of context-aware computing to describe in this 
chapter, however (Baldauf, Dustdar, & Rosenberg, 2007) and (Chen & Kotz, 2000) offer 
surveys of the field. 
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One important problem that the field of context awareness faces is the challenge of 
reconciling instantaneous data, which captures part of a person’s context in the 
moment, with the much more expansive logs of heterogeneous data that provide the 
information necessary to correctly interpret that instantaneous context. To engage 
this challenge, context-awareness research will either need to access and interpret 
those disparate logs of heterogeneous personal data themselves, or build on the work 
of others who have done this. The framing of unified personal data includes the 
concept of collecting long-term logs of data about the user, simplifying this challenge.  

2.6 Personal Informatics and Quantified Self 
Personal informatics is defined as a class of systems that help people collect 
personally relevant information for the purpose of self-reflection and gaining self-
knowledge (Li, Dey, & Forlizzi, 2010). Personal informatics has emerged as a 
research area simultaneous with the widespread adoption of smartphones and 
increased consumer interest in fitness-related wearables. At a high level, personal 
informatics involves two major steps: collecting data and reflecting on that data. On 
the collection side, personal informatics has its roots in PIM, lifelogging, context-
aware computing. On the reflection side, personal informatics has its roots in 
information visualization (Pousman, Stasko, & Mateas, 2007). One example of an 
early personal informatics system that combines these steps is the Ubifit Garden 
(Consolvo et al., 2008), which used mobile phones to collect and visualize physical 
activity information. 

 
Figure 4: Stage-Based Model of Personal Informatics Systems (Li et al., 2010) 

Li, et al. (2010) proposed a stage-based model of personal informatics systems (see 
Figure 4) targeted toward behavior change that identified five stages: preparation, 
collection, integration, reflection, and action. This work highlighted two important 
features that the model emphasized: this process is iterative, and that barriers in 
earlier stages of the process (e.g. difficulty collecting data, difficulty integrating data 
from different sources) cascade to impact later stages, perhaps even making those 
later stages impossible. 

The quantified self movement, a group of people interested in self-tracking, has 
appeared and has gained some traction across the world over the last several years, 
with a small but loyal following. While a few notable individuals have attracted some 
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press for reporting on their own findings from examining their own personal data 
(e.g. Stephen Wolfram’s “The Personal Analytics of My Life” 10  and Nicholas 
Felton’s “Feltron Annual Report”11), for the most part examining one’s own data 
remains a fairly uncommon activity that requires the user to have logged her own 
data and also have the knowledge, skills, and motivation to turn that raw data into 
something meaningful or consumable. 

Research in personal informatics, and the growing quantified self movement 
demonstrate that the process of collecting personal data is a challenge, so much so 
that it inhibits what information can be collected even if the data already exists. 
Recently, there has been a sort of call to arms towards data liberation throughout the 
community. For example, Deborah Estrin’s concept of small data envisions a future 
where individuals have access to and control over all of their data own data, for use 
however they choose (Estrin, 2014).  For personal informatics to continue to grow, it 
needs to be easier for people to bring together and synthesize their own data, and to 
do this from more sources. The vision of unified personal data offers one way of 
accomplishing this. 

2.7 Computational Social Science and Data Mining 
To Understand Human Behavior 

With the widespread adoption of cell phones, it has become possible to collect large-
scale datasets that capture the dynamics of human movement and social behavior 
over large populations and/or long periods of time. A major differentiator in this 
work is whether or not the researchers have access to individuals in the population.  

Typically, if the researchers have access to individuals in the population, it is because 
the researchers have recruited the population directly and have collected the data 
themselves. One early example of this style of work is the reality mining project 
(Eagle & Pentland, 2006). In this work, 9 months of data was collected from 100 
participants that included call logs, Bluetooth proximity to other devices in the study, 
cell tower IDs (providing rough location), and application usage. Through the 
collected dataset, the researchers were able to examine individual routines, dyadic 
behavior across individuals, and organizational behaviors across the entire dataset. 
Since the time that this original data was collected, subsequent studies have been 
conducted to examine routines within families (Davidoff, Ziebart, Zimmerman, & 
Dey, 2011), location dynamics of a heterogeneous sample (Kiukkonen, Blom, 
Dousse, Gatica-Perez, & Laurila, 2010), shifting behaviors in a residential 
community (Aharony, Pan, Ip, Khayal, & Pentland, 2011), and mental health in the 
students of a college class (R. Wang et al., 2014). By engaging in these data 
collections, researchers have the opportunity to collect participant responses focused 

                                                         
 

10 http://blog.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life/ 
11 http://feltron.com/ 
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on a particular research question, which can then be used as ground truth when 
developing a model based on the automatically sensed data. These data collections 
each represent a massive effort on the part of the data collector. 

An alternative approach taken by many researchers in the space of computational 
social science is to obtain and analyze a dataset that already exists, for example 
(Conti, Passarella, & Pezzoni, 2011; González, Hidalgo, & Barabási, 2008; Onnela et 
al., 2007; D. Wang, Pedreschi, Song, Giannotti, & Barabasi, 2011). The perspective 
taken by this work mimics the broader “big data” trend: using anonymized logs, 
typically from a single data source, to build some insight or observe a broad scale 
phenomenon (Lazer et al., 2009). However, there are some major drawbacks to this 
approach, many of which stem from the lack of access that researchers have to the 
individuals whose data comprise the dataset. In particular, this lack of access means 
that the data is often homogeneous (e.g. only call log data no other data) because 
connecting multiple sources of data would require knowing who those individuals 
are, linking data together, and perhaps even requesting permission to do this work. 
Additionally, this means that this style of work also does not have access to explicitly-
provided data (e.g. survey responses), only implicitly-provided data (e.g. phone call 
logs from a telecommunications provider). Even if individuals wanted to provide 
additional information to researchers, there is no mechanism by which to provide 
that information. As a result, this leads researchers to define proxies based on the 
data that are used to represent the desired data. However, these proxies are not 
necessarily validated before use, which can lead to systematic problems when 
interpreting the data (Wiese, Min, Hong, & Zimmerman, 2015).  

These challenges (lacking the ground truth and real-world understanding of what 
these data actually represent) limits the conclusions that can be drawn from this kind 
of research. The ability to have anonymized unified data with useful ground truth 
labels from a large population could have a massive impact on the world. This kind 
of data could produce important scientific results, and also build insights about the 
population that can affect city planning, health, and public policy. The challenge of 
bringing this data together today, even for a single individual, inhibits this progress. 
The vision of unified personal data described in this dissertation represents an 
important step towards these goals by bringing together a user’s heterogeneous 
personal data. 

2.8 Identity Interfaces: Virtual Possessions and Self-
Reflection 

As technology has become increasingly integrated into people’s everyday lives, many 
aspects of everyday life that were previously well established in the physical world 
have begun to bridge into a hybrid physical/digital space, or even a fully digital 
space. The effects of this shift are incredibly broad and far reaching, and have 
changed the way that people communicate, collaborate, create, consume, and 
collect. One important effect of this shift is the transition of many different kinds of 
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possessions that were previously physical possessions into virtual possessions (Odom, 
Zimmerman, & Forlizzi, 2010). This shift is significant in part because people’s 
possessions both reflect and contribute to their identities (R. W. Belk, 1988). In 
contrast to material possessions, virtual possessions are placeless, spaceless, and 
formless (Odom, Zimmerman, & Forlizzi, 2014). These qualities affect the 
circumstances under which people manage their possessions including the process of 
curating and archiving their possessions (Kaye et al., 2006), their process of spending 
time with and reflecting on their virtual possessions (Odom et al., 2010), and the 
legacy that they leave through their possessions (Gulotta, Odom, Forlizzi, & Faste, 
2013). 

Research on virtual possessions stands distinct from that in personal informatics, 
though they are in some ways related. Personal informatics is a user-driven goal-
oriented process for collecting personal data (often through explicit action) that 
describes a user’s own behavior. Virtual possessions is also focused on users 
interacting with their own data, but the user’s motivation for interacting with this 
data and the provenance of this data is a much more fluid component of the user’s 
life: even without explicitly collecting virtual possessions, people have them and 
interact with them on a regular basis.  

The metadata that captures people’s interaction with their virtual possessions, and in 
many cases the virtual possession itself, are all personal data. Furthermore, this data 
could be used as a component of a personal informatics system. As such, many of the 
challenges, research questions, and exploratory systems within virtual possessions 
and personal informatics inform each other and the study of personal data at large. 
For example, the finding that fragmented virtual possessions are problematic for end 
users (i.e. that they are stored in different non-compatible applications and services) 
(Odom et al., 2014) is an important issue for personal data at large. Similarly, the 
importance of and challenges with leaving a digital legacy (Gulotta et al., 2013) is an 
important point of consideration for the whole of an individual’s personal data 
archives, even the aspects of that archive that might not be considered “virtual 
possessions. 

Research on identity interfaces is an examination of the way people relate to the 
personal data that has become an integral part of their everyday lives. Having 
personal data in a digital format, when contrasted with the previous era where this 
data was either a material object or did not exist affords a different way of 
interacting with that data. 

Fragmented personal data is a major challenge for identity interfaces. While people 
present fragmented identities to different social groups (Farnham & Churchill, 2011), 
the fragmentation of personal data is service-based, not identity-based. Thus, an 
essential component of moving identity interfaces forward is to bring together 
service-fragmented data, which will enable research in this domain to continue. 
Unified personal data offers one solution to this very issue. 
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2.9 Sharing Context 
The widespread adoption of the Internet over the last twenty years has brought the 
general public the ability to digitally share personal data socially with other people. 
One major reason to share personal data is to facilitate awareness across colleagues, 
family members, and close friends. Sideshow (Cadiz, Venolia, & Jancke, 2002), 
Community Bar (McEwan & Greenberg, 2005), MyVine (Fogarty, Lai, & 
Christensen, 2004), and ConNexus (J. Tang et al., 2001) collected some awareness 
information, such as IM status and calendar, and automatically shared that 
information with contacts in a side bar interface on the desktop. Awarenex (J. Tang 
et al., 2001), ContextContacts (Oulasvirta, Raento, & Tiitta, 2005) and Connecto 
(Barkhuus et al., 2008) are all mobile awareness systems with various representations 
of location and other data, such as calendar information, ring tone profile, and 
Bluetooth neighbors. 

Location is one type of personal data sharing that has been the subject of a great deal 
of research. While early location sharing was focused on instrumenting an office or 
workplace (Want, Hopper, Falcão, & Gibbons, 1992), subsequent studies explored 
location sharing with colleagues and friends IMBuddy (Hsieh, Tang, Low, & Hong, 
2007), or with family Whereabouts Clock (Brown et al., 2007). Tang et al. explored 
location sharing from the perspective of the motivation behind sharing location data, 
focusing on the difference between purpose-driven sharing and social-driven sharing 
(K. P. Tang, Lin, Hong, Siewiorek, & Sadeh, 2010). They found that where 
purpose-driven sharing typically focuses on an exact location, social-driven location 
sharing was more likely to favor semantic place names to specific geographic 
location. 

Context sharing brings the technical contributions of context-aware computing 
toward a user-centric space. Research on context sharing offers insights into 
mechanisms for sharing personal data, and how people interact with that data are 
important dimensions of the broader domain of personal data. 

Context sharing depends on bringing together the information required to do a 
contextual inference and making that inference. The challenges of doing both of 
these steps are major, and this challenge inhibits more complex context sharing 
scenarios (e.g. the “in-common” sharing scenarios described in (Wiese, Kelley, et al., 
2011)). To enable these more complex context-sharing scenarios that depend on 
multiple pieces of context requires a significant development effort if developers 
cannot easily build on context inferences that have been developed by others. In this 
dissertation, Phenom offers an architecture that supports the integration and reuse of 
many different kinds of abstractions (including inferences) that could be made on 
personal data. 
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2.10 Privacy 
Privacy is perhaps the most dominant topic when it comes to collecting, using, and 
sharing personal data. Academic discussions about data protection and personal 
privacy date back to the late 1960s and early 1970s and have expanded considerably 
in scope since then. A major challenge in privacy research, and in designing privacy-
sensitive systems, is that expectations and perceptions of privacy co-evolve with 
technology, (Iachello & Hong, 2007) and vary across individuals whose opinions may 
also change over time (M. S. Ackerman, Cranor, & Reagle, 1999; Westin, 2001). 
Thus, protecting users’ privacy is both a moving target, and also must allow for some 
dimension of control across individuals. Furthermore, privacy is often viewed as a 
tradeoff, for example trading off the risks and benefits of disclosing some 
information, or the tradeoff between privacy and the public interest (Iachello & 
Hong, 2007). The disclosure of personal data can offer benefits (either tangible or 
intangible) for people who disclose the data and also for the companies that hold the 
data, but can also be costly for either or both parties (Brandimarte & Acquisti, 2012). 

Personal data privacy has been a particularly active topic in recent public discourse 
in large part because of the exposure of the mass-data-collection of the NSA’s 
PRISM program12, but also because of discomfort caused by behavioral advertising 
and a rash of recent data breaches. A major concern within this space is that even in 
the cases where individuals are explicitly paying attention to the permissions that 
they are granting to the applications and services that they use, they often do not 
fully understand the permissions that they are approving (Kelley et al., 2012). 

One way of thinking about user-centric personal data privacy research is through the 
following categories: 

• Understanding the potential privacy risks of disclosing personal data, 
especially cases where disclosing some data inadvertently leaks other data 
(e.g. (Acquisti & Gross, 2009)) 

• Understanding the potential benefits of disclosing personal data (e.g. 
(Lindqvist, Cranshaw, Wiese, Hong, & Zimmerman, 2011) 

• Helping users to understand the meaning behind different privacy options 
and the tradeoffs of granting or denying access to different kinds of data (e.g. 
(Kelley, Bresee, Cranor, & Reeder, 2009)) 

• Providing users with interfaces that enable them to easily express their 
privacy preferences (e.g. (Klemperer et al., 2012)) 

• Guaranteeing enforcement of a user’s privacy preferences (e.g. (Yang, 
Yessenov, & Solar-Lezama, 2012)) 

 

                                                         
 

12  http://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-
internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-
d970ccb04497_story.html 
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Privacy is an extremely important, and also extremely challenging, topic in user-
centric research on personal data, and must be an integral part of ongoing research 
on personal data. 

One major challenge towards implementing usable privacy controls is the lack of 
continuity in setting those controls. Users are forced to specify privacy settings in a 
fragmented way, specifying these preferences per-application. While in some cases 
this granular control might be desirable, in many cases users would benefit from a 
simpler, unified interface for specifying these controls. The vision of unified personal 
data offers the possibility of this kind of unified interfaces for considering privacy 
concerns and specifying privacy preferences in a unified, coherent way. 

2.11 Research Examples 
The previous sections have offered brief overviews of the breadth of research sub-
disciplines that contribute to a broader understanding of personal data. This section 
highlights research projects related to personal data that I have engaged in across a 
variety of these research areas. These projects demonstrate in more detail how 
research in some of these different domains connects to personal data. Additionally, 
these projects have served as research probes that have greatly contributed to my 
task of framing the opportunity of unified personal data.  

2.11.1 Personal Information Management: The Contact List 
Name Field 
I examined contact lists with an initial goal of leveraging the structured data within 
the contact list entries of users’ smartphones to infer aspects of the user’s relationship 
with her contacts (Wiese, Hong, & Zimmerman, 2014). To understand the feasibility 
of this, I collected the contact lists of 54 participants, containing 35,599 contacts. 
However, to my surprise 67% of the contact entries that I collected contained either 
no contact information, or only an email address. Most of the remaining 33% of 
contacts only contained one piece of information, usually a phone number. The 
majority of contact list features were unused. 

Despite the apparent lack of information contained in these lists, a deeper 
exploration of the content uncovered more subtle structures within the data. Analysis 
of the contact name field yielded twelve distinct and unexpected naming strategies. 

This analysis of contact lists from a broad range of 54 participants found that those 
lists were used in surprising ways and revealed consistent patterns. The behaviors we 
identified present both a challenge and an opportunity: though usage patterns 
prevent simple automated approaches for data mining or contact-list merging, they 
also suggest alternative directions for data mining to understand the behavior of 
individuals and their relationships with others. More broadly, the results of this work 
point to a mismatch between the expected use and actual use of the contact list, a 
very common interface for interacting with personal data. 



Chapter 2: Situating Unified Personal Data within the Landscape of Research that Leverages 
Personal Data 

 35 

2.11.2 Context Awareness: Inferring Phone Placement 
One example of context awareness from my own work is using sensors to infer the 
placement of a device (Wiese, Saponas, & Brush, 2013). Enabling phones to infer 
whether they are currently in a pocket, purse or on a table facilitates a range of new 
interactions from placement-dependent notifications setting to preventing “pocket 
dialing.” Phone placement data may not seem to be personal data at first glance, but 
over time phone placement data can be used to characterize the behavior of 
individuals. 

In this work I collected two weeks of accelerometer data from 32 participants’ 
personal mobile devices. Using the experience sampling method (ESM), participants 
recorded how their devices were being stored in-situ. To evaluate algorithms for 
inferring the placement or proprioception of the phone, I built and evaluated models 
using features from the in-situ accelerometer data. These models achieve accuracies 
of 85% for two different two-class models (Enclosed vs. Out and On Person vs. Not) 
and 75% for a four-class model (Pocket, Bag, Out, Hand).  

I also explored opportunities to improve the accuracy of the accelerometer-only 
models, using prototype sensors that leverage capacitive sensing (previously 
unexplored for this task), multi-spectral properties, and light/proximity sensing. I 
compared data gathered with these sensors in a laboratory setting, with resulting 
models achieving top accuracy levels of 85% to 100%. 

This work represents one example of developing a context-aware component of an 
application. To the extent that a smartphone is associated with a primary user, the 
place that they put their phone is a form of personal data: it describes something 
about the user’s behavior. Furthermore, over time logs of this data can reveal trends 
that might offer even more information on the user’s behavior. 

2.11.3 Lifelogging and Identity Interfaces: Evaluating 
Applications that Make Use of Long-Term Location 
History 
A major shortcoming of early Lifelogging research was the general lack of 
applications for collecting large logs of personal data. The process of testing 
application ideas and finding value can be a difficult one, but is an important 
component of human-centered computing. 
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 Figure 5: An example of a scenario presented during one of the sessions. 

In one example from my own work, I developed a set of scenarios that illustrated 
some potential use cases for applying histories of a user’s location and conducted a 
needs validation session, following guidelines from the “speed dating” design 
technique (Davidoff, Lee, Dey, & Zimmerman, 2007). Needs validation uses 
storyboards of different scenarios, in our case to depict different concepts for location 
histories and future history (see Figure 5), to provide participants with many quick 
views of possible futures. During a session, a researcher presents the storyboards one 
at a time to an individual or to a small group of participants. The researcher then 
follows the storyboard with a lead question that focuses the discussion on the 
underlying need and away from the specific way the technology in the storyboard 
shows the need being addressed. By presenting the participants with storyboards 
showing people like themselves in situations that seem common, this method helps 
participants draw on their own experience as they visit and reflect on an imagined 
near future. 

Participants were invited to share their reactions to the storyboards and to address 
the corresponding questions, which ask them specific ways that their own 
experiences have led them to a similar need as the one addressed in the scenario. 
Furthermore, participants were told not to think about the technology that would be 
used to implement these scenarios, but just to assume that the technology could 
work. 

I brainstormed 36 scenarios, which I refined down to 18 based on redundancy of the 
underlying need we were addressing and the level of convincingness for each 
scenario. Once made, I thematically clustered the scenarios based on content. These 
clusters, and results from the needs validation, are described here: 

• Icebreaking (3 scenarios): These scenarios describe situations where 
location history is used to strengthen existing relationships or build new ones.  
Participants strongly identified with the needs implicit in the icebreaking 
scenarios (e.g. needing a good topic of conversation when talking with a new 
person). However, participants were also concerned that the usage of a 
conversational aid that supplies conversational topics might be awkward, 
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make them look socially inept, or even come across as “stalkerish”. 
Participants felt that this kind of technology would be best suited for 
professions where social relationships are brief (e.g. nurse, taxi driver), so 
building commonality earlier is better. Recent work has continued to explore 
this concept of computer-supported icebreaking (Nguyen, Nguyen, Iqbal, & 
Ofek, 2015), though not necessarily using location history.  

• Future – intersections and obstacles (3 scenarios): These scenarios 
address different aspects that affect one’s plans in the short or long term, 
including things that might inhibit them or that they may want to include in 
their plan. There are fewer future location scenarios compared to location 
history because of the differences in how easy it is to obtain that data 
accurately, which affects technical feasibility. Participants reflected a clear 
need for monitoring how different logistics might affect their future plans, 
and they also strongly identified with being able to take advantage of 
opportunistic serendipitous overlap with friends that they had not seen for a 
while. One concern expressed by some participants was that they take pride 
in “having it together” and being prepared for different situations, which they 
feared this kind of technology might diminish. 

• Identifying a person by time and place (2 scenarios): These 
scenarios explore the idea that there are some situations where one would 
want to contact the people that were around them in a particular place some 
time in the past, but do not have contact information for them. Scenarios 
here provide a functionality that is otherwise not available in the real world. 
One place where this functionality is slightly available is through Craigslist 
“Missed Connections”13, which allows people to post a message, hoping that 
the person they saw at a particular place will get that message. While 
participants were not at all interested in the scenario for supporting missed 
connections, but they were however much more interested in situations 
where they had spoken with somebody, but had not exchanged contact 
information. Also, when the scenario motivation was functional rather than 
social, (e.g. who left the meeting room messy, or who saw the car accident), 
then it was no longer a problem if they hadn’t spoken. However, one 
important issue here was that participants did not want the barrier for a 
stranger to contact them to be too low. 

• Personal traces (7 scenarios): These scenarios build on data from 
interviews with early adopters, which suggest that there is value in having 
access to your own location history. Participants responses to these scenarios 
were in many ways neutral: there was no problem with the scenarios, but 
they also were not really sure how much value the scenarios offered. This 
differed from the early adopters who had expressed that these kinds of 
scenarios are a major motivation for their usage of location logging 
applications. One explanation for this disparity is that the real value in this 
scenario actually comes from being able to see your own data, so speed 
dating might not be the best way to evaluate this because participants are not 
looking at their own data. Additionally, these scenarios are usually easier to 
implement: they only depend on the location logs of an individual, while 

                                                         
 

13http://pittsburgh.craigslist.org/i/personals?category=mis 
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many of the other scenarios would require wide adoption in order to realize 
their potential.  

• Mining existing social networks for location overlap (3 scenarios): 
These scenarios use existing social connections to share information, 
experience, or interest in a place. They differ from icebreaking in that their 
primary goal is not to strengthen the relationship, though it could certainly be 
a byproduct. Participants expressed a strong desire for these scenarios, 
particularly social place recommendations. Participants expressed that this 
would reduce the need to read and write reviews (i.e. if you see that 
somebody you know has been there, you can just ask them). Additionally 
discussion of these scenarios revealed an additional unmet need: the need to 
identify common interests with friends that were previously unknown. 

The results from this work demonstrate the importance of creating low fidelity 
prototypes of the future, in particular where personal data is concerned. At a high 
level, this exercise demonstrated that location history logs have the potential to offer 
real value to consumers. Even today, 6 years after that study was run, location data is 
mostly used in the form of “present location”, very little with past or 
planned/projected future location. With longer location logs and better ways of 
managing this data, a lot more seems possible. On the other hand, there were 
numerous issues and concerns associated with many of these scenarios that really 
reveal the challenge and the complexity of working with personal data. 

2.11.4 Identity Interfaces: Mailing Archived Emails As 
Postcards14 
Recent research speculates that changes to the form or behavior of virtual things 
might increase people’s perceptions of value (Odom, Zimmerman, & Forlizzi, 2011). 
To investigate this further, we designed and deployed a technology probe that 
radically altered the form and presentation of potentially valuable elements within 
people’s massive email archives by sending them physical postcards of email 
snippets. We interviewed participants, probing to understand the properties of cards 
that did and did not encourage self-reflection, a behavior shown to be associated 
with value creation (Odom et al., 2011) and a behavior that reflects the 
meaningfulness of an item.  

For the technology probe, we created a piece of software to extract potentially 
meaningful snippets from a person’s archive based on several heuristics, and chose 
photos from Google Image Search using the generated snippet as a search term. We 
conducted the study over a three-month period. We sent a postcard (with the image 
and the snippet) to each participant at a random interval between 7 to 10 days so 
that they likely received each new card on a different day of the week. We conducted 
three in-home interviews with each participant at the beginning of the study, one 
months, and three months into the study. 

                                                         
 

14 Work done in collaboration with Jennifer Olson, Dan Tasse, David Gerritsen, Tatiana 
Vlahovic, William Odom, and John Zimmerman 
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During the interviews with participants the postcards caused them to reflect on 
events, people, and humorous memories or jokes that were related to the snippets. 
However, many cards also left the participants feeling bemused or disinterested 
because they could not place the card in context. In these instances participants 
looked to the images on the postcards, but because of the loose coupling between 
snippet and image these were not helpful aids. Most participants also felt uncertain 
about where to place a card after it arrived. Contrasted with email, when the snippet 
arrived as a material postcard, the fact that the message was in their hand forced 
them to evaluate it from a new perspective in order to determine its next location in 
the world. 

This technology probe offers evidence for a variety of insights that further our 
understanding of how people relate to their personal data. At a high level, 
participants had clearly not thought about or engaged with their vast email archives. 
Even with email archives, personal data that is amongst the more accessible to end 
users, it is still a mostly untapped archive full of rich memories. Another insight 
offered by this work was the fragmented state of personal data today, brought into 
sharp relief by how difficult it was to contextualize the email snippets. If personal 
data were less fragmented it might have been easier to select meaningful snippets, 
and we could have better contextualized the snippets for users. Perhaps the postcard 
photos could themselves have had more contextual meaning, even coming directly 
from the participants’ photo archives.  

Finally, this technology probe demonstrates strong limitations on being able to 
interpret personal data. Many systems attempt to draw insights from personal data 
automatically. In this probe, even the participants, who should theoretically be the 
gold standard for interpreting information from their own email archives, often 
struggled to interpret those archives. Moving forward, to realize value by 
interpreting personal data the people who are the subject of that data must be 
involved. 

2.11.5 Context Sharing: Facilitating Workplace Awareness 
through MyUnity 
I deployed myUnity, a cross-platform awareness system designed to support 
awareness, communication, and collaboration for an office worker environment 
(Wiese, Biehl, Turner, van Melle, & Girgensohn, 2011). Where previous systems 
were platform-centric, myUnity supported both mobile and desktop environments 
both for sensing information and also for presenting that information. myUnity 
brings together personal data from disparate sources including: vision-based office 
activity, mobile phone location, desktop location via network, calendar, IM 
presence, and phone call status. The myUnity server aggregated this data, and also 
aggregated these disparate data sources into a higher-level abstraction of “presence”, 
which was a proxy for how accessible an individual in the system was. Results from a 
deployment of myUnity highlighted the value of connecting to multiple data sources 
and of automating the sharing process. 
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From the perspective of personal data, there several valuable takeaways from this 
work. First, the value of a service (in the case of myUnity the service is awareness) 
can be amplified by including multiple data sources, rather than a single one. 
Furthermore, even some simple processing to make a higher-level inference (e.g. 
presence) can be very useful for helping people find value in the data. Finally, much 
of the value in myUnity came from the automated nature of the sharing process. 

2.11.6 Context Sharing: Understanding User Motivations for 
Sharing Location Using Foursquare 
We examined social location sharing on the check-in-based location sharing site 
Foursquare (Lindqvist et al., 2011). Foursquare is typically considered to be the first 
successful social location-sharing service. In this work we conducted interviews with 
early adopters and deployed two surveys to understand the reasons why people use 
Foursquare. One major goal of this work was to gain perspective on the factors that 
led to the success of this site in the domain of location sharing where many others 
had previously failed. In this work, we found a variety of reasons why people used 
Foursquare: to have fun and earn badges, to facilitate social connection, to discover 
new places, and to keep track of where they had been previously. While it seems that 
over time the novelty of the social gaming wears off, the value of other motivations 
persisted over time. 

Perhaps most notably from these findings is that there was not one specific “killer 
app” that led to the success of Foursquare where so many location-based 
applications had previously failed. Instead, there were a variety of reasons that 
people were using Foursquare, which combined to make the site successful. This 
combination of motivations seems to have helped Foursquare overcome the difficult 
chicken-and-egg problem that plagues many services: a service can offer an exciting 
new feature once it has built up users and data, but it can only build up the user base 
if it offers value to users to begin with. This is a challenge that extends beyond 
location data and applies more generally to applications and services that depend on 
personal data. 

2.11.7 Privacy: Understanding Privacy preferences by 
investigating self-censorship 
I have explored user’s privacy decisions was by investigating their decisions not to 
post content on Facebook, a phenomenon we termed self-censorship (Sleeper et al., 
2013). In this work we asked participants to take note of when they considered 
sharing a piece of content on Facebook, but instead decided not to. Participants were 
instructed to send a quick text message whenever this occurred with a few words to 
describe the situation (Brandt, Weiss, & Klemmer, 2007), and then to complete 
nightly surveys that described the situations in more detail. We conducted and coded 
semi-structured interviews with participants. The findings of this work indicated that 
in many cases, participants chose not to share content because it would have 
required too much effort to specify the subset of people that they wanted to share 
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with. Instead of Facebook’s manual list-based sharing controls, participants wanted 
to be able to specify a target sharing group more dynamically, using factors such as: 
life facet (specific work/school, family), demographics (age, gender, geography, race), 
tie strength, and the person’s relationship with the post (i.e. will this person be 
interested). 

This work has broader implications for personal data. First, if privacy controls are 
inadequate for capturing user’s preferences within a service, it may lead to decreased 
usage of the service, and hence less overall value for the user. This may be especially 
significant for new and less established applications and services which do depend on 
a critical mass of engaged users in order to succeed. The second implication for 
personal data is that personal data could make possible the kind of sharing controls 
specified above. Specifically, the dynamic factors above that specify the target 
sharing groups refer either to information about the person being shared-with, or 
about the relationship between that person and the sharer. These are both types of 
personal data, and thus if a system had access to this personal data it might enable a 
new class of privacy controls. 

2.12 Discussion 
This chapter has offered a brief overview of a variety of research domains that relate 
to personal data. Particularly striking through this chapter is the broad variety of 
perspectives and research that relate to personal data: active research is taking place 
with personal data across many different domains, often with a tenuous or even 
totally absent connection between those domains. This lack of coherence across 
personal data research is counter-productive, and even potentially harmful. 
Research in one domain wrestles with issues and challenges that have already been 
explored in a different domain. Today the canon of personal data research is 
extremely scattered, if a researcher wanted to think about her research project 
holistically with respect to personal data, it would be very difficult to even know 
where to start. How does a particular piece of research relate to the broader 
landscape of personal data? What are the major issues that exist around personal 
data? Who are the stakeholders involved? What solutions already exist to challenges 
that I’m encountering? Answering questions like these requires considering personal 
data as its own topic, from a holistic perspective. 

In the early days of research that involved personal data, before smartphones and 
the Internet, a research system could be completely self-contained. In this way, 
research with personal data was simpler then than it is today. For example, user 
modeling researchers could collect data within the context of their particular 
experimental system, and that data was sufficient for pushing the field forward. Users 
did not have other data that could potentially be added to the system, it simply 
didn’t exist yet. One research system was unlikely to need to use the data from a 
different system, and the participants in an experiment with one system were 
unlikely to be participants with another system anyway. In the case of context aware 
systems, researchers could focus only one type of data: the data in their systems. 
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Furthermore, they could focus only on immediate context, data that had been sensed 
immediately or in the short term. 

Current research with personal data has stagnated in large part because it continues 
to follow these trends. Researchers use data from one or two sources. They often 
have to collect the data themselves using ad-hoc, one-off systems designed 
specifically for their study. When the study is done, the infrastructure used to collect 
that data, application that was built on top of personal data, it all dies with that 
particular study. However, where this was once acceptable and a reasonable 
approach to conducting research, it no longer makes sense. Today, people have 
large amounts of personal data built up across a variety of applications, devices, and 
services, and failure to take advantage of this is at best a missed opportunity. 

Across the board, work on personal data is pushing up against the limitations of this 
approach: virtual possessions, context sharing, personal informatics, and user 
modeling are all dealing with various formulations of the problem that there is no 
uniform way of accessing or working with personal data. The solution to these 
challenges will not come from a single research project or line of inquiry. The space 
of personal data is complex and multifaceted, and advancing the way that it is 
handled today will require a holistic approach with advances across many 
disciplines. 

In short, personal data needs to be established as a separate research area, bringing 
together researchers of many backgrounds to focus on and solve the challenges 
present in this very important aspect of computer science. A holistic, multi-
disciplinary approach to personal data will lead to stronger research contributions 
across the board, and establishing standard tools, approaches, and protocols for 
working with personal data will benefit the entire research community. 

 



 

 
 

 

 

  

3 A Case Study: Inferring Sharing 
Preferences Using 
Communication Data 

A central claim of this dissertation is that working with personal data is an 
unnecessarily arduous process. The previous chapter lays the groundwork for this at 
a high level: the current ad-hoc process of working with personal data inhibits many 
research areas. Working with personal data is challenging for a wide variety of 
reasons, and efforts to improve the state of personal data require an understanding of 
these challenges. How, specifically, does the current ecosystem of personal data 
inhibit research or application development?  

Building this understanding is itself a challenging task. Application developers and 
their companies make many decisions (often implicitly) throughout the software 
development process and even before it begins based on myriad issues and 
considerations around personal data. Even with complete access to the entire 
software development process, there is no expedient way to capture that data in 
order to understand these challenges.  

Exploring this question from the perspective of research offers a different view with 
some tradeoffs. Research applications can ignore or temporarily solve issues around 
developing with personal data (e.g. user adoption, privacy concerns), which distance 
them from the reality of deploying a production system. Research is often intended 
to push the boundaries of what is possible, which can offer a stronger perspective of 
how the current state of personal data may be limiting the imagined future of that 
research vision. 
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This chapter documents my work to infer social sharing preferences using people’s 
communication history. In the context of this thesis, the ability to infer social sharing 
preferences from automatically collected communication logs is an example of 
translating low-level personal data into a higher level understanding of the user (i.e. 
who is she willing to share sensitive personal information with?). The process 
documented offers numerous concrete examples of the challenges of working with 
personal data. 

On a functional level, the ability to infer sharing preferences from automatically 
collected data offers real value for users. It is often reported that people are unlikely 
to adjust the default privacy settings, sometimes even choosing not to share at all 
rather than adjusting their sharing preferences (Sleeper et al., 2013). Automatically 
inferred sharing preferences have the potential to avoid sharing too much or too 
little information, both of which can be harmful for users: while over-sharing can 
annoy others, cause embarrassment, or even lead to job loss, under-sharing has 
social consequences as well, including missed opportunities for connection and social 
support. 

 

Figure 6: The goal of the research in this chapter is to use communication logs (call and SMS logs) to 
infer sharing preferences, using tie strength as an intermediate representation. Theoretical literature 
supports the connection between communication logs and tie strength and also the connection between 
tie strength and sharing preferences. Additionally, past work has demonstrated that communication 
behavior corresponds to tie strength. Therefore, I focused first on the connection between tie strength 
and sharing preferences before attempting to replicate the prior finding connecting communication 
behavior to tie strength. 

The insight that communication behavior has the potential to predict sharing 
preferences is based on a combination of two different findings in the HCI and social 
science literature. The first finding connects communication behavior with the social 
science construct of tie strength (informally this is the strength of the relationship 
between two people): more communication between two people indicates a stronger 
tie between them (Granovetter, 1973). This finding applies across all communication 
between two people, including in-person communication. Not only does social 
science theory support the connection between tie strength and amount of 
communication, but recent work has demonstrated this connection in social media 
(Gilbert & Karahalios, 2009). Furthermore, a number of recent research projects 
have use communication frequency as a direct proxy for tie strength (Conti et al., 
2011; Miritello et al., 2013; Onnela et al., 2007; D. Wang et al., 2011). Automatic 
detection of strong ties has many potential benefits. Social support from strong ties 
has been associated with mediating the occurrence and severity of depression (N. Lin 
& Dean, 1984) as well as finding employment after losing a job (Burke & Kraut, 
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2013). Automatic detection of strong ties could also be useful for a variety of user 
interface personalization: determining notification preferences, sorting contact lists, 
or setting sharing preferences. 

The second finding relevant to communication behavior and sharing preferences 
comes from theoretical literature on sharing. Belk distinguishes two sharing motives. 
When “sharing-in” people share things with people they feel close to or desire to feel 
closer to, as a way of strengthening this relationship. “Sharing-out” involves 
interactions with people outside of close social boundaries and is generally more like 
gift-giving or commodity-exchange (R. Belk, 2010). However, unlike tie strength and 
communication, the HCI literature had not explored the connection between tie 
strength and sharing preferences.  

With the connection between communication and tie strength already established in 
the literature, this chapter demonstrates a connection between features of social 
relationships and users’ preferences for sharing different kinds of personal 
information (Section 3.1). However, using phone and SMS logs as communication 
data, this work could not predict the entire chain (going from communication 
preferences to tie strength to sharing preferences; Section 3.2). Specifically, phone 
and SMS log data was not sufficient to accurately predict strong ties. Altogether, this 
process highlights many of the challenges and complications inherent in working 
with personal data. 

3.1 Connecting Features of Social Relationships to 
Sharing Preferences 

The study presented in this section explores salient features of interpersonal 
relationships that predict the user’s preference for sharing personal information, such 
as location, proximity to another person, and activity. Specifically, this study 
examines the association between several factors (e.g., collocation frequency, 
communication frequency, closeness, and social group) with preferences for sharing 
specific kinds of information. In this online study, participants provided basic 
demographic information and a list of friends. They then associated each friend with 
relevant social groups, rated their perception of closeness with each friend (tie 
strength), and stated a willingness to share information with each individual for 21 
different sharing scenarios. 

3.1.1 Method 
To recruit participants, I posting ads in several nationwide online bulletin boards 
and through two study recruiting websites. Prospective participants were selected 
based on several criteria:  

• Age (20 - 50): This age range includes different life stages, especially with 
respect to being a parent or child within an immediate family. 
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• Occupation (non-student): Students were excluded because they do not easily 
allow distinctions between work and school groups. 

• Social network membership (members of Facebook with at least 50 Facebook friends): This 
was a source for generating friends’ names for the study. Additionally, 
membership in a social networking site indicates that participants are more 
likely to want to share information about themselves with people they know, 
allowing us to observe differences in their sharing preferences (as opposed to 
a person who does not want to share at all). 

• Mobile device usage (must have a smartphone): Participants with smartphones were 
more likely to understand the potential values and risks of the sharing 
scenarios.  

Participants were compensated $20 for completing task 1, and $60 for completing 
tasks 2 and 3 (listed below, and described in more detail in the following sections). 
The data collection took place online and participants were given two weeks to 
complete all parts of the study. 

Participants completed three distinct activities:  

1. Generating a lists of friends 
2. Describing each friend in terms of closeness and affiliation with different 

groups 
3. Stating willingness to share different kinds of information with each friend 

Generating lists of participants’ friends 
To ensure that participants would answer questions about friends who varied in 
social group and in closeness, I asked participants to provide two lists. The first list 
was intended to target potential strong ties, and was generated from categories which 
I derived from qualitative work on relationships (McCarty, 2002; Spencer & Pahl, 
2006). The categories were:  

• People you currently live with (5 people maximum) 
• Immediate family members (5) 
• Extended family members (10) 
• People you work with (10) 
• People you are close to (10) 
• People you do hobbies or activities with (10)  

I instructed participants to avoid duplicates. The second list consisted of all of their 
Facebook friends. I provided participants with instructions on how to download this 
information from Facebook. 

The final friend list included everyone from the first list (typically less than 40 
people), plus a random sampling from the Facebook friend list to reach 70 total 
friend names. Each list was checked for duplicates and for names that the participant 
did not recognize. If any were found, they were replaced with randomly selected 
names from the Facebook friend list. This final list of 70 names is referred to as the 
“friend list.” 
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Figure 7: The instructions for the grouping activity. 

Describing each relationship 
Next, participants provided information about their relationship with each person on 
their friend list. The complete list of data collected per friend is in Table 1. I 
organized this information into two categories: data that would be easily observable 
from within a UbiComp system or social networking site, and data that would 
require more work either to infer from observable features or for the user to express 
manually. Participants indicated tie strength by answering the question “How close 
do you feel to this person?” on a 1-5 Likert scale. This approach is similar to the one 
taken in work by McCarty (2002). 

 Data collected Data type 
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fe
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es

 

Friend sex Male/Female 
Friend age Rounded to nearest year Years known 
Frequency seen Likert 0-7: Less than yearly (0), yearly, 

yearly-monthly, monthly, monthly-
weekly, weekly, weekly-daily, daily (7) 

Frequency communicated with 
electronically 

N
on

-
ob

se
rv

ab
le

 

Closeness (strength of tie) Likert 1-5: very distant (1), distant, 
neither distant nor close, close, very close 
(5) 

Group Participant-dependent, however each 
group was put in a pre-specified category 

Table 1 Data collected for each friend. Data in the top half of the table (“observable features”) is data 
that was potentially observable by a UbiComp system or social networking site. Data on the bottom half 
of the table would either be inferred from the observable features or manually inputted by the user 

Next, participants detailed their mutual affiliations with each friend by placing them 
into groups. The interface (see Figure 7) allowed participants to create personalized 
groups. In addition, it required them to classify each group into one of 12 pre-
determined categories: neighborhood, religious, immediate family, extended family, 
family friend, know through somebody else, work, school, hobby, significant other, 
trip/travel group, and other. I developed these categories based on a combination of 
literature sources (McCarty, 2002) and data from previous work on grouping friends 
in social network sites (Kelley, P.G., Brewer, R., Mayer, Y., Cranor, L.F., Sadeh, 
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2011). I instructed participants to indicate at least one group affiliation for each 
friend, and encouraged them to indicate multiple group affiliations when relevant. 
For example, if a person and their friend went to college together, and they both 
attend or attended the same church, the participant would place that friend in two 
groups. The result is a set of affiliations, and all of the people on the friend list who 
are associated with each affiliation. 

Sharing scenarios 
Finally, participants indicated their willingness to share information with each friend 
in the context of 21 different information-sharing scenarios (see Table 3).  

To develop the final list of scenarios, I first brainstormed over 100 different 
UbiComp scenarios in which individuals could share information, such as location, 
activity, calendar, history, photos, etc. I grouped scenarios into 11 categories based 
on the type of information being shared. I assembled these scenarios in a survey and 
posted it on Amazon’s Mechanical Turk, with two questions for each scenario:  

• How often do you currently share this information now (whether with one 
person or with many people): never, seldom, sometimes, frequently, 
constantly 

• How useful is it to you to share this information with somebody you know, 
answering for maximum usefulness: totally useless, somewhat useless, neither 
useless nor useful, somewhat useful, totally useful 

I used the results from this survey as a guide to reduce the list of 100 scenarios down 
to 21 specific scenarios. Survey results allowed me to pick scenarios with information 
that respondents found was more useful to share. Further, for that information that 
would be useful to share, I selected for a range in current sharing practices, including 
a mix of information that people currently do and do not share. The resulting list fit 
into five different categories: current personal location (7), personal location history 
(5), calendar and location plans (7), communication activity (1), and social graph 
information (1). See Table 3 for a list of the final set of scenarios used.  

For each of the 21 scenarios, I asked participants to indicate their willingness to 
share information with each of their 70 friends using a 5-point Likert scale (labels: 1-
definitely not, 3-no preference, 5-definitely). I adapted this method based on past 
work (Olson, Grudin, & Horvitz, 2005). 

3.1.2 Findings 
Forty-two participants completed the study. Their occupations ranged from 
education and engineering to administration and legal. I eliminated three 
problematic respondents who each demonstrated no variance for more than 65 out 
of the 70 friends; each individual friend had the same rating for each of the sharing 
scenarios. These participants seemed to have simply rated the sharing scenarios as 
quickly as possible. Of our remaining 39 participants, there were 28 female and 11 
male, with ages ranging from 21 to 49 (M=29.8, SD=6.4). 
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Modeling sharing preferences  
The differences in participants’ mean sharing answer indicated a range of individual 
privacy/sharing preferences (M = 2.83 out of 5 where 5 is “definitely willing to share 
this information with this person”, SD = 0.66). To address the question of which 
relationship characteristics predict sharing preferences, I conducted a mixed-model 
analysis of variance predicting sharing as the outcome variable (see Table 2, note 
that the variables ‘user age’ and ‘user sex’ refers to our study participants). This 
analysis accounts for the non-independence of observations within each participant. 
Running this analysis with different models allows for an exploration of which 
combinations of independent variables explain the most variance in participants’ 
sharing preferences. 

All of the regressions in Table 2 were done on a per-friend level of analysis; the 
models use the mean sharing value across all scenarios for each friend (n=2730) as 
the dependent variable, and the features that described each relationship were effects 
in the models. The models included the participant as a random effect to account for 
non-independence of ratings within each participant. The first column of Table 2 
shows means and standard deviations for all continuous effects in the model.  

The second column in Table 2 (model name = user) is a model that has no effects 
except for the effect of the participant (which accounts for individual differences 
among participants). The result shows that certainly some amount of the variance 
relates to individual differences, indicating preferences for sharing in general (R2 = 
0.36). Models that additionally accounted for participant-level effects of sex and age 
performed poorly. 

Modeling sharing preferences with non-observable features 
The third, fourth, and fifth columns in Table 2 show models with effects that only 
include the non-observable data. For these analyses, I sorted group categories into 
the three descriptive “life modes” identified by Ozenc and Farnham, (family, work, 
and social) (Ozenc & Farnham, 2011), which they suggest are the primary areas of a 
person’s life.  

Closeness by itself turns out to be a very strong predictor of sharing preferences 
(model name = close, R2 = 0.63) with each 1-point gain in closeness accounting for 
a 10% increase of the sharing outcome. This means that a friend who is at closeness 
5 (top closeness) is 40% more likely to be shared with than a friend at closeness 1 
(bottom closeness). The regression that only had life modes as a predictor did not 
account for as much of the variance as closeness alone did (model name = mode, R2 
= 0.48), with membership in family, work, and social modes accounting for a 12%, 
3%, and 3% increase in likelihood to share respectively (note that all friends were 
categorized into at least one of these modes). This means that just knowing which of 
these categories a contact is in is not particularly helpful in predicting sharing 
preferences. Finally, adding life mode to closeness resulted in only a slight increase in 
performance over just closeness (model name = non obs, R2 = 0.65), and resulted in 
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a loss of significance for the “social” and “work” effects: closeness and family were all 
that mattered in this model, with participants being more likely to share with 
contacts they are closer to and with contacts that are family members. 

Modeling sharing preferences with observable features 
The previous section discussed models based on relationship features like closeness 
that are not immediately observable. How well do observable features predict 
sharing? These observable features (see Table 2) include friend age, sex, years 
known, frequency seen, and frequency communicated with. I call these features 
observable because current UbiComp systems are capable of capturing them from 
existing social network data, or from sensor and communication logs. As such, by 
testing these features, I can evaluate how well a fully automated system might 
perform for predicting sharing preferences. This model performed well (model name 
= obs, R2= 0.57), though still not as well as the model with just closeness. Significant 
effects included friend age (0.2% less likely to share per year), frequency seen (1.4% 
more likely to share per point increase), frequency communicated with (3.6% more 
likely to share per point increase), years known (0.6% increase per year known). The 
only feature that was not predictive was friend sex. 

The model also included four interactions. First, I included the interactions between 
participant and friend sex and the interaction between participant and friend age to 
see if homophily accounted for sharing preferences (are people more likely to share 
with others of the same gender or others who are closer in age?), but neither of these 
interactions were significant.  

The next interaction was between years known and participant age, which I 
included because I hypothesized that the duration of a person’s life that they have 
known another person might be a useful indicator. This did have a very small effect, 
indicating that younger participants were more greatly influenced by how long this 
person had known them.  

Finally, the model included an interaction between frequency seen and frequency 
communicated with. I hypothesized that some strong ties are communicated with 
much more often than they are seen (e.g. family who do not live nearby); similarly, 
some weak ties are seen often but not communicated with particularly frequently 
(e.g., one might see coworkers often, but not communicate with them outside of 
work). This interaction was also significant, revealing that communication is a 
stronger indicator of willingness to share when collocation is less frequent.  

Modeling sharing preferences with observables and non-
observables 
The next model includes both observable and non-observable features. This model 
(model name = obs+close, R2 = 0.65) includes all of the observable features (and the 
interactions described in the previous section), and also includes closeness. This 
model explains 65% of the variance in sharing preferences, an improvement over the 
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57% explained by the model that only included observable features, without 
closeness. Closeness has nearly the same effect in this model as it does in the 
closeness only model, with each point in closeness increasing the likelihood to share 
by 8.8%. Frequency seen is no longer significant in this model, neither is the 
interaction between frequency seen and frequency communicated with. 
Additionally, frequency communicated with has less of an effect in the model (0.8% 
more likely to share per point increase, down from 3.6%). 

The final model (model name = all) added life mode to the obs+close model 
described above. Including all features in the model led to almost no difference in 
the variance explained (R2= 0.66, compared with R2 = 0.65 for the obs+close 
model), and the model effects were nearly identical to those in the previous model. A 
model that kept all 12 group categories distinct instead of grouping them into the 3 
life modes was comparable (R2= 0.67). 

Overall, the models with closeness explained more of the variance in sharing 
preferences than any of the models without closeness, and adding closeness results in 
the loss of significance for other effects in the model. 

Predicting closeness using observables 
Since closeness is such a predictive feature, it is worth examining how well the 
observable features of each relationship predict closeness. I used the same approach 
as before, with a mixed-model analysis of variance controlling for participant as a 
random effect, but this time with closeness as the outcome. I included all observable 
effects from the other models. This model was quite effective (R2 = 0.70, last column 
of Table 2). Significant effects in this model included: friend age (0.2% less close per 
year), frequency seen (4.2% closer per point increase), frequency communicated with 
(6.8% closer per point increase), years known (0.6% closer per year). The interaction 
between frequency seen and frequency communicated was also significant, showing 
that communication has a much stronger effect when collocation is infrequent. The 
interaction between participant age and years known was significant with a small 
effect as before. The friend’s sex and the interactions of the participant’s and friend’s 
age and participant’s and friend’s sex were not significant. 
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Willingness to share across different scenarios 
The previous analyses examined sharing preferences in general, and found that 
participants were more willing to share with closer ties. Are there differences in how 
well closeness predicts sharing between the different sharing scenarios? Is closeness a 
strong predictor for certain scenarios only, or for all scenarios? Correlations between 
closeness and willingness to share are significant for all of the sharing scenarios, with 
Pearson’s correlation values ranging from r=0.25 to r=0.53, all p<0.001 (see Table 3 
for all values). 

By asking about sharing across 21 different scenarios, I was able to investigate 
differences in sharing as a function of scenario type. Willingness to share in all 
scenarios were significantly and positively correlated with each other (r=0.40 to 0.96, 
Cronbach’s α = 0.97).  

I examined these similarities further by performing a hierarchical cluster analysis 
using the average linkage distance formula, a standard technique for examining 
groupings among items which Olson et al. also used in their analysis of privacy and 
sharing (Olson et al., 2005). I chose to use mean sharing per level of closeness as the 
input because of the strength of closeness in explaining the variance of sharing 
responses. The dendrogram in Figure 8 shows the clusters. The horizontal scale for 
the dendrogram is linearly related to the cluster distance at each point where a pair 
of clusters was merged. For example, in the middle of the dendrogram “hist:common 

 

 

Figure 8: Hierarchical clustering using average linkage distance. Horizontal position of the branches is 
directly proportional to the calculated distance between each cluster. Scenarios are shorthand for the 
same ones in Table 3. 
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hist” and “hist:I’ve been where you are” were more closely clustered than the next 
two “hist:everywhere traveled” and “loc:on vacation”: this is indicated with the 
horizontal distance, with the first cluster formed closer to the right side than the 
second one. Note that the scenario names are shorthand for the scenarios in Table 3. 

The three clusters in the dendrogram can be roughly labeled as categories of 
scenarios: 1) scenarios with information about something that the participant and 
friend have in common (see Figure 8 top, e.g. loc:within 1 mile); 2) location-history-
related scenarios (see Figure 8 middle, e.g. hist:everywhere traveled); and 3) scenarios 
that reveal sensitive information (see Figure 8 bottom, e.g. loc:always). 

To ensure that the means for willingness to share were in fact significantly different 
across clusters, I performed a Tukey-Kramer HSD across all of the means (see Table 
3; there was no significant difference across scenarios that are connected by the same 
letter). This revealed 13 groups (some of which overlap) of scenarios with no mean 
difference. Table 3 shows that the seven highest-mean sharing scenarios all involve 
sharing personal information that has something in common with the friend’s 
information, for example shared calendar events or location proximity with the 
friend. 

3.1.3 Discussion 
The main focus of this study was to understand which of the collected features are 
most useful for predicting individual sharing preferences, with the ultimate goal of 
being able to automatically predict sharing preferences from that information. The 
results show that the simple 1-5 Likert scale for closeness was clearly the most useful 
feature for predicting sharing, outperforming grouping and all other models that do 
not include closeness.  

Despite the relative success of closeness as a predictor when compared with life 
modes, the literature has favored privacy controls that focus on grouping (Danezis, 
2009; Fang & LeFevre, 2010; S. Jones & O’Neill, 2010). In addition, commercial 
OSNs all seem to either provide grouping controls (e.g. Facebook and LinkedIn), or 
else require users to specify sharing preferences on a per-friend basis (e.g. Google 
Hangout’s “send my location” feature). While a grouping paradigm does not prevent 
individuals from constructing groups based on closeness, it may be more useful to 
explicitly ask users to do so.  

One advantage of using closeness to aid in the specification of sharing controls is that 
closeness is ordinal; providing the closeness for two friends also indicates if one is 
closer than the other. In contrast, a weakness of group-based privacy controls there is 
no natural ordering between groups; they are nominal. The ordinal nature of 
closeness can be useful for expressing privacy controls, as users could simply express 
“don’t share with anybody below medium closeness” (closeness = 3). Closeness can 
also support tiered rules, such as “closest friends (5) can always see my location, 
medium-close friends (3 and 4) can only check up to twice a day, nobody else (1 and 
2) can see it without requesting.” 
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Additionally, closeness is a useful intermediate between communication frequency 
and sharing controls because it offers intelligibility to users (i.e. a user can understand 
that a sharing preference was specified based on closeness, and even fix incorrect 
inferences of closeness). This also benefits any other applications that might use 
closeness for various features: closeness ratings will be improved for all applications. 

3.1.4 Limitations 
One limitation of this data is that it is entirely self-reported. Additionally, further 
work is required to demonstrate the real-world application of these findings. By 
conducting the study online and anonymously, experimenter effects were likely 
minimized. Furthermore, individual self-report data is the ground truth on some 
measures such as felt closeness. However, some of the participants’ answers may 
have been idealized responses (e.g. people they call less frequently than reported), or 
participants may have been unable to answer thoughtfully for every sharing scenario 
(e.g. cannot answer for all places I’ve been to). 

3.2 Using Communication Data To Infer Tie-
Strength 

According to social science theory, features of communication such as frequency of 
contact (Granovetter, 1973) and communication reciprocity (Friedkin, 1980) are 
reliable proxies for tie strength, and these have been increasingly used as proxies for 
tie strength in the research literature. Following the findings of the previous study, 
that self-reported tie strength predicts sharing preferences, the goal of this next study 
was to connect communication behavior to sharing preferences, using automatically 
inferred tie strength as an intermediate step in that chain. Since communication 
behavior should predict tie strength, and tie strength was just shown to predict 
sharing preferences, the results of this study were expected to be straightforward. 
Instead, the main result was surprising: communication behavior was not a reliable 
predictor of tie strength, in particular for strong ties. 

3.2.1 Method 
How well can tie strength be inferred from contacts, call logs, and SMS logs? These 
data sources can be found on nearly every smartphone, and I chose them to validate 
an assumption in the research community that communication frequency and 
duration from these channels can work as an effective proxy for the strength of a 
relationship. Further, I planned to use the inferred tie strength to predict sharing 
preferences. I collected data from participants’ Android smartphones and asked 
them to manually categorize and rate their relationships with individual contacts as 
ground truth for tie strength.  
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Participants  
I recruited 40 participants (13 male and 27 female) living throughout the United 
States by posting ads in several places: on Craigslist in 6 major US cities, on a 
nationwide site for recruiting study participants, on a website for posting social 
relationship research studies, and on a participant pool within our university. 
Participants met three selection criteria. First, to avoid privacy concerns with minors, 
participants had to be at least 18. Second, to focus on people who could benefit from 
a more computationally sophisticated representation of relationships, participants 
had to use Facebook and have at least 50 friends through the service. Third, to 
ensure a sufficient amount of log data, participants had to have used the same 
Android phone for at least six months prior to the study. 55% of the participants 
were students (graduate or undergraduate), 35% were employed in a variety of 
professions, and 10% were unemployed. Participant ages ranged from 19 to 50 years 
(mean = 28.0 years, σ = 8.9). Participants were instructed to complete the ground 
truthing within two weeks, and were compensated $80 USD. Of the 40 participants, 
four were excluded from our analysis: each had fewer than two weeks of data and 
fewer than 100 phone calls. Findings are based on the remaining 36 participants. 

Procedure 
Participants downloaded an Android app that copied their contact list, call log, and 
SMS log to a database file. Participants then uploaded this file, in addition to their 
Facebook friends list, to the study server through a custom website that was designed 
for this study. The entire study was conducted through this website. Participants 
could stop and resume whenever they wanted, and were given two weeks to 
complete the entire process. By default, Android phones limit the call log to the last 
500 calls and typically have a default limit of 200 SMS messages per contact. This 
resulted in broad differences in how many days the logs represented (range: 21-369; 
median: 80; mean: 108). 

Participants’ contact and Facebook lists were much too long for participants to 
completely ground truth. Through pilot testing, we found 70 contacts to be a 
reasonable number for participants to rate before the task became overly 
burdensome. To maximize participant retention, participants were asked to rate 70 
contacts. 

The vast majority of any individual’s contacts will be weak ties. However, for this 
study it was necessary to collect information on strong ties as well. To ensure that 
strong ties were included in the list of 70 contacts, participant generated a list of 
contacts that fit specific social categories, regardless of their appearance in the phone 
contact list or Facebook list. Participants listed five people in each of the following 
categories: immediate family, extended family, people they live with, coworkers, people they feel 
close to, and people they do hobbies with. Past qualitative work suggests these categories 
will contain an individuals’ strong ties (McCarty, 2002; Spencer & Pahl, 2006; 
Wiese, Kelley, et al., 2011). This process resulted in approximately 25 unique names 
per participant (some names were repeated across the categories). In addition, each 
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participant’s top 15 contacts with the highest communication frequency for calls, 
SMS, and Facebook were included in the list. The characteristics of the contacts on 
the list allow for an examination of the assumptions that communication is a direct 
proxy for tie strength: participants provided ground truth data for all of their high-
communication contacts, and also for all of their self-reported strong ties. If call and 
SMS communication is a perfect proxy for tie strength, these two groups should be 
the same.  

The final list of 70 contacts was comprised of the category list and the frequency list, 
after removing duplicate names. In cases where this process yielded fewer than 70 
contacts, I added randomly selected contacts from the participant’s phone’s contact 
list and Facebook friend list. Afterward, participants manually inspected the list for 
duplicates, since automatic detection using contact names alone does not reliably 
identify all duplicates (Wiese et al., 2014). This process repeated until each 
participant had a list of 70 distinct contact names (hereafter called the 70-person list). 

Participants provided demographics for each contact in the 70-person list, such as 
sex, age, and relationship duration. Participants also answered four questions about 
their relationship with each contact, adapted from (Marin & Hampton, 2007): 

1. How close do you feel to this person? 
2. How strongly do you agree with the statement “I talk with this person about 

important matters”? 
3. How strongly do you agree with the statement “I would be willing to ask this 

person for a loan of $100 or more”? 
4. How strongly do you agree with the statement “I enjoy interacting with this 

person socially”? 
 

Participants answered questions using a discrete 5-point scale, following previous 
work on tie strength (J. M. Ackerman, Kenrick, & Schaller, 2007; Burke, 2011; 
Cummings, Lee, & Kraut, 2006; Roberts & Dunbar, 2011). I used a discrete rather 
than continuous scale to reduce cognitive load and fatigue – participants provided a 
large amount of data for many contacts, and a continuous slider may have been an 
additional burden. To protect privacy, I did not collect the content of SMS 
messages. However, I did collect descriptive information such as email domain 
name, first six digits of phone numbers, and city/state/zip code. 

3.2.2 Dataset 
The dataset consisted of logs for 24,370 phone contacts, 16,940 calls, 63,893 SMS 
messages, and 1,853 MMS messages. Note that Android phones can be set to 
automatically sync the phonebook with online contact lists (e.g. Gmail and 
Facebook), so phonebooks may have included these contacts in addition to ones 
entered manually. 



Chapter 3: A Case Study: Inferring Sharing Preferences Using Communication Data 

 59 

3.2.3 Tie Strength and Basic Properties of the Dataset 
As a first step to explore the validity of using information available on a smart phone 
(contact list, call logs, and SMS logs) to infer tie strength, I analyzed participants’ 
answers for the four tie strength questions (questions 1-4 listed in the procedure 
section). The questions were highly reliable (α = 0.91), so I added all four responses 
together to form a scale. This is a standard practice that increases the reliability of a 
measure (Gliem & Gliem, 2003). Using the scale, I generated a ranked list of each 
participant’s contacts based on relationship strength. 

Next I partitioned each participant’s contacts into three levels of tie strength. I 
explored several approaches for identifying these levels. An assessment of the 
distribution of Z-scores from the combined tie strength metric both across all 
participants and per-participant revealed no obvious gaps in ratings on which I could 
split strong and weak ties. Instead, I based these levels on previous work by Zhou et 
al, which finds that “rather than a single or a continuous spectrum of group sizes, 
humans spontaneously form groups of preferred sizes organized in a geometrical 
series approximating 3–5, 9–15, 30–45, etc.” (Zhou, Sornette, Hill, & Dunbar, 
2005). They found that the top group represents a person’s closest relationships 
(support group), and the second group represents the next closest set of relationships 
(sympathy group). The larger sized groups of 50 and 150 people are considered to be 
less stable, and are referred to as clans or regional groupings. 

In constructing each participant’s 70-person list, I took multiple steps to increase the 
likelihood of capturing many of a participant’s closest contacts. Therefore, since the 
70-person list likely included the majority of a participant’s strong ties, I assigned the 
contacts into their respective groups based on the numbers from Zhou et al. By 
identifying relative tie strength for contacts within each participant instead of setting 
absolute ratings as a cutoff points, I normalized out individual differences between 
participants (e.g. a tendency for some participants to use 3 as the baseline and others 
to use 1, or a participant’s negative reaction to a particular question). 

I partitioned each contact list into three groups: 

• strong tie - the top group (rank 1-4) 
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Figure 9. Total number of friends within each tie strength level across all participants, 
separated by the number of contacts who only appeared in the contact list, only in the 
Facebook friends list, appeared in both, or neither. The data indicates that there are a 
notable number of strong ties that appear only in the phonebook and not in Facebook, 
but there are few strong ties who appear only in Facebook and not in the phonebook. 
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• medium tie - the middle group (rank 5 – 19)  
• weak tie - the remaining contacts  

In cases where multiple contacts tied for a rank, all of those contacts were assigned to 
the same tie strength level, resulting in a slight variation in group sizes per 
participant. 

With these tie strength groupings, I began to investigate communication patterns as 
a proxy for tie strength. First, I discuss simple features and their relationship to the 
tie strength groupings. Next, I describe machine learning models for inferring these 
tie strength levels. 

Contact Source and Tie Strength 
The properties of the 70-person list allow me to estimate an upper bound for the 
percentage of a user’s close contacts who could be detected from the two contact 
sources: only Facebook, only the contact list, or both. As Figure 9 shows, overall 
99% of people on the 70-person list showed up in either a phonebook or Facebook list 
(range: 95-100%, med: 100%). Overall, 19% of contacts existed only in the 
phonebook (range: 4-57%, med: 18%); 29% were only in Facebook (range: 0-56%, 
med: 31%); and 51% were in both (range: 20-90%, med: 52%). Looking across the 
tie strength categories reveals distinctive trends. I used Spearman’s rho (ρ) to 
measure the non-parametric correlations between tie strength group and presence in 
the phonebook and Facebook friend list. Being a Facebook-only contact was 
negatively correlated with tie strength (ρ=-0.32, p < 0.001). Being a phonebook-only 
contact was not correlated with tie strength (ρ=0.03, n.s.), although percentage-wise, 
more of the closer contacts were only in the phonebook. Being a phonebook-and-
Facebook contact was positively correlated with tie strength (ρ=0.27, p < 0.001). 

The red points in Figure 9 represent the 21 people that were neither in the 
phonebook nor Facebook list. They were people whom participants identified as 
immediate and extended family members, housemates or roommates, or people they 
worked with, felt close to, or did hobbies with. The orange points in Figure 9 
represent Facebook-only contacts and the blue points represent the phonebook-only 
contacts. 29% of contacts would be missed if using a phonebook-only list to classify 
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Figure 10. Number of friends in the mobile contact list who exchanged zero (No Comm Logs) vs. at least 
one (Some Comm) SMS or call with our participants (determined from call log data). There are a number 
of strong ties with zero communication logs in the dataset. Any classifier that is based on this 
communication behavior will misclassify those strong ties as weak ties. This issue is even more 
pronounced for medium tie-strength: nearly half of those contacts have no communication in the 
collected dataset. 
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tie strength and 19% would be missed if using a Facebook-only list. Both a 
Facebook-only and a contact-list-only approach would miss some strong ties; 
however, the Facebook-only approach would miss a notably larger number of strong 
ties (29% vs. 4%). 

Tie Strength and Phone/SMS Communication  
To establish an upper bound for the accuracy of inferring tie strength from phone 
and SMS communication, I divided the phonebook contacts into two groups by 
communication history (none vs. some). A reasonable baseline expectation would be 
that contacts with no communication history would have weak tie strength. Figure 
10 shows that most contacts with at least one communication in the dataset have 
higher levels of tie strength. Additionally, as the tie strength level increases, the 
percentage of contacts with some communication with the participant also increases 
(ρ=0.35, p < 0.0001). Still, several contacts with strong tie strength have no 
communication history in the dataset. Thus, attempts to classify tie strength using 
only call and SMS data could not correctly classify these contacts. 

Having at least one communication in the call and SMS logs increases the likelihood 
of a contact having higher tie strength. However, this is not an absolute rule: there 
are counter-examples in both directions - strong ties without communication history 
and weak tie contacts with it.  

Next I explored the relationship between communication frequency and duration 
with respect to tie strength. Figure 11 shows six plots in a grid, with each dot 
representing a contact in the dataset. The graphs in the top row show aggregate call 
duration (y-axis) against the total number of calls (x-axis) for each contact. The 
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Figure 11. A grid of six plots showing communication frequency and total talk time. The top 3 graphs 
plot each contact’s aggregate call duration (y-axis) against number of calls (x-axis). The bottom 3 
graphs plot each contact’s number of SMS messages (y-axis) against number of calls (x-axis). For both 
top and bottom, the columns separate the contacts by tie strength group. The graphs include data for 
contacts with at least one call or SMS. All numbers are represented as the percentage of a participant’s 
total communication frequency/duration. 
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bottom row shows the total number of SMS messages (y-axis) against the total 
number of calls (x-axis) for each contact. Each column indicates the contact’s ground 
truth tie strength level. Both aggregate duration and frequency are represented as a 
percentage relative to the total call duration or number of calls/SMSs per 
participant. I expected some close contacts (appearing in the two graphs on the right 
column) to stand out with long call durations (high y-axis value), and others to stand 
out with high frequency (high x-axis value) when compared with medium tie 
strength contacts (middle column) or low tie strength contacts (right column). For 
example, a person might call an old friend infrequently, but chat for a while each 
time. Conversely, one might regularly make short calls to a roommate to coordinate. 

As expected, contacts with more frequent or longer duration communications were 
more often in the higher tie strength levels. Number of calls, duration of calls, and 
number of SMS are all positively correlated with tie strength (ρ = 0.42, 0.43, and 
0.20, all p < 0.0001). Surprisingly, many people in all tie strength levels had very 
little communication. Weak ties generally had few calls and short durations. For 
strong ties, the ranges increase for number and duration of calls, with a clump of 
few-and-short contacts. 

Summary of Simple Features 
This section established a basic upper bound of accuracy for inferring tie strength 
with smartphone communication logs. The data shows that using Facebook as the 
only data source would miss 29% of strong ties, either because they are not 
Facebook friends, or because these contacts do not use Facebook at all. Next, there 
are some strong ties without any record of communication within the phone logs. 
Finally, while communication frequency and duration of calls can help indicate 
strong tie strength, low frequency and duration are not clear indications of weak tie 
strength.  

These trends are consistent with tie strength theory: more communication on more 
channels indicates a strong tie. However, our dataset has a number of 
counterexamples, pointing to critical challenges for automatically inferring tie 
strength from communication behavior.  

3.2.4 Classifying Tie Strength 
While the above findings already indicate significant issues for using call and SMS 
logs to indicate tie strength, perhaps a combination of more subtle features than 
frequency and duration might indicate tie strength. To explore this prospect, I 
developed several machine learning models to classify tie strength based on call and 
SMS log data. 

Features Used for Inferring Models 
I defined a total of 153 machine learning features: 17 from the contact list, 66 from 
call logs, 36 from SMS logs, and 34 from combined calls and SMS. These features 
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are based on (Min, Wiese, Hong, & Zimmerman, 2013), and more details on the 
specific features can be found in that paper. These features include: 

• Intensity and regularity: The number of and duration of communications has 
been used to infer tie strength in past work (Hill & Dunbar, 2003; Roberts & 
Dunbar, 2011). I modeled this factor using features such as total number and 
total duration of calls. 

• Temporal tendency: In their friends-acquaintances work, Eagle, Pentland, and 
Lazer observed the temporal tendency in contacting people (2009). For 
example, calling particular contacts at different times of day and days of the 
week.  

• Channel selection and avoidance: People favor a certain communication medium 
based on the person they are communicating with (Mesch, 2009). I modeled 
this using features such as the ratio between SMS and phone calls.  

• Maintenance cost: Roberts and Dunbar (2011) found that people apply different 
amounts of effort in maintaining different kinds of relationships. This effort is 
measured with the time to last contact. To model maintenance cost, I used 
the number of communications in the past two weeks (short-term view) and 
in the past three months (longer-term view).  

Inferring Tie Strength Using Communication Logs 
Using all of the features described above, how well can a model infer tie strength? 
The nature of tie strength poses a challenge for building this model. Tie strength 
could be treated as a numeric class value based on the answers to the tie strength 
questions. However, the difference between a rating of 1 and 2 is not necessarily 
equal to the difference between a rating of 2 and 3. Additionally, early iterations 
treating tie strength as a continuous value tended to push scores closer to the middle, 
with very few people classified as being weak ties. Therefore, I used the tie strength 
levels of very strong tie, medium strong tie, and weak tie as nominal class values in these 
models. 

I evaluated the models using the Weka Toolkit’s (“Weka 3: Data Mining Software in 
Java”) implementation of a support vector machine (SMO). I conducted a leave-one-
participant-out cross-validation (each fold contained data from one participant). This 
prevents any anomalies within a particular participant’s data from causing a 
performance overestimate. I trained 9 models, varying two aspects of input data. 
First I varied what the model was classifying (First column of Table 4):  

• 3-class: classifies as very strong, medium-strong, or weak 
• 2-verystrong: binary classifier that combines medium strong and weak ties 

into one class, with very strong as the other class 
• 2-mediumstrong: binary classifier that combines very strong and medium 

strong ties into one class, with weak ties as the other class 
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I also varied the input data for the classifier (Second column of Table 4): 

• all includes all contacts on the 70-person list 
• contactlist includes only contacts from the 70-person list who appear in the 

user’s phonebook (see Figure 9) 
• somecomm includes only contacts from the 70-person list with at least one 

logged SMS or call (see Figure 10) 

Classification results vary considerably (Table 4), ranging from 46.28% (κ=0.179), to 
91.55% (κ=0.361). The Kappa statistic measures the agreement between predicted 
and observed categorizations, correcting for agreement that occurs by chance. Table 
4 The results of 9 classifiers constructed using SMO. The prediction classes are tie-
strength categories. For 2-verystrong, the medium strong and weak tie strength 
classes are combined and for 2-mediumstrong the medium strong and very strong tie 
strength classes are combined. These results reveal clear trends. First, within each of 
the class conditions, classifiers perform best for all, second best for contactlist and 
worst for somecomm. Figures Figure 9, Figure 10, and Figure 11 provide some insight 
into these results. Most of the contacts who are not in the contact list (thus excluded 
from contactlist models) or who have no communication history (thus excluded from 
the somecomm models) are not strong ties, and thus are easier to classify. As a result, 
the models that include them perform better. 

The most successful class condition is 2-verystrong, followed by 2-mediumstrong. 3-class 
performs the worst. This is typical of multi-class models, which usually take a 
performance hit compared to binary classifiers.  

More often than not, the models classified strong ties incorrectly – they were more 
likely to classify a strong tie as a weak tie than as a strong tie (in Table 4, the recall 
values for the strong tie class are the percentage of strong ties correctly classified, and 
are under 50% for all but the 2-mediumstrong model). Also, about half of ties that were 
classified as strong were actually not strong (in Table 4, the precision values for 
strong ties is the percentage of contacts that were classified as strong ties who were 
actually strong ties – they are under 55% for six of the nine class conditions). The 
plots from Figure 11 offer insight into these errors. These misclassifications 
emphasize the weakness of using call and SMS logs to infer tie strength, and thus the 
problem with using those logs as direct proxies for tie strength. This result is even 
more pronounced in recall values for the strong tie class of the 2-verystrong models in 
Table 4. The 2-verystrong-all model, which has the best overall accuracy, only detects 
1/3 of strong ties correctly. 

3.2.5 Error Analysis Participant Interviews 
Motivated by the particularly low recall of the very strong tie class in these models, I 
conducted semi-structured interviews with 7 of the participants. For each 
participant, I selected 5 to 10 contacts they had labeled as strong ties that were 
misclassified as weak ties (58 contacts total). I focused on this type of misclassification 
based on an error analysis of the data. In the error analysis, I referenced tie strength 
theory to consider communication expectations for medium and weak ties. People 
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do not only communicate with strong ties, so the presence of some communication 
with weak ties is reasonable. However, if participants had more communication with 
more of their strong ties, the model would have been better able to distinguish 
between strong and weak ties. This led me to focus on very strong ties with little or 
no communication (who were misclassified as weak ties), rather than weak ties with 
some communication (who were misclassified as very strong ties). 

Interviews took place over the phone, lasted about 30 minutes, and were recorded to 
facilitate note taking. I asked participants open-ended questions about the nature of 
their relationship and communication with each selected contact:  

• When and how did you meet this person? 
• What led to this being a close relationship?  
• Has anything changed between the time that you became close and now? 
• Was there anything different about the channels that you used to 

communicate with this person or the frequency of communication that you 
used with this person between then and now? 

I iteratively coded participants’ responses about each contact for themes to provide 
insight into the misclassifications. Several themes surfaced that help explain the 
discrepancy between communication frequency and tie strength. I present them in 
two categories: Communication Channel and Relationship Evolution. 

Communication Channel 
We used to talk on the phone more when we first became close (7 of 58 
contacts). In these cases, participants indicated that they used to speak on the 
phone more frequently, but do so less frequently now, mostly just to catch up. In 
some cases, this seemed to be a result of a change in life stage (either for the user or 
for their contact) and/or a change in their geographic location, replicating findings 
from prior work (Spencer & Pahl, 2006). For example, one participant complained 
that he used to keep up with a friend much more regularly before that friend got 
married, and now they hardly speak at all. Change in life stage and change in 
geography are discussed further in the Relationship Evolution section below. 

Other contacts in this category appear to be in relationships in decline, yet the 
feeling of closeness lingers. One participant spoke about reaching out to a friend 
multiple times without reciprocity: “I’d like to be friends, but it doesn’t work unless 
we both put in the effort.”  

In-person communication (11 of 58 contacts). Participants also identified 
contacts whom they mostly interacted with in person. A contact’s close proximity to 
the home seems to play an important role in tie strength. One participant described 
talking to her neighbor opportunistically, when they see each other. Another detailed 
how she spoke with her 11-year-old son regularly, just not over the phone. Three 
participants described friends from classes and their dorm with whom they spoke 
when they saw each other.  
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Extended family often fell into this category. Many participants reported primarily 
speaking with parents, siblings, and other family members in person. In one case, a 
participant reported going to her parents’ house a couple times per month, but 
mostly not calling her dad on the phone. In these cases, lack of communication logs 
did not mean lack of effort in maintaining the relationships. In discussing these 
contacts, some participants specifically mentioned making an effort to travel once a 
year to see each other, or making a special effort to get together when they do 
happen to be in the same place. 

Other communication channels (25 of 58 contacts). For some strong ties, 
participants noted that they communicate regularly, but not via phone calls or SMS. 
For several participants, communication with a contact happened almost exclusively 
using Facebook. Other participants used instant messenger, email, Skype, or SMS 
replacements such as WhatsApp to stay in touch with close contacts. 

Relationship Evolution 
Different location or different life stage (27 of 58 contacts). When asked 
what was different about their relationship between when they became close and 
now, many participants responded immediately that either they or their contact had 
moved. As in the literature (Spencer & Pahl, 2006), participants said that with the 
change in geography, the communication frequency had changed, but not the 
perception of closeness. The move was often triggered by a change in life stage (e.g., 
going to college, graduating, getting a new job). However, even without moves, a 
significant life stage change could trigger a communication change on its own (e.g. 
getting married or having a child).  

Family is close regardless of communication (17 of 58 contacts). Many 
misclassified participants were family members. Several participants described 
specific familial relationships from the perspective of obligation, which hinted at a 
greater underlying complexity. For example, one participant said that she refused to 
take her grandmother’s phone calls, stating that she calls too frequently and repeats 
herself. Yet, the participant still reported feeling very close to her grandmother. 
Another participant, the mother of an 11 year old, said “of course I am close to 
him,” but that it is not necessary for them to talk on the phone. Another participant 
said her uncle was “definitely close, but he’s different from the other close people. 
He’s that really strict uncle that wants to tell me how to live my life, so I don’t talk to 
him too much, maybe every couple months.” 

Interview Summary 
These interviews highlight the limited effectiveness of the tie strength models. One 
issue that limits the effectiveness of these models is the way that relationships change 
over time. In particular, the circumstances under which two people became close are 
not necessarily the same as the current circumstances of the relationship, even if the 
two people remain close. Since the communication logs only capture relatively 
recent behavior, they do not contain the data that would indicate a strong long-term 
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relationship. The other main component that limits these models’ effectiveness is 
that much interpersonal interaction occurs outside of phone calls and text messages, 
including communication in other media as well as face-to-face communication. Call 
and SMS-based models do not account for these interactions. 

3.2.6 Discussion 
This section (3.2) investigates the growing practice of using communication 
frequency and duration as a proxy for social tie strength. While social psychology 
theory holds frequency and long durations across all communication channels as 
indicators of strong ties, the research community has used behavior across a few 
communication channels and over relatively short time windows as a tie strength 
proxy. This study examined if the call and SMS logs stored on a smartphone held 
enough information to infer tie strength. 

Communication Is an Indicator of Tie Strength, But… 
These results support the tie strength theory literature, showing a strong relationship 
between tie strength and communication patterns (Gilbert & Karahalios, 2009; 
Roberts & Dunbar, 2011). Higher levels of communication frequency, call duration, 
and, in particular, communication initiated by the phone’s owner are all indicators 
of a strong tie. However, when operationalizing this theory with call and SMS logs, 
the signal is very noisy. Low levels of communication do not accurately identify weak 
ties: participants had many strong ties who they rarely called or SMSed. The 
interviews probing strong ties with little communication revealed several 
explanations for this pattern, each of which pose fundamental challenges for 
inferring tie strength.  

First, a person’s communication via phone and SMS does not capture all of their 
communications. Interactions happen through many other channels (e.g., Skype, 
instant messenger, landline phones), in some cases replacing communication via 
phone or SMS. Second, face-to-face communication remains a primary form of 
communication for some very close contacts, but capturing this kind of 
communication is difficult with current technology. Third, strong ties may form in 
an earlier life stage and persist across stages even as communication frequency 
diminishes. Even if one could capture data across multiple channels and do so for 
long periods of time, it is not clear that this would be sufficient to improve the 
models of tie strength. 

A breadth of recent and highly-cited research has assumed that call and SMS 
behavior is a good proxy for tie strength (Conti et al., 2011; Miritello et al., 2013; 
Onnela et al., 2007; D. Wang et al., 2011). These contributions do not attempt to 
identify all strong ties exhaustively. Rather, they only identify strong ties who use a 
specific communication channel. Our contactlist and somecomm datasets best match this 
task. The models for these datasets produce similar errors, and also indicate that 
communication frequency and duration are an incomplete signal for determining tie 
strength. While theory supports the relationship between communication frequency 
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and duration and tie strength (Hill & Dunbar, 2003), these communications should 
not be operationalized only through the call and SMS logs stored on a person’s 
phone. 

Alternatives for Identifying Tie Strength 
Researchers looking for a way to separate strong ties and weak ties need to consider 
alternatives to using short term communication logs from one or two channels, such 
as those available of today’s smartphones.  

One alternative is to collect data from more communication channels. This 
approach has several challenges. First, beyond the most popular additional sources 
(i.e. email, Facebook), researchers are likely to face diminishing returns when adding 
additional data sources. For example, some people use Skype, while others use 
Google Hangouts. Similarly, there are many text message replacement apps (e.g., 
WhatsApp, GroupMe, Kik). The number of communication channels is growing, 
people have different preferences for which channels they use and for what purposes, 
and people switch between services based on fads, or on what services their friends 
are using. Second, many of these services offer no API for accessing log data. Third, 
correctly linking contact identities across multiple communication sources is non-
trivial and error-prone. 

Another way of augmenting this process while still using communication data to 
separate strong and weak ties is to use a lot more data: data that extends back to when 
close relationships first began, which could be on the order of years or even decades. 
Since this data does not exist for current close relationships, the only way to evaluate 
this method would be to start collecting the data now and see if it predicts the 
presence of strong ties, which may only be formed several years from now. Current 
data collection and retention practices are not conducive to long-term data 
collection. For example, Android devices by default only store the last 500 calls and 
200 SMS messages. Furthermore, there are no standard APIs to access one’s data, 
and no unified structures for storing user data and maintaining history as users 
change devices and services. For work on long-term communication history to be 
possible, these practices will have to change. 

Investigating message content might also help to improve the separation of strong 
and weak ties. It is possible that in cases where there is some communication, the 
content of the communication with strong ties is different from weak ties in a 
systematic way. A drawback to this approach, and the reason that we did not explore 
this avenue, is that many people are uncomfortable with the privacy implications of 
granting content level access to calls and SMS.  

Another approach is to differentiate relationship-maintenance communications with 
strong ties (which can be infrequent but very important) from other types of 
communication. One way to do so is to see whom a person calls or visits when 
traveling (factoring in time of day to differentiate between a likely work contact 
versus a social contact). Another way might be to use age or the inferred life stage of 
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individuals and incorporate that into tie strength models. For instance, college 
students, 40-year-old parents, and senior citizens likely have different kinds of people 
in their strong ties. This method would require much deeper investigation into how 
people’s friendships change over time and how life stage affects these relationships. 

The most reliable option for distinguishing strong and weak ties is to include users in 
the process through interviews (Spencer & Pahl, 2006), or a survey (as I did). Some 
research has considered computer supported tools for collecting this kind of data 
(Ricken, Schuler, Grandhi, & Jones, 2010). The primary challenge here is that, even 
in the case that labeling is efficient, this approach still requires the time and effort of 
the user. 

The primary drawback to all of these approaches is that they require data that is 
hard to obtain. In general, researchers who use communication frequency as a tie 
strength proxy do so because it is easily available. Many of the research datasets that 
are being analyzed were collected and anonymized for a different purpose, often by 
a third party such as a telecommunications company. Researchers using such 
datasets do not have the possibility of collecting more data, or have any access at all 
to the actual participants. Furthermore, many of these datasets contain data from far 
too many users for a non-automated approach to be possible. 

Using Communication Frequency as Tie Strength  
Researchers will likely continue to use communication frequency as a tie strength 
proxy because, with the rise of smartphones, the log data is increasingly available. 
Here, I offer some implications for those that make this choice. 

Researchers should carefully consider how the imperfect proxy of communication 
frequency as tie strength limits the strength of their claims. A strong tie might have 
some in-channel communication (meaning that they would be included in the 
experiment), but may still have less communication in that channel than some weak 
ties – does this hurt the strength of a claim being made on that data? It will depend 
on the claims being made, and to what extent those claims rely on a clear separation 
between strong and weak ties. 

One solution for researchers in these situations is to modify their claims so that 
instead of relating claims to tie strength, they relate the claims directly to communication 
frequency. For example, the existing work (Conti et al., 2011; Miritello et al., 2013; 
Onnela et al., 2007; D. Wang et al., 2011) that equates tie strength and 
communication frequency are valuable contributions. However, their findings are 
explained directly in the context of tie strength, which over-estimates the reliability 
of inferring tie strength from communication frequency. This can negatively impact 
the reader’s ability to correctly interpret their findings. If tie strength is important to 
an argument, researchers should also explain how they believe tie strength and 
communication frequency are related to each other within their dataset, and should 
explicitly identify that communication frequency is a limited proxy. 
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This work has not yet explored the possibility of systematic per-user differences 
based on demographics, behavioral characteristics, or life stage that may affect 
classification accuracy in separating strong ties from weak ties. If any such effects 
exist, they may affect the claims that can be drawn from using communication 
frequency to classify tie strength. Similarly, communication frequency may be useful 
for detecting other dimensions of interpersonal relationships. In turn, the influence of 
per-user differences and other dimensions of personal relationships may further the 
definition of tie strength and the understanding of the nuances of tie strength as a 
concept. 

3.3 Case Study Discussion 
The goal of the studies presented in sections 3.1 and 3.2 was to use the 
communication behaviors of users with their contacts to predict their preferences for 
sharing different kinds of information with those contacts, using tie strength as an 
intermediate representation. At the outset this logical chain seemed well supported 
by theory, especially since communication behavior is known to predict tie strength. 
However, operationalizing this theory revealed fundamental challenges for working 
with personal data.  

First, obtaining the participants’ communication data was a difficult process. It 
required me to write custom applications to scrape the data from participants’ 
devices and additional effort to gather and process the data from Facebook. 
Collecting data from more sources would have significantly increased the complexity 
of this task. The process for transforming this data so that it could be used in the 
machine learning models also required linking the data across the two different data 
providers (phone and Facebook) and merging duplicate contacts. Since simple name 
matching did not identify all duplicates, merging duplicates required significant 
manual effort both by the researchers and by the participants. 

Further, the type and amount of data available varied widely by participant. 
Android restrictions limited the total number of call logs (and SMS logs for some 
participants as well). For other participants the data was limited by how recently they 
had obtained their current phone, because call and SMS logs are not automatically 
synced from an old device. In some cases this meant the timespan of the dataset did 
not cover enough time to make the tie-strength inferences. Additionally, the 
irregularity of the contact list entries and the amount of contact data that was 
completed made it practically impossible to use data from the contact lists for any of 
the model’s features at all. 

Improving these models by including communication logs from additional data 
sources is not trivial. The effort need to collect, link, and merge the additional data 
sources would be equal to or greater than the effort needed to do so for the original 
data, especially since applications for scraping data are not re-usable across data 
sources. In the two studies presented in this chapter, manual steps were required, 
both for the researcher and the participant.  
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Finally, the models developed here still offer potential value for inferring tie strength 
to some noise-tolerant applications where the cost of an incorrect inference is small. 
Unfortunately, even in this case deploying these models remains a significant 
challenge. This is in part because the entire machine learning pipeline here was 
static and one-off. Formatting the data, extracting features from the data, collecting 
ground truth, and classifying instances from the dataset all happened with limited 
automation to complete this research project. Furthermore, there is no mechanism 
to deploy inference models. Deploying this model (e.g. as an Android library) would 
require significant additional development effort to automate this process and 
generate a usable API.  

Additionally, deploying a machine learning model of tie strength raises privacy 
concerns. In particular, inferring tie strength information for contacts requires 
permission to access the user’s communication metadata. One solution would be to 
require that any applications using the library declare these permissions in their 
manifest. However, this may give developers pause: for some applications, adding 
permissions declarations for call logs, SMS logs, and the contact list in order to 
obtain tie strength may not be worth the additional scrutiny of a user. Some users 
may ultimately choose not to download an application that accesses too much data 
(J. Lin et al., 2012). It seems unnecessary for an application to need to require these 
permissions if all they are accessing is the resulting tie-strength inference. 

As a case study, this work illustrates some of the challenges in using personal data to 
make high-level inferences: the availability of the raw data, the limited effectiveness 
of automated approaches for identifying duplicates, and dispersion of one behavior 
across many channels (in this case, communication across phone calls, SMS, and 
channels not captured in the study). Most importantly, personal data was found to be 
an unreliable indicator for a higher-level inference even in an area where strong 
theoretical work already existed. These challenges point to deeper issues that affect 
the way that personal data can be used. While they are illustrated with 
communication logs and inferences of tie strength, these challenges are not unique to 
this specific area: researchers and developers in many situations are sure to 
encounter the same issues. 



 

 
 

 

 

  

4 A Conceptual Framework for 
Personal Data 

The previous chapters have offered a broad set of insights that speak to the 
complexity of personal data from the perspectives of end users, researchers, and 
application developers. This chapter begins by examining the ecosystem of personal 
data today from a macro level, identifying breakdowns between stakeholders. Next 
the chapter offers a synthesis of issues highlighted here and in previous chapters to 
extract more general systemic issues with the ecosystem of personal data. This 
synthesis leads to a conceptual framework for understanding the breadth of personal 
data, a range of applications that could use that data, and the process for working 
with that data. The conceptual framework (described in section 4.4) consists of two 
components. The first component is a continuum of personal data (described in 
section 4.2) from very low-level (e.g. raw sensor data) to very high level (e.g. is the 
user experiencing major depression?).  The second component is a set of three steps 
that are required to develop applications that depend on personal data (described in 
section 4.3). This framework serves as a boundary object to facilitate shared 
understanding of this domain of personal data and the process of working with that 
data to serve some client application. Finally, this chapter offers some design goals 
for improving the ecosystem of personal data from its current state to address the 
many issues highlighted throughout this thesis. 
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Figure 12: Personal data today is separated across the applications and services where each type of 
data originated (left). To unlock the full potential of personal data, it should instead be structured to 
prioritize the coherence of the heterogeneous data around each individual who is the subject of that data 
(right). 

4.1 The ecosystem of personal data today 
Despite its “personal” nature, personal data today is organized and stored separately 
within each service or application where that data was collected, rather than all of an 
individual’s personal data being stored together. This “siloed” approach to storing 
personal data introduces significant problems. At a high level, these problems are: 

• Provides poor service: Each service has an incomplete view of the user, 
which limits the service’s offerings. It is impossible for the user to manage the 
access and usage of their data across these distributed silos. 

• Facilitates customer lock-in: Users are bound to their services that hold 
their data, and leaving these services would cause the user to lose all of the 
value that they get from their data. For example, if a user wanted to stop 
using Netflix and start using Amazon Instant Video, he would have to leave 
behind the value of recommendations based on his viewing history.  

• Chicken-and-egg: New services that rely on rich personal data are subject 
to a chicken-and-egg problem for procuring that data: the service is not 
valuable without the data, but the data is hard or impossible to obtain 
without the user using the service. 

• Ground truth data labels: If a user tracks her location using one service 
and labels “home” and “work” in that service, those ground truth labels do 
not propagate to other services that the user wants to have access to that 
information (for example, a direction-finding service). This diminishes the 
value for the user to provide ground truth and further increases the 
challenges for leveraging personal data. 

For an independent application developer to incorporate personal data into a new 
application today, she must follow all of the steps outlined below in section 4.3 and 
faces many decisions along the way. In all but the most trivial straw man examples, 
following this process requires a significant investment in development resources. 
Through this system, many applications of personal data are simply not feasible, or 
are even impossible. To make matters worse, because each developer solves these 
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challenges on their own, these bespoke solutions are unlikely to be reusable for other 
developers. This further impairs a successful outcome when working with personal 
data. 

4.1.1 Stakeholders 
To fully understand the current state of personal data, it is important to acknowledge 
different stakeholders and their goals. Together, these stakeholders and their goals 
form an ecology of personal data. Considering the entire ecosystem is helpful for 
understanding why things are the way that they are today, and also what kinds of 
effects any changes in this ecology might have. The stakeholders include: 

Data-logging companies and service providers: Products, services, and 
applications that generate logs of user data. This can include large companies that 
have many products (e.g. Apple, which includes iOS, OSX, Apple-written 
applications, iCloud, iTunes, the iOS App Store). This can also include small 
companies and companies with fewer products (e.g. Dropbox, Netflix). Truly any 
service that a person uses has the ability to collect rich data on that person’s actions. 

Data-consuming applications and services: These are services that take the 
user’s personal data and apply it in some way to provide a service to the user. In 
many cases, one organization is both of these first two stakeholders (data consumers 
and data loggers). For example, Netflix collects a user’s viewing data, and uses that 
data to make recommendations. However, services may also make use of many 
different kinds of personal data from a multitude of different data loggers. 

End users: Everybody as individuals. These are the people whom the data is about 
and the people who are using these applications and services. 

4.1.1.1 Relationship Between Data-Logging Services and Users 
Data-logging services would not be meaningful without people who use that service. 
This relationship is mutually beneficial: users get to use the product or service and 
the services get the data that describes the individual’s usage of the service. The data 
that users generate while using a service is inherently under the direct control of the 
data-generating service. Data-generators decide which data to collect and not to 
collect, how long to store collected data, and how accessible that data is to users and 
third-parties. Services typically do not give a user complete access to the data that 
has been collected about them. Even in notable situations where data is made easily 
accessible to end users (like Google Takeout15), there is still valuable data that is not 
included, but that the company still collects (e.g. a Google user’s search history and 
Chrome browsing history). 

                                                         
 

15 https://www.google.com/settings/takeout 
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A user’s data is often essential to the business model of a data logger. In many cases, 
services are provided to the user for free or at a price that is below the amount of 
money that it costs the service provider to provide that service. This is made possible 
by selling information gleaned from the user’s data (i.e. market insights), or 
incorporating that data into a service (e.g. facilitating targeted advertising by 
employing the user’s data). In other cases, the user’s data is what can differentiate a 
service to make it more attractive to a user (e.g. Netflix relies on a user’s ratings and 
viewing history). As a result, some service providers are likely to behave in ways that 
users are unlikely to switch service providers. One way that service providers can do 
this is by locking a user into their particular service by withholding access to the 
user’s data or limiting portability to different services. 

Finally, privacy issues for users arise when data-generators capture data that users 
did not want to be captured and/or did not know was being captured. 

4.1.1.2 Relationship Between Data-Logging Services and Data-
Consuming Services 

As mentioned above, in the current ecology of personal data, an individual service is 
often both a data-generating service and also a data-consuming service. For 
example, the dialer application on an Android Smartphone as a data-generator 
collects data about whom the user calls. As a data-consumer, the dialer application 
shows the user whom they have called most frequently and also most recently. 

However, despite sometimes being the same entity, Data-consuming services are 
separate from data-logging services because data-consumers may also want to access 
data from a data-provider that is a different service. For example, the Android dialer 
may want to also use data from Facebook and Skype to show people that the user 
communicates with frequently across different communication media. 

In some cases, data-generators charge data-consumers money for access to a user’s 
data. For example, Facebook, Google, and many smartphone applications make a 
lot of money by leveraging a user’s data to deliver targeted advertising. Here, privacy 
issues can arise for users when data is made accessible to data-consumers without the 
knowledge or explicit consent of the user. 

4.1.1.3 Relationship Between Data-Consuming Services and 
Users 

As we said above, many data-consumers are companies that are consuming the data 
that they created themselves as data-generators. Privacy issues arise when data 
consumers use data in a way that a user did not intend, or when the data reveals 
(either directly or indirectly) information that the user did not want revealed. One 
example is the recent story of a teenage girl who received advertising in the mail for 
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maternity clothing and cribs based on her shopping habits, even though she had not 
told her father that she was pregnant16. 

In some cases, a user might wish to provide their own data to a data-consumer. For 
example, a user wants to use their data from one service to help personalize a 
different service. Another possibility is a user might want to donate their data to 
researchers that are going to analyze it. In general, users are fairly limited in their 
ability to do this. 

There is typically very little communication/interaction between data-consumers 
from different organizations, (except in formal business relationships like Facebook & 
Advertisers from above), so if the user provides some information to a data-consumer 
(e.g. this location is my home), then the user probably needs to provide that 
information separately to other data-consumers, even if they were okay with that 
information being used by other data consumers as well. 

4.1.2 Summary 
The way that these stakeholders interact today is troubling and leaves much to be 
desired. Data-loggers wield a lot of power in deciding what data is collected, how it is 
stored, and who has access to it. With this power also comes the responsibility of 
maintaining the user’s trust, and obeying laws. Data-consuming services want to 
provide their users the best possible service, which can rely in part on access to the 
user’s data. Users want to receive the best services possible, but also want to be 
comfortable with how their data is being used, which requires a combination of 
transparency and trust. Finally, all stakeholders are seeking to minimize costs, even 
at the expense of other stakeholders (e.g. storing data and providing it through an 
API can cost money, so loggers may avoid it). 

Examining the ecosystem of personal data in this way highlights clear problems with 
how personal data is managed today. The current ecosystem stifles innovation, 
facilitates lock-in, and offers a sub-optimal user experience. Considering these issues 
holistically offers the potential to improve personal data for all stakeholders. 

4.2 The Personal Data Continuum 
In this thesis, data is considered personal data if it describes something, anything, 
about an individual person: her behavior, her interests, her social relationships. So 
far in this thesis, personal data has been discussed as a single concept: either 
something is personal data or it is not. However, to fully engage how personal data is 
collected, stored, and used, it is useful to think about different kinds of personal data 
and how they are related to each other. 

                                                         
 

16 http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html?pagewanted=7 
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This section develops the idea that personal data can be thought of as falling 
somewhere along a continuum. This continuum is a core component of the 
conceptual framework. It ranges from very low-level data (e.g. a log of accelerometer 
data, latitude and longitude coordinates, audio levels) to extremely high-level data 
(e.g. my behaviors that do not support sustainability, the set of skills that I don’t have 
which would be most beneficial to learn, an inference of the state of my mental 
health). Personal data can exist at various points along the continuum. The personal 
data continuum is intended to be continuous rather than discrete, however it’s also 
important to keep in mind that continuum is a conceptual tool, not an absolute 
dimension. The personal data continuum described here is one of two components 
(the other being the steps introduced in section 4.3) of the conceptual framework for 
working with personal data (described in section 4.4). The following examples offer 
additional perspective into various points along the personal data continuum. 

 

Figure 13: The personal data continuum ranges from very low-level data (far left side) like sensor data 
that describes the user’s behavior and surroundings to very high level data (far right side) that describes 
information about individuals that they might not even know about themselves. Information in the lower 
levels can often be directly sensed, but data higher on the continuum has to be provided manually or 
inferred from a combination of lower level data. 

4.2.1 Points along the continuum 

Low-level data 
Low-level data is often sensor data such as data produced from an accelerometer, 
light sensor, temperature sensor, and microphone, but this data might also be log 
data like key presses or mouse movements. One characteristic of this low-level data is 
that it typically does not mean very much if a human is looking at it on their own. 
For example, the readings from an accelerometer mean very little to a human 
without additional processing to interpret this data, usually on a time series. 

At first glance, it’s not always immediately obvious what low-level data is personal 
data and what low-level data is not. For example, accelerometer data from a 
smartphone can vary in its functionality as personal data: if a user is in possession of 
their smartphone then the accelerometer data describes something about the user’s 
behavior. However, if the user has lent their smartphone to somebody else, the 
accelerometer is no longer generating personal data for the owner because that data 
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does not describe anything about that person, instead the accelerometer is now 
generating personal data about the person currently in possession of the phone. 

Person-Readable Logs 
At this slightly higher level, personal data begins to have more clear meaning. The 
kind of data that exists at this level are often logs of user behavior from different 
applications: phone call logs, text messages, emails, browsing history, sleep logs, 
physical activity logs, purchase history, a log of places visited, media consumption 
history (music, news stories, TV shows, movies). The list of data that roughly fits into 
this category is very long. 

This category is what most people likely think of when they think of personal data. 
In general the common concerns about personal data, privacy, and control relate to 
this kind of data. The data collected as a part of the NSA’s infamous PRISM 
program17 generally fits into this category. 

Personal Inferences 
At the level of personal inferences, personal data is less about individual moments in 
time and more about a general higher-level kind of knowledge about an individual, 
the kinds of things that change over the course of weeks, months, or even years. For 
example, social relationship data such as tie strength and life facet (Farnham & 
Churchill, 2011) from the previous chapters are examples of personal inferences. 
Other examples of these kinds of inferences might include: how physically fit the user 
is, how well she has been sleeping, or how social she has been. This level is 
completely removed from the set of things that can be instantaneously observed and 
automatically collected by a computer system. 

Holistic Understanding 
This category represents the upper limit of personal data. These are very high-level 
inferences that describe things about individuals that they might not even know 
about themselves. It is easier to think about the items in this category in terms of 
questions: Am I becoming depressed? What should I be when I grow up? What skill 
should I learn? How can I live more sustainably? What item should I purchase to 
make my life better? These are all questions that would require an incredible amount 
of data to answer. These questions require more information than simply personal 
data, but personal data is a very important component to the answers to these 
questions. 

                                                         
 

17The PRISM program is a clandestine surveillance program run by the NSA that collected large 
amounts of Internet communications. For more information see: 
http://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-
internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-
d970ccb04497_story.html 
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One vision of the far-off future of personalized computing systems imagines that 
technology might be able to answer these questions for users automatically, or at 
least help lead people to these answers themselves. 

4.2.2 Detecting Depression: Tracing an example through the 
continuum 
Part of the value of thinking about personal data on this continuum comes from 
thinking about how data at different points along the continuum relate to each other. 
Inferring the onset of clinical depression is one type of very high level inference that 
has been increasingly explored recently (Doryab, Min, Wiese, Zimmerman, & Hong, 
2014; Saeb et al., 2015). This example offers a useful example for reasoning about 
the personal data continuum.  

At the high end, of the spectrum the goal is to know whether or not an individual is 
depressed. Obviously this is very high-level and not directly observable, especially 
not by today’s technology. However, it is indirectly observable (American Psychiatric 
Association, 2013). Criteria include:  

• Patient has been less social 
• Patient has been doing fewer things that he enjoys 
• Patient hasn’t been sleeping well 
• Patient has been less physically active 
• Patient has had a significant change in weight 
• Patient has been experiencing high stress 

Each of these represents a characteristic that is certainly further down on the 
continuum: these are closer to things that can be easily observed (though not 
necessarily instantaneously). Each of these items informs the top-level inference of 
depressed/not depressed.  

Going another level lower, each of those items can be broken down into lower-level 
data that can generate output that answers those questions. For example, some data 
that might feed into how social a person has been could include data about how 
much time they have spent talking on the phone, how many text messages and 
emails they have exchanged, how many total people they have spoken on the phone 
with, what percentage of their time they’ve spent speaking with other people face-to-
face. It would be easy to brainstorm many other kinds of data here. To infer that the 
patient has been experiencing high stress, a model might again employ features of 
the patient’s communication behavior, stress indicators in their speech patterns, 
perhaps even the content of communication exchanges. The model might also take 
into account how full the patient’s calendar is and how many of the events are 
routine. 

Finally, at the lowest level, a variety of sensors provide data that inform the higher-
level types of data. For example, accelerometer and gyroscope data can be used to 
infer what kinds of activities the individual has been engaging in. Those sensors, 
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combined with the microphone and light sensor can be used to infer sleeping 
behavior (Min et al., 2014). 

This single example of detecting depression in an individual has demonstrated 
aspects of personal data all along the continuum, from the very lowest levels of 
personal data as sensor logs through several layers of inferences up to a high-level 
inference of detecting depression. 

4.3 The steps for working with personal data 

 

Figure 14: The personal data pipeline breaks down the steps of working with personal data. At a high 
level, using personal data means collecting the data, inferring some meaning from that data, and then 
applying the data to the target application. However, these steps are deceivingly simple. In reality each 
of these steps is complex with many components and a host of implicit challenges. 

The illustration of inferring depression in the previous section, as well as the case 
study of inferring tie strength and sharing preferences in chapter 3 are both examples 
that offer some insights into the process of working with personal data with the 
ultimate goal of applying it to some target domain. This section expands on these to 
establish generalized steps that capture the process of applying personal data to an 
application, leveraging the continuum from the previous section. Together, the 
continuum and the steps described in this section combine to form the conceptual 
framework of personal data. 

At a high level, the steps are: 

1. Collect the personal data from one or more sources where the data has been 
recorded and stored. 

2. Transform the collected data on the continuum from the point where it was 
when collected to the point where it needs to be in order to be applied to a 
particular target application. 

3. Use the transformed personal data in the target application. 
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It is easy to look at that list and infer that this is a simple process: each step is short 
and concise. However, this process is actually much more complicated than what it 
would seem at first glance.  

4.3.1 Collecting the Data 
The first step of the process is to collect the source personal data. This data tends to 
be towards the lower parts of the continuum, but it might be anywhere along the 
continuum. This can include collecting data directly from sensors, usage logs, or 
from other systems that have already processed the data in some way. Collecting this 
data is really broken down into several steps. 

1. Choose services that allow programmatic access to user data: The 
discussion of stakeholders highlighted the power that data-loggers have in this 
ecosystem: they are the gatekeepers to personal data, so if they don’t collect 
the desired data or don’t provide programmatic access to it, nothing else can 
be done.  

2. Authenticating the user: Most personal data is protected through some 
authentication mechanism that the user must authenticate with in order to 
provide access to the developer. 

3. Obtaining permission: The application or service that is collecting the 
data must obtain permission from the user to access the data. This can take 
many forms. On Android, this is done at install time. If connecting to a 
REST API (e.g. Fitbit, Email, etc.) then the user must authenticate and grant 
permission to access the desired data at runtime. 

4. Representing the data: In almost all cases, different data sources 
represent their data in different schemas, even when the underlying type of 
data is similar. 

5. Linking the data together: When combining data from multiple sources, 
making use of the data often means linking it together in some way. For 
example, when collecting different kinds of communication data, it is often 
necessary to connect the communication based on the person that the 
communication was with. 

6. Cleaning the data: In some cases, data from one data source could be 
duplicated by the data from a different source. The complexity here can vary 
considerably. For example, Gmail offered the ability to archive Google Talk 
conversations within Gmail. So, collecting data from Gmail as well as Google 
Talk would result in a double-counting of those communications for the users 
who had enabled that archiving feature. In other cases, individual pieces of 
data or all data from a data source may be biased or incorrect in some way. 

Whether a developer thinks about these steps consciously or just implicitly, each of 
these steps is essential for collecting personal data. Furthermore, the complexity 
increases considerably when collecting data from multiple sources, whether they are 
different data sources for the same type of data or for different types of data. 

For many developers, the challenges present here severely limit what they do with 
personal data. They may support fewer sources or they may choose not to attempt 
an ambitious idea because of these limitations. Furthermore, decisions made at this 
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stage, whether purposeful or implicit, will affect what can be done with the data later 
on and also the ease with which additional data sources can be added in the future. 

4.3.2 Transforming the Data 
The next step of the process is to transform the data from the point on the 
continuum where it was collected to the point on the continuum that it needs to be 
in order to apply it in the application. Again, there are multiple steps involved here. 

1. Deciding what the target data is: There are many possible ways to 
abstract and transform the data, and there are tradeoffs between them. (e.g. 
Does the application need a representation of tie strength, or just 
communication frequency? Communication frequency is much more explicit 
and easier to obtain than tie strength, but for a particular application tie 
strength might be the right level of abstraction). Is the target numerical? 
Nominal? 

2. Deciding the transformation mechanism: Is the transformation going 
to be machine learning-based? Rule-based? A mathematical transformation? 
Part of this step will depend on the resources available to the developer. Does 
the developer know how to apply machine learning? Does the developer have 
a way of collecting the ground truth data that will be necessary to train 
machine learning models? 

3. Assembling the input for the transformation: This step involves 
preparing the source data. One aspect of this step is strongly related to how 
the data was collected: is it in a format where it is easy to prepare for input, 
or does it require additional processing? If the transformation involves 
machine learning, the developer needs to determine the feature set and 
calculate the features. The developer must also consider what will happen for 
radically different inputs (e.g. if there is no data available from a particular 
data source for a particular user, or if the data is too sparse or over too short 
of a period of time for a particular user). 

4. Collecting training data: Having a good dataset is key to developing a 
good machine learning algorithm. In the case of personal data, it can be very 
difficult to assemble that data: it requires collecting personal data from many 
users, trying to broadly cover the spectrum of possible inputs in order to 
produce robust models. 

5. Collecting labeled ground truth: Related to collecting the training data, 
the developer must have labels for that training data in order to construct 
models. However, unlike many other machine learning problems, the effort 
of providing these ground truth labels cannot necessarily be shifted to paid 
laborers (e.g. crowd workers). Instead with personal data, the user often must 
label their own data because they are the only person that knows what the 
label is For example, in the tie strength and sharing models of chapter 3, the 
only person that could possibly answer is the user. 

The transformation step is again a complex step that will have implications for how 
data will be applied in the last step and also for how easy it will be to maintain the 
code and implement changes in the future. 
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4.3.3 Using the Data 
With the data transformed, the final step of the process is to actually apply the newly 
transformed data to the application. Again, this seems like it should be 
straightforward, but again there is the potential for complexity. 

1. Integrating the data into the application: Figuring out how to present 
the data to the user requires consideration. Will the user be able to 
understand the transformed data? Do they need to understand it? Will users 
feel that a particular transformation is sensitive or invasive in some way? If 
the transformation involved some uncertainty, how is that uncertainty 
handled by the application and/or represented to the user? Does the system 
simply display the data to the user, or does it personalize or automate some 
behavior based on the data? 

2. Handling incorrect inferences: How does the application handle 
incorrect inferences? Does it allow the user to correct them? Are these 
changes stored? Are the changes used to retrain the model? 

3. Offering transparency and control to the user: How is the resulting 
data used in the application? Does the user have the ability to know how 
their data is being used? Is the data being shared with third parties? Is there a 
data retention policy? Can the user change, hide, or remove data? Can the 
user change how the application behavior that is associated with the 
underlying data? 

4.4 The Conceptual Framework 
Together, the continuum of personal data and the steps that are required to 
incorporate personal data in an application, which have been described above, form 
the components of a conceptual framework (Figure 14). This framework captures 
and makes explicit the otherwise implicit realities of applying personal data to an 
application. The framework serves as a boundary object to support reflection and 
discourse on the process of working with personal data. One thing that this 
framework makes particularly salient is the amount of effort that is currently 
required for a developer to incorporate personal data into an application.  

In some ways, this framework looks similar to a more general data analytics pipeline, 
however many of the specifics are notably distinct between data analytics in general, 
and personal data in specific. For example, the pipeline described by Fisher, DeLine, 
Czerwinski, and Drucker (2012) define five steps that describe the process of working 
with big data: acquire data, choose architecture, shape data into architecture, 
code/debug, and reflect. The first three of these steps map to the first step described 
here (collecting the data), code/debug corresponds to the second step of 
transforming the data, and reflect is one way of completing the third step of applying 
the data. However, where these steps correspond abstractly, the specifics of these two 
processes have important differences that make them distinct. 

Acquiring a big data dataset involves identifying an existing dataset, (e.g. from an 
online repository). This is a static step, it happens once. When developing with 



Chapter 4: A Conceptual Framework for Personal Data 

 85 

personal data, the data that is being acquired is specific to each user. Thus, the data 
is not acquired all at once, it is instead acquired at application runtime for each 
individual user, and is typically continuously collected over time. Individual users 
can either grant or deny access to their data. Furthermore, collecting data oftentimes 
requires collecting hand-labeled ground truth from users, which is completely 
outside of the requirements for a big data pipeline. Other aspects of this step are 
more similar, such as linking together data from different data sources and working 
with different schemas.  

Coding and debugging with big data is largely focused on issues of scale (e.g. writing 
parallelizable code and abstracting away the cloud). There are other tradeoffs in this 
step as well, such as the tradeoff between doing manual operations on the data 
versus scripting. When developing a personal data application, the challenges are 
very different. Developers need to consider what transformation is taking place on 
the data. They do not have the ability to access each user’s data while developing the 
transformation. Instead, they need to prepare for contingencies ahead of time (e.g. 
how will the transformation behave with small amounts of data, large amounts of 
data, sparse data, dense data, etc.). Another important dimension of personal data is 
that the same behavior can mean different things for different users. Will the 
developer support user-specific transformations (e.g. personalized models)? 

Finally, the step of reflecting with big data is a discrete step that is iterative with the 
step of coding and debugging in which analysts reflect on transformed big data in 
order to build insights in that data. By contrast, personal data is applied directly in 
an application that faces the end user, who is the subject of that data. Even in the 
case that the data is being used to support the user in reflecting on her own data, 
there are differences in this step (e.g. this data is personally meaningful, the user can 
identify errors and fill in holes in the data). Beyond reflection, personal data can be 
used in applications to enable new applications or support personalization, which 
goes beyond the structure of a traditional data analytics pipeline. The personal 
nature of this data has implications for the way that users relate to the data. 

Overall, personal data has many differences from a traditional analytics data 
pipeline, and two main differences stick out in particular. First, with traditional data 
analytics it is possible to follow the process with a series of manual steps: the start-to-
end pipeline does not need to be fully automated. Second, the individually 
meaningful nature of personal data has the potential to impact all steps of the 
personal data framework. 

4.5 Design Goals 
I have synthesized the insights and challenges throughout this document to establish 
a set of design goals aimed at improving the state of personal data. These goals are a 
combination of insights gathered from the broader landscape of personal data work 
within the research community from chapter 2, the case study of my own experience 
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developing with personal data from chapter 3, and reflecting on the current state of 
personal data and the process of working with it from chapter 4. 

4.5.1 Minimize redundant effort required of developers 
This design goal is a very broad goal that should be further broken down to highlight 
the many different places that redundant effort is currently required: 

• Authenticating to multiple APIs 
• Working with non-standard data formats 
• Gathering or collecting the data 
• Cleaning the data 
• Linking data together so that it is easy to query 
• Developing and testing useful abstractions or inference models to transform 

the data so that it can be used in an application 

These are all tasks that could be simplified or completely eliminated from the 
responsibility of an individual application developer. This will make the development 
process easier and significantly lower the bar for innovating in this space. End users 
will benefit from more services, better services, and less effort required fixing their 
own data. This design goal is directly inspired by chapter 3: the entire project would 
have been much more straightforward without all of the complexity involved in 
bringing the data together.  

Developing inferences can be a major barrier for developers. Even if the developer is 
skilled at applying machine learning (e.g. extracting features, selecting an algorithm, 
tuning parameters) these tasks still require time and effort (Patel et al., 2010). 
Furthermore, collecting training data and ground truth labels can be an even more 
difficult challenge. Essentially, the to address this goal the process of developing a 
reliable model should be made separate from the process of deploying that model in 
a target application. 

One component of addressing this design goal is to have a set of inferences that are 
general enough that they can be used across multiple applications. For example, 
there are a number of ways that tie strength could be applied in different ways across 
a variety of applications. 

4.5.2 Organize data by individual, not by service 
Today, data is siloed in each application or service. This makes it easy to build 
applications that are based on their own data, but makes it much more difficult to 
offer an integrated and consistent user experience across multiple applications. This 
process should be quick and easy for developers. 

It is easy to see why personal data today is organized by application or service: there 
is value for a service in having this data across all of its users, and it is the simplest 
thing to do. Even if a service wanted to make it easy for users to store their data on 
the level of the individual, there is no infrastructure for this today. Where would this 
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data be stored? Who would protect the data? Who would pay the costs associated 
with storing this data? This concept has been proposed before in (Want et al., 2002), 
but the infrastructure for this is simply not there today. This is a major challenge 
across many of the research domains described in chapter 2, and the research 
projects in chapter 3 offer specific insights into how much of a challenge and a 
frustration this siloed approach is for developers and researchers. This also addresses 
the need cited in (Karger & Jones, 2006), that personal information must be 
defragmented (i.e. unified and linked together) in order for individuals to be able to 
realize the full potential of their data. 

4.5.3 Support connections within the data 
It should be easy to access data that is related to a particular piece of data. It should 
be easy to jump between related pieces of data. For example, a piece of information 
such as the most recent phone can have connections to other items that are 
overlapping in time such as a calendar appointment, or where the user was when she 
made the call. It can also be related to whom the call was with. There are many 
cases where these rich interconnections within the data are particularly useful. In the 
case of the tie strength model in chapter, rich interconnections in the data would 
simplify the process of calculating the features for the model. Having well connected 
data dramatically simplifies applications is also useful for episodic memory queries 
(e.g. “who did I call last time I was in San Francisco?”), personal-informatics-style 
data exploration (e.g. “do I spend more time on the phone when I’m at home or 
travelling”), specifying complex rules (e.g. in end-user programming environments), 
and for applications such as Autobiographical Authentication (Das, Hayashi, & 
Hong, 2013). 

4.5.4 Limit unnecessary disclosure 
One way of minimizing opportunities for personal data to be exploited is to follow 
the privacy maxim of limiting unnecessary disclosure (Romanosky, Acquisti, Hong, 
Cranor, & Friedman, 2006). In the ideal world, the only data that an application 
would access would be the data that it needed to access. For example, if an 
application only needs to know how many phone calls the user has made over a 
certain period of time, the application should definitely not have access to the 
individual phone call logs, only access to the count of logs over a specified time 
period. If the system can guarantee that only a specific set of data was accessed, it 
will be better able to support the user in controlling and limiting data access. 

4.5.5 Offer users transparency 
Offer as much transparency as possible when it comes to what personal data is used, 
specifically how that data is used, what (if anything) is stored, and what is shared or 
transmitted. One way of accomplishing this is by giving examples that demonstrate 
what can be done. Today, many privacy policies include language that is so general 
that it hardly communicates anything at all. Part of this design goal is to be as 
specific and clear as possible. 
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4.5.6 Offer users choices and control, while specifying 
reasonable defaults 
Hand-in-hand with transparency, systems that handle personal data should also offer 
users choices and control. 

In many cases, personal data is a component of the economics that enable a 
particular service to operate (often through revenue generated from behavioral 
advertising). In these cases, a user’s privacy decision might affect the viability of that 
service. In these cases, a combination of transparency (e.g. letting the user know that 
they are able to offer free or subsidized service because of access to this data) and 
choices (e.g. the user could pay for the service instead of providing their data) offers 
more flexibility to the concerned consumer. 

There is also room to innovate directly in the space of privacy and sharing 
mechanisms that are provided. Chapter 2 offers several examples of this in the form 
of expressing preferences that depend on “in common” information (Wiese, Kelley, 
et al., 2011), or easier ways of partitioning the target audience (Sleeper et al., 2013).  

A broad and growing literature makes it clear that designing privacy and sharing 
controls is incredibly difficult, and in many cases people do not even understand 
what privacy settings mean (Kelley et al., 2012; Liu, Gummadi, Krishnamurthy, & 
Mislove, 2011). This is far from a solved problem. Thus, it is not enough to offer 
control, services should also specify reasonable defaults. 

Finally, another component of this design goal is to offer users the ability to improve 
the service they are receiving (e.g. by providing ground truth or resolving duplicates).



 

 
 

 

 

  

5 Phenom: A Service for Unified 
Personal Data 

Approaching the ecosystem of personal data from a user-centered perspective 
represents a significant shift from how personal data is handled today. Chapter 4 
offered insights into how personal data is handled today, some of the issues with the 
current state of personal data, and design goals for improving this state. Achieving 
these goals is a long-term agenda that will require buy-in from many different 
stakeholders. There are many opportunities for improving the ecosystem of personal 
data. There are also so many prospects to employ personal data to improve the way 
that users interact with their technology.  

This chapter describes the design and implementation of Phenom, a prototype 
service for managing personal data. Phenom incorporates several key ideas that 
represent a significant advance in the way that personal data is handled. While many 
issues remain to be addressed before the vision set forth in chapter 4 is achieved, 
Phenom is a proof of concept that represents an important step towards this goal. 

The name Phenom comes from phenomenology, a field of study which “set out to 
explore how people experience the world – how we progress from sense-impressions 
of the world to understandings and meanings” (Dourish, 2001). 

5.1 System Architecture 
The main philosophy behind Phenom is that personal data is managed centrally in a 
single application-agnostic service, rather than in each independent application or 
service. This approach offers several key benefits: 
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1. A single API for an application developer to work with. The developer only 
has to authenticate the user to a single API, and the developer only has to 
work with a single format for representing the data. 

2. Linking data together, correcting bad data or mistakes, and removing 
duplicates can all be done only once and the results will be reflected 
everywhere. 

3. Inferences and models can be developed and improved centrally and the 
benefits can be had by all applications. 

4. Operations on personal data can happen within the service, making it easier 
to constrain what data a client application has access to. 

5. A user can specify privacy preferences in a centralized service with a familiar 
user interface, rather than in each client application. 

 

 

Figure 15: A system diagram for Phenom illustrating its different components. The Epistenet Data Store 
serves as a semantic knowledge base of personal data. Data providers bring personal data in from 
external data sources. Bots operate on the data contained within the datastore to generate inferences 
and abstractions. A unified querying API provides application developers with a single query interface to 
access the richly interconnected personal data from the datastore. 

At a high level, the Phenom architecture is composed of several key components: 

• Data providers are responsible for connecting to a data source, retrieving 
new data from that source, and storing it in the internal datastore. 

• The data store contains the rich interconnected data that has been brought 
in from the providers. The datastore contains objects of many different types, 
with attributes that can include references to other objects. Finally, object 
types are defined in a semantic tree, where the children of a type contain all 
of the attributes of its parent (but may contain additional attributes as well). 
The data store also contains inference data and ground truth data. 
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• Bots perform operations on the data in the semantic data store, for example 
simple “housekeeping” operations, model-based inferences, heuristic-based 
inferences, etc. 

• The API offers the flexibility of SQL-like queries to the personal data store 
that is particularly focused on the needs associated with querying personal 
data, such as connecting across multiple data types and working with 
timestamps and aggregates. The Java API offers a simplified abstraction on 
the much more complicated structure of the underlying datastore while 
preserving query flexibility. 

The remainder of this section offers a more in-depth discussion of these components 
that together form Phenom. 

5.1.1 Epistenet: A Semantic Data Store 
Epistenet, the semantic data store component is a core component to Phenom 
[XXX tech report]. Epistenet is a system that I co-developed with Sauvik Das, who 
lead the development of this component.  

One major challenge when developing with personal data is that data from different 
sources are completely separate. For example different data sources use different 
schemas. 

To address this issue, Epistenet offers a unified internal format for storing personal 
data with a source-agnostic schema, support for connections between different 
objects, and a hierarchical ontology that specifies subsumption relationships between 
different data types. To enable this source-agnostic schema and rich 
interconnections between data, every piece of personal data in Epistenet is 
represented as an object with some number of attributes that are associated with that 
object.  

For example, a PhoneCall is one type of personal data captured by Phenom. 
Epistenet represents the PhoneCall object with the following attributes: Direction 
(incoming or outgoing), Duration, and AlterAddress (phone number). The 
underlying data schema of this implementation is very flexible. Data is stored in an 
SQLite database where EpistenetObjects are stored in one table and all 
Attributes are stored in a table that contains the name of the Attribute, a reference 
to the EpistenetObject that it is associated with, and the value. This simple 
database schema offers a flexible framework for objects to be represented within 
Epistenet. 

Another issue for working with personal data is that data from different sources may 
be interconnected with each other in many ways, but because they are coming from 
different sources, those interconnections are difficult to leverage. Sometimes these 
interconnections are across semantically disjoint data (e.g. a user’s presence at a 
physical location, and a cell phone call might be connected through their timestamp. 
The types of data are completely different). In other cases types of data have a more 
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direct semantic relationship (e.g. phonecalls and SMS messages are both types of 
communication).  

Epistenet also has infrastructure to support these kinds of connections. Each 
EpistenetObject is associated with an OntologyClass that identifies its type. 
PhoneCall is one example of an OntologyClass, so every EpistenetObject that 
represents a log of a phone call is associated with the PhoneCall ontology class. 
Ontology classes are key to a very important feature of Epistenet: the ability to 
maintain connections between data that is semantically related. Continuing the 
phone call example, a related type of data is a text message. Text messages and 
phone calls are both types of communication, and because of this similarity they 
share some attributes in common, such as Direction and AlterAddress, but not 
others like Duration. To capture this semantic relationship, Epistenet has a 
hierarchical representation of ontology classes. In the example, both the PhoneCall 
and SMSMessage ontology classes are children of the Communication ontology class 
(see Figure 16). The Communication ontology class defines the common attributes of 
Direction and AlterAddress and the PhoneCall and SMSMessage ontology classes 
inherit those attributes, and can define their own additional attributes as well. 

 

Figure 16: An example of an ontology in Epistenet. Direction edges in this graph refer to “subsumptive” 
relationships. So, a PhoneCall is a type of Communication. Attributes of a parent ontology class are also 
contained in the descendants of that ontology class. 

As a result, a query to Epistenet for objects of a particular OntologyClass can 
specify whether the objects that are returned should only be the objects that are 



Chapter 5: Phenom: A Service for Unified Personal Data 

 93 

concretely associated with that OntologyClass (e.g. only objects that are explicitly 
identified as Communication, not PhoneCall and SMSMessage which are children of 
the Communication ontology class), or if it should also include objects that have a 
concrete type of a child OntologyClass (e.g. a query for the Communication 
ontology class would also return objects that were defined as both PhoneCalls or 
SMSMessages). Epistenet refers to these relationships as identity (i.e. only objects that 
are the concrete type specified in the query) and subsumption (i.e. all objects in the 
ontology subtree of the specified type). 

This semantic linkage is powerful. Inserting a PhoneCall object into the datastore 
means that automatically through the ontology relationship it is also represented as a 
Communication object, and tied the object to a CommunicationHandle (through the 
AlterAddress), which is linked to a Contact ontology class object, which is 
subsumed by the Person ontology class. This structure allows for very rich flexible 
queries, enabling a single query to automatically incorporate the data from different 
but semantically related data types. For example, it would be very simple to query 
for a list of the 10 contacts that a user had communicated with most recently across 
all communication media (Section 5.1.3 describes the specifics of executing queries 
such as these using the API). 

Defining a new Ontology Class 
The following steps document the process of defining a new ontology class within 
Epistenet: 

1. Determine where in the Ontology the new class should be added. For 
example, if we are adding a provider for phone call logs, the place to put the 
PhoneCall Ontology Class would be Communication à PhoneCall. An 
Ontology Class could also be at the root. 

2. Declare the new ontology class in the ontology.config file. This includes 
specifying the name, and a versioning number (here it’s 2). This file also 
specifies the ontology: 

 
  SMSMessage,1 
+ Phonecall,2 
  … 
 
  … 
  Communication,Textbased,1 
  Textbased,Email,1 
+ Communication,Phonecall,2 

3. Declare a new class that includes the attributes that will be associated with 
the Phonecall ontology class in in the ontologyclasses namespace: 

   public class Phonecall extends Communication { 
          public static final Attribute DURATION =  
         new Attribute("Duration", AttributeValueType.INTEGER); 
 
          public static Attribute[] getAttributes() { 
         return ArrayUtils.addAll(Communication.getAttributes(),  
            new Attribute[]{Duration}); 
          } 
   } 

4. Declare Gmail in the OntologyClass.java enum. The number just needs to be 
unique within the enum: 
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   Phonecall("Phonecall", 6) { 
           @Override 
           public Attribute[] attributes() { 
               return Phonecall.getAttributes(); 
        } 
    }, 

After completing these steps, a new Phonecall ontology class will exist in Epistenet 
with all of the attributes associated with the Communication ontology class, in 
addition to a “Duration” attribute. 

Reference Attributes 
The example above offers a view into the general process for defining new 
OntologyClass types, but there are a few more details that are involved when 
defining some kinds of attributes. Many attributes are similar to “Duration” in the 
example above: they represent a basic value such as Integer, Double, Timestamp, or 
String. However, some attributes actually reference an Epistenet object. These are 
ReferenceAttributes. In the phone call example, one example of a 
ReferenceAttribute is the phone number. The reason that this attribute did not 
appear in the description above is that it was inherited from the Communication 
ontology class.  

In fact, this is even more complicated because at the level of the Communication 
ontology class, the identifier isn’t necessarily a phone number. It could also be an 
email address, or a screen name. Thus, the definition for Communication includes 
this: 

public static final ReferencesAttribute ALTER_ADDRESS =         
new ReferencesAttribute("AlterAddress", 
  OntologyClass.CommunicationHandle); 

 

This “AlterAddress” ReferencesAttribute in Communication references a 
CommunicationHandle ontology class which has ontology class children 
PhoneNumber and EmailAddress. This preserves the overall structure of the 
Communication ontology class (i.e. communication happens with other people), but 
also maintains differences between different kinds of handles (i.e. phone numbers 
and email addresses). 

The Communication ontology class also includes a reference to the Person ontology 
class. However, in this case it is not possible to use a ReferenceAttribute, because 
the communication is only indirectly tied to a person through the communication 
handle. Instead, the IndirectReferencesAttribute is a sort of ghost reference that 
references the target ontology class (i.e. Person), through the attribute of an 
intermediate ontology class to which this ontology class has a reference (i.e. the 
Person attribute of the AlterAddress, which is a direct reference from 
Communication). 

public static final IndirectReferencesAttribute PERSON = 
   new IndirectReferencesAttribute( 
      "Person", 
      Communication.ALTER_ADDRESS,  
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      CommunicationHandle.PERSON); 

One issue with ReferencesAttribute and IndirectReferencesAttribute is that 
they are unidirectional. In this case, the PhoneCall ontology class has a 
ReferencesAttribute for AlterAddress and Person, but Person does not have a 
ReferencesAttribute to PhoneCall. ReverseReferencesAttribute solves this 
problem. ReverseReferencesAttribute uses the existing attribute connection to 
make the relationship bi-directional. For example, the following two attributes are 
defined in the Person ontology class: 

public static final ReverseReferencesAttribute PHONE_CALLS =  
   new ReverseReferencesAttribute( 
      "PhoneCalls", OntologyClass.Phonecall, Phonecall.PERSON); 

This attribute is a sort of convenience attribute. No additional data is stored in 
Epistenet, but when querying the Phenom API, ReverseReferencesAttribute 
behaves the same as ReferencesAttribute by reversing the direction of the original 
ReferencesAttribute. 

Together, the structure of Epistenet makes it very easy to interact with the data. For 
example, perhaps when a phonecall is initially recorded, Phenom does not know to 
whom the phone number belongs. With this approach, when the connection is made 
between the phone number and the person, all of the data is instantly updated for 
free. 

5.1.2 Data Providers 
Today, working with personal data means any application that wants to use the data 
from a data source needs to individually connect to all of the datasources to access 
that data. This process it often painful and involves a fair amount of boilerplate code. 
Phenom removes this responsibility for each developer by doing this only once.  

Data providers are the component of Phenom that brings in raw personal data from 
any external source—for example, system content providers such as SMS logs, 
hardware sensors such as the accelerometer, and third-party applications such as 
“What’s App”. The call log, for example, is a data provider that contributes objects 
of the “PhoneCall” ontology class, while a web browser would contribute objects of 
the “SiteVisit” ontology class.  

Data providers are responsible for connecting to the external data source, mapping 
the data from that data source to an ontology class within Phenom, and avoiding 
creating duplicate data. Data providers are polled at configurable intervals so that 
the can aggregate new data. While providers themselves do not offer much novelty 
to Phenom, they are an essential component for Phenom. 

Defining a New Provider 
Creating a data provider involves only a small amount of overhead beyond the 
boilerplate code that is required to query the data source and extract data from that 
source. 
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1. Add a line to providers.config with a name for the provider the number of 
milliseconds between polling times, and the Java classname for the provider:  

     … 
     sms_logs,14400000,SMSLogsProvider 
   + call_logs,14400000,CallLogsProvider 
     … 

2. Implement the CallLogsProvider class in the providers namespace. The 
key aspect of implementing the provider is implementing the poll method.  

public class CallLogsProvider extends Provider { 
   public static final long PERSISTENCE = Long.MAX_VALUE; 
   public static final String PERMISSION = 
      "android.permission.READ_CALL_LOG"; 
   public static final String PROVIDER_NAME = "call_logs"; 
 
   public void poll() { 
… 

 
Within this method, the main steps are to  

a. Poll the data source for new data: 
EpistenetAdapter adapter = this.getAdapter(); 
long lastUpdated = 
   adapter.getLastUpdatedTimeForProvider( 
      this.getProviderName()); 
Cursor c = this.mContext.getContentResolver().query( 
   CallLog.Calls.CONTENT_URI, 
      new String[] { Calls.DATE, Calls.NUMBER,  
         Calls.DURATION, Calls.TYPE, Calls.CACHED_NAME}, 
            Calls.DATE + " > " + String.valueOf(lastUpdated), 
   null, null); 
 

b. Cycle through the new data to create new objects:  
   

if (c != null && c.getCount() > 0) { 
   while c.moveToNext()) { 
      long oid = adapter.createObject(PERSISTENCE); 
 

c. Associate all of the relevant attributes with each object: 
 
adapter.createAttribute( Phonecall.DURATION, 
   c.getString(c.getColumnIndex(Calls.DURATION)),oid); 
adapter.createAttribute( Phonecall.DIRECTION, 
   this.getStringifiedType( 
      c.getInt(c.getColumnIndex(Calls.TYPE))), oid); 
 
adapter.createAttribute( Phonecall.ALTER_NAME, 

          UtilityFuncs.coalesceString(c.getString( 
   c.getColumnIndex(Calls.CACHED_NAME)),"Unknown"),oid 

    ); 
 

// Code to create phone number object if necessary 
long[] numberCreated =  
   adapter.createObjectIfDoesNotExist( 
      new String[]{ PhoneNumber.HANDLE.getSelectName()}, 
      new String[]{UtilityFuncs.formatPhoneNumber( 
         c.getString(c.getColumnIndex(Calls.NUMBER)))}, -1); 

 
if(numberCreated[0] > 0){ 
   adapter.createAttribute(PhoneNumber.HANDLE, 
      UtilityFuncs.formatPhoneNumber( 
         c.getString(c.getColumnIndex(Calls.NUMBER))),  
         numberCreated[1]); 
      
   adapter.createObjectOntologyLink(numberCreated[1], 
      adapter.getIDsForOntologyClassNames( 
         OntologyClass.PhoneNumber.className()).get( 
            OntologyClass.PhoneNumber.className())); 
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} 
 

adapter.createAttribute( Phonecall.ALTER_ADDRESS, 
   String.valueOf(numberCreated[1]), oid); 

     

d. Finally, add in the meta attribute, link the object to the rest of the 
ontology, and release resources: 
 
long metaAttribute = this.createMetaAttribute(oid, 
   c.getLong(c.getColumnIndex(Calls.DATE))); 
     
this.createObjectOntologyLinks(oid);  
}} 
this.closeCursor(c); 
} 
 

Omitting a few accessors and utility methods, this is all that’s required to create the 
provider for phone logs. The flexibility of this approach allows for much more 
complex providers to be implemented if necessary. 

5.1.3 API for Querying Unified Personal Data 
For Phenom to be effective, it needs to enable developers to access the rich 
interconnected personal data that is contained within in a simple and flexible 
manner. This requires designing and deploying an API that will be support the 
ontological structure and flexible attribute schema supported by the rest of Phenom, 
and providing a single unified environment for accessing the results of an arbitrary 
ontology class.  

The Phenom API provides a unified interface for accessing the personal data that is 
stored within Phenom. The Phenom API is accessible to client applications through 
a lightweight Android Library Project. Client applications can use the library to 
query the API. The library binds to the Phenom service, which runs in a separate 
process on the phone. Results are then returned to the client application through a 
callback mechanism. 

Specifying a query 
Specifying a query to Phenom requires defining one or more Filter objects. A Filter 
can be very simple. For example, the following Filter specifies that the duration field 
should be returned for all phone calls: 

Filter phonecallFilter =  
   new Filter(OntologyClass.Phonecall).projection(Phonecall.DURATION); 

While filters can also be more complex than this, the basic idea is the same. To 
create a Filter, the OntologyClass that specifies the type the Filter should 
return. After this, the Filter object behaves like a builder. Options for the filter 
include: 

• Simple Constraints on the OntologyClass’s attributes (e.g. lessThan, 
greaterThan, equal, notEqual, inSet, notInSet, inRange) 

• Limit the number of results returned 
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• Specify the sort order based on an attribute 
• Specify an SQL-style “group by” on an Attribute 
• Specify the projection of attributes to be returned. Attributes not explicitly 

included here will not be  
• Constrain through join: essentially allowing for a compound query to be 

specified based on a ReferencesAttribute that connects this 
OntologyClass with a different OntologyClass. 

In all of these cases, when an Attribute is required as a parameter, any attribute can 
be used. In particular, Phenom provides support for three additional non-concrete 
attribute types not previously discussed: AggregateAttribute, TimepartAttribute, 
and ReferencesAggregateAttribute. 

AggregateAttributes perform the same behavior as SQL aggregates (i.e. sum, 
average, count, min, max, and group concat). An AggregateAttribute must be based 
on a concrete attribute, and can be obtained by calling the asAggregate() function 
of Attribute. For example: 

  Phonecall.DURATION.asAggregate(AggregateType.SUM); 

The resulting AggregateAttribute can be used in any place where a concrete 
attribute would normally be used. It is important to note that the “group by” for a 
filter should be specified, otherwise the ID attribute is used as the attribute by 
default. 

TimepartAttributes make it easy to extract information from a timestamp and use 
it within the query. For example this is the query for extracting the year number and 
month number from a timestamp and returning it in a single attribute: 

PlaceVisit.TIMESTAMP.asTimePart(TimePart.YEAR, TimePart.MONTH) 

It is also possible to get an AggregateAttribute of a TimepartAttribute, which 
allows for easy querying of aggregated statistics based on time. For example, the 
following attribute would give the most recent month and year of a PlaceVisit:  

PlaceVisit.TIMESTAMP.asTimePart(TimePart.YEAR, TimePart.MONTH) 
   .asAggregate(AggregateType.MAX)); 

Finally, ReferencesAggregateAttribute makes it easy to get aggregate information 
about the attributes of an object referenced by a ReferencesAttribute. For example 

Together, this simple query interface easily enables a set of rich queries to be made 
to Phenom. For example, the following query returns statistics about the 10 places 
where the user has spent the largest amount of time, including:  

• Latitude and longitude 
• the total amount of time spent there 
• the average length of a stay 
• and the most recent year and month that the user was there 
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Filter placeVisitsFilter = new Filter(OntologyClass.PlaceVisit) 
   .projection( 
      PlaceVisit.DURATION.asAggregate(AggregateType.SUM), 
      PlaceVisit.DURATION.asAggregate(AggregateType.AVERAGE), 
      PlaceVisit.TIMESTAMP.asTimePart(TimePart.YEAR, TimePart.MONTH) 
         .asAggregate(AggregateType.MAX)) 

                .orderBy(PlaceVisit.DURATION.asAggregate(AggregateType.SUM), false); 
 
Filter placesFilter = new Filter(OntologyClass.Place) 
   .projection(Place.LATITUDE, Place.LONGITUDE) 
   .constrainThroughJoin(placeVisitsFilter, Place.VISITS) 
   .limit(10); 

This is a prime example of a query that would be much more difficult, or even 
impossible, to execute without Phenom. 

Handling a Query Result 
Queries to Phenom are executed asynchronously, so handling a result from Phenom 
involves implementing a callback. It is easy to implement this callback as an 
anonymous function similar to the way that click handlers are often implemented: 

mApiClient.sendQuery(placesFilter, new PhenomCallback() { 
   @Override 
   public void onSuccess(ArrayList<PhenomObject> objs) { 
      processResults(objs); 
}); 

Queries are returned as a list of PhenomObjects, which offers a basic structure for 
representing query results. Essentially, each PhenomObject represents an object of 
the OntologyClass specified in the query. Attributes of the ontology class that were 
specified in the Filter’s projection can be accessed by calling the get method for 
the corresponding type of the attribute. 

5.1.4 Bots 
The raw personal data gathered and stored within Phenom is useful in its own right, 
but often the real value of this aggregated personal data comes from additional 
processing or inferences that are done on top of the raw data. In some cases it makes 
sense for individual developers to do this additional processing, but in many cased 
multiple developers can make use of the same processing work. For example, as 
discussed in chapter 3, tie strength can be useful to a variety of applications. 

Bots are the component that offers this functionality to Phenom. Bots carry out 
worker functionality on the Epistenet semantic data store, following a blackboard 
architecture where the Epistenet datastore is the blackboard. Bots are somewhat 
similar to Providers in that they are polled on a fixed schedule and they do work on 
the contents of the semantic data store. However, instead of inserting new data into 
the datastore, bots operate on the existing data. This can include maintenance tasks 
such as removing duplicated data or identifying connections across multiple kinds of 
data.  

However, the more exiting use of Bots is to offer the ability to generate inferences 
and abstractions based on the existing data within Epistenet. For example, the 
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“home_labeler” bot uses some basic heuristics to label places that the user calls home 
or has called home in the past, and the “strong_tie” bot uses communication 
behavior to infer some of a user’s strong ties and label those contacts as strong ties in 
Epistenet. In these examples, there is an Attribute associated with the Place and 
Contact ontology classes respectively for each of these inferences. When a bot has 
made an inference, it simply adds or updates the corresponding attribute. 

Defining a new Bot 
There are only a few steps required to create a new Bot.  

1. Add a line to bots.config with a name for the bot, the number of milliseconds 
between polling times, the Java classname for the bot, and the version 
number of the config file for which this bot was added:  

  … 
  significant_places,86400000,SignificantPlaceBot,1 
+ tie_strength_bot,86400000,TieStrengthBot,2 

 

2. Implement the TieStrengthBot class in the bots namespace. The key aspect 
of implementing the bot is implementing the poll method.  

 
public class TieStrengthBot extends Bot { 
    private static final String BOT_NAME = "tie_strength_bot"; 
 
    public TieStrengthBot(Context c){ super(c); } 
 
    @Override 
    public String getBotName() { return BOT_NAME; } 
 
    @Override 
    public String getPermission() { 
        return "phenom.permissions.tie_strength"; 
    } 
 
    @Override 
    public void poll() { 
… 

 
Implementing this method depends on the specific functionality of the bot. In 
the case of the tie strength bot, the steps are to:  

a. Query Epistenet for the relevant data: 
 

// A few aliases for readability 
ReferencesAggregateAttribute smsCount =                  
   Person.SMS_MESSAGES.getReferencesAggregate( 
      SMSMessage.ID.asAggregate(AggregateType.COUNT)); 
 
ReferencesAggregateAttribute callCount = 
   Person.PHONE_CALLS.getReferencesAggregate( 
      Phonecall.ID.asAggregate(AggregateType.COUNT)); 
         
ReferencesAggregateAttribute callDuration = 
   Person.PHONE_CALLS.getReferencesAggregate( 
      Phonecall.DURATION.asAggregate(AggregateType.SUM)); 
 
Filter personList = new Filter(OntologyClass.Person) 
   .projection(Person.ID, Person.NAME,  
      smsCount, callCount, callDuration); 
 
ArrayList<PhenomObject> allPeople =  
   getAdapter().doPhenomQuery(personList); 
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b. Calculate tie strength based on the specified heuristics: 
 
int maxDur = 0; 
int maxCallCt = 0; 
int maxSMSCt = 0; 
 
for (PhenomObject person : allPeople) { 
   maxSMSCt = Math.max(maxSMSCt, person.getInt(smsCount,0)); 
   maxCallCt = Math.max(maxCallCt, person.getInt(callCount,0)); 
   maxDur = Math.max(maxDur, person.getInt(callDuration,0)); 
} 
 
for (PhenomObject person : allPeople) { 
   double closeness = ((person.getInt(callDuration,0) / maxDur) + 
      (person.getInt(callCount,0) / maxCallCt) + 
      (person.getInt(smsCount,0) / maxSMSCt))/3; 
   getAdapter().createOrUpdateAttribute(Person.TIE_STRENGTH, 
      Double.toString(closeness), person.getLong(Person.ID)); 
} 

In this case, creating a bot was as simple as that, there are no other steps. Of course, 
bots can be much more complex, for example actively retraining a model based on 
new data labels from the user. 

5.2 Evaluation: Example Applications and Queries 
This section offers two examples of applications that Phenom makes particularly 
simple, where previously they would have been much more complicated, perhaps 
impossible. These examples offer a basic evaluation that demonstrates the value 
offered by Phenom.  

5.2.1 Bootstrapping Users’ Interests from Location Data 
The first example is an approach that is intended to solve the “cold start” problem 
that happens when a user begins using a new service that is trying to personalize 
content within the application (e.g. a personalized news reading application). One 
innovative approach to solving this problem is to try to use the user’s location history 
to identify significant places that the user has been to. Specifically, a location history 
can be used to identify unique places that a user has visited, how recently, and how 
frequently the user has been there. With this information, it is possible to look up 
additional information about a location, like what type of a location it is, and any 
identifying characteristics of the location (e.g. a user that frequents a rock gym is 
likely interested in climbing). This data can then be used to generate an interest 
profile for a user. Even if the results are only partially correct, this approach is still 
better than completely random data, or no data at all.  

Phenom Implementation 
One of the bots implemented in Phenom is a SignificantPlaces bot, which uses a few 
different heuristics to identify places that are significant to the user based on her 
location history. 
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With the significant places bot implemented, this particular application is fairly 
straightforward in Phenom: 

mApiClient = new ApiClient(this); 
Filter placesFilter = new Filter(OntologyClass.Place) 
   .projection(Place.LATITUDE, Place.LONGITUDE) 
   .notEqual(Place.SIGNIFICANT_PLACE, "NULL"); 
 
mApiClient.sendQuery(placesFilter, new PhenomCallback() { 
   @Override 
   public void onSuccess(ArrayList<PhenomObject> objs) { 
      getTagsFromFlickr(objs); 
   } 
}); 

 

Upon receiving the callback from Phenom, the application can cycle through the 
significant locations and query a third-party API for tags that are associated with 
those locations. In this example, The application connects to Flickr to retrieve the 
annotated photo tags from geotagged photos, but an implementation might also use 
data from Foursquare, Yelp, or Google Maps. Next, the application does TF-IDF 
with the words from the tags, and the result is a word vector that offers some clues to 
the user’s interests that should be better than a random selection of articles. 

This is a great example of the value offered by Phenom: there were very few steps 
involved in getting the data needed in a usable format. Phenom obviates the need to 
create the custom code to gather and store location data. Furthermore it makes it 
easier to retrieve location data based on different qualities of the data points (e.g. a 
window of time, a particular city, etc.). This offers a similar kind of abstraction to 
that which happens within modern GUI toolkits. These toolkits offer developers a lot 
of support for developing the graphical interface portions of an application. While 
each developer still needs to write the business logic and functionality of an 
application, they do not need to be concerned with the specific implementation of 
the GUI components (e.g. standard appearance of widgets, event stream, etc.). 
Similarly, Phenom obviates the boilerplate code that each developer would need to 
write in order to raise the abstraction level to a point where developers can focus on 
the business logic and functionality that is specific to their application. 

Non-Phenom Implementation 
Without Phenom, the first step to implementing this example is to access enough of a 
user’s location history that it would be possible to identify the user’s significant 
places. Possibilities include:  

1. Asking the user to upload their location history (e.g. from Google Location 
History, which provides users with that data but does not offer an API) 

2. Collecting the data from the API of a service that the user already uses (e.g. 
from Moves, or from Foursquare) 
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3. Collecting the user’s location automatically within the application over a 
period of time until enough data has been collected that significant places 
are salient 

Each of these options has drawbacks. Options 1 and 2 are service-dependent in a 
way that excludes users who do not use those services. Option 3 includes all users, 
but involves running on the user’s device for long enough to bootstrap with enough 
data that significant places could be determined. Developers who are using Phenom 
are not exposed to this challenge because the data has already been brought together 
through the use of data providers, which can cover all three of these alternatives in a 
way that supports reuse across applications. However, without Phenom a developer 
has to cobble together a solution that is likely to exclude more users from the feature. 

In this case, the goal was to eliminate the cold-start problem, so option 3 does not 
work. From a development perspective option 2 seems easier than option 1, though 
this does have the drawback of only collecting location check-ins, rather than all 
location data. First is pseudocode for accessing a user’s check-ins: 

Intent intent =  
   FoursquareOAuth.getConnectIntent(context, CLIENT_ID); 
 
startActivityForResult(intent, REQUEST_CODE_FSQ_CONNECT); 
… 
@Override 
protected void onActivityResult(int requestCode, int resultCode, Intent 
data) { 
   switch (requestCode) { 
      case REQUEST_CODE_FSQ_CONNECT: 
         AuthCodeResponse codeResponse =  
          FoursquareOAuth.getAuthCodeFromResult(resultCode, data); 
            Intent intent =  
  FSOauth.getTokenExchangeIntent(context, CLIENT_ID, 
    CLIENT_SECRET, authCode); 
 
  startActivityForResult(intent,  
   REQUEST_CODE_FSQ_TOKEN_EXCHANGE); 
            break; 
      case REQUEST_CODE_FSQ_TOKEN_EXCHANGE: 
         AccessTokenResponse tokenResponse =  
         FSOauth.getTokenFromResult(resultCode, data); 
           checkins = retrieveCheckinData(resultCode.getAccessToken()); 
           break; 
    } 
} 
 
… 
private Checkin[] retrieveCheckinData(String accessToken){ 
   FoursquareApi api = new FoursquareApi( 
      "ClientID", "ClientSecret", "CallbackURL",  
      accessToken, new IOHandler()); 
 
   Result<CheckinGroup> result =  
      api.usersCheckins(null, 1000, 0, Long.MIN_VALUE, Long.MAX_VALUE); 
 
   return result.getResult().getItems(); 
} 
 

At this point, we have access to the user’s check-ins. The next step is to process the 
check-ins in a way that surfaces “significant places”. Where developers that are using 
Phenom can make use of the existing “significant places” bot, here the developer 
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would need to determine those significant places independently. For simplicity here, 
significant places can be the user’s most frequent places. We might also want other 
information to be included here, such as the places where the user has spent the 
longest duration. However because we are using check-ins this information is not 
available. Pseudocode for this follows: 

 HashMap<Location, Integer> visitCount = new HashMap(); 
for(Checkin c : checkins){ 
   Integer count = frequency.get(c.getLocation()); 
 if(count == null) 
      count = 0; 
 
   frequency.put(c.getLocation, ++count); 
} 
visitCount.sortByValue(); //Implemented elsewhere 
getTagsFromFlickr(visitCount); 
 

Comparing Implementations 
Even with this relatively basic task, these two implementations demonstrate several 
ways that Phenom offers value compared to the non-Phenom implementation. The 
most obvious difference between these two examples is the number of lines of code 
written for each example: notably fewer lines of code for Phenom. This is possible 
because the code for gathering and storing locations, as well as for calculating 
significant places, is code that many applications would be able to use across a 
variety of applications. Even more value for the developer comes from the 
modularity behind Phenom. Specifically, the Phenom-based implementation above 
will instantly be able to take advantage of any improvements made to earlier parts of 
the process without changing any lines of code (e.g. collecting data from more 
sources, automatically collecting location data even before this application was 
installed, an improved algorithm for detecting significant places, or user-provided 
ground truth on which places are or are not significant). This means that the 
developer could deploy her application and not need to make any changes in order 
to receive these benefits. 

By contrast, for the non-Phenom implementation, the developer had to make 
choices on which data to include in the process. Adding another data source to the 
existing data source means more coding for the developer, both for accessing the 
data, but also for integrating it. Adding two new data sources is twice as much work. 
Furthermore, the non-Phenom implementation is unlikely to receive corrections to 
significant place labels from the user. If the developer wanted this information, she 
would need to implement a mechanism for the user to provide it. However, even 
with such an implementation, the likelihood of a user providing feedback for use in a 
single application seems low. 

One drawback to the existing implementation of Phenom is that the codebase (i.e. 
for providers, bots, and the schema) is managed centrally: there isn’t an immediate 
mechanism for a developer to add a new data provider, or to contribute her own 
bot. The most immediate way to address this is to run Phenom as an open source 



Chapter 5: Phenom: A Service for Unified Personal Data 

 105 

project, where individual developers could submit pull requests for changes that they 
would like to make. 

5.2.2 Ordering Contacts Based On Tie Strength 
The next example again demonstrates something that would require many more 
steps to complete without the assistance of Phenom. In this example, we will make 
use of the TieStrengthBot described earlier in this chapter. 

Filter contactTieStrengthFilter = new Filter(OntologyClass.Person) 
   .projection(Person.NAME, Person.TIE_STRENGTH) 
   .orderBy(Person.TIE_STRENGTH, false); 
 
mApiClient.sendQuery(contactTieStrengthFilter, new PhenomCallback() { 
   @Override 
   public void onSuccess(ArrayList<PhenomObject> objs) { 
      setContactOrder(objs); 
   } 
}); 
 

After retrieving the ordered list of contacts, the application can use that information 
to determine which contacts to show more prominently. One interesting example 
where this could be applied might be in an Email application: the email inbox might 
first group emails by day, but within each day it could show emails first from people 
that the user is closer to, and then show other emails below. 

Non-Phenom Implementation 
Without Phenom, the first step to implementing this example is to get programmatic 
access to the user’s call and SMS logs. For this example, we’re trying to calculate the 
number of phone calls in the call log, number of SMS messages in the SMS log, and 
the total duration of calls in the call log. There are two main approaches for doing 
this, and each has tradeoffs. 

One alternative is to take a more SQL-centric approach to calculating the 
communication statistics. This involves making SQL group-by queries that groups 
the communication log tables by each contact and uses SQL aggregates (i.e. 
COUNT() and SUM(duration)). This solution might typically require the fewest 
lines of code, but because of the structure of the Android Content Providers, this 
process has several problems. First, there is no way to join between the CallLogs 
provider and the Contacts provider. Doing a GROUP BY on the phone number 
column is tempting, but the implementation is such that the same phone number 
might be represented by different strings, even on the same device (e.g. dashes, 
parentheses, leading country code). In this case, the best solution is that the CallLogs 
provider does have a cached URI for each contact, which can be used in the 
GROUP BY clause. However, this information is not guaranteed to be updated as 
contact records change. Finally, the Android Content Provider API does not support 
GROUP BY anyway, so it turns out that this approach is simply not possible 

The other approach is to calculate those statistics in the Java code of the application. 
This approach requires writing much more code, but will also be more precise and 
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reliable. Furthermore, if the developer wanted to add some other data that was not 
already in an SQLite database or Android content provider (e.g. if querying a REST 
API), then these calculations would need to be done in code. 

In spite of this, we will need to pursue the second approach because the first is simply 
not possible with the current implementation of Android. 

HashMap<String, Integer> callCount = new HashMap<>(); 
HashMap<String, Integer> callDuration = new HashMap<>(); 
HashMap<String, Integer> smsCount = new HashMap<>(); 
 
int maxCallCount = 0; 
int maxCallDuration = 0; 
int maxSMSCount = 0; 
 
Cursor callCursor = this.mContext.getContentResolver().query( 
   CallLog.Calls.CONTENT_URI, 
   new String[] {  
      Calls.DATE, 
      Calls.NUMBER, 
      Calls.DURATION, 
      Calls.CACHED_NAME, 
      Calls.CACHED_LOOKUP_URI 
   }, null, null, null); 
 
while( callCursor != null && callCursor.moveToNext()){ 
   String lookupURI = callCursor.getString(  
                      callCursor.getColumnIndex(Calls.CACHED_LOOKUP_URI)); 
   int count = 0; 
 
   if (callCount.get(lookupURI) != null) 
      count = callCount.get(lookupURI); 
 
   callCount.put(lookupURI, ++count); 
 
   maxCallCount = Math.max(maxCallCount, count); 
 
   int duration = 0; 
 
   if (callDuration.get(lookupURI) != null) 
      duration = callDuration.get(lookupURI); 
 
   duration += callCursor.getInt( 
                  callCursor.getColumnIndex(Calls.DURATION)); 
 
   callDuration.put(lookupURI, duration); 
 
   maxCallDuration = Math.max(maxCallDuration, duration); 
} 
 
callCursor.close(); 
 
Cursor smsInboxCursor = this.mContext.getContentResolver().query( 
   Sms.Inbox.CONTENT_URI, 
   new String[] {  
      Sms.DATE, 
      Sms.ADDRESS, 
   }, null, null, null); 
 
Cursor smsSentCursor = this.mContext.getContentResolver().query( 
   Sms.Sent.CONTENT_URI, 
   new String[] {  
      Sms.DATE, 
      Sms.ADDRESS, 
   }, null, null, null); 
 
for(Cursor c : new Cursor [] {smsInboxCursor, smsSentCursor}){ 
   while(c != null && c.moveToNext()){ 
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      String phoneNumber = c.getString(  
                      c.getColumnIndex(Sms.ADDRESS)); 
 
 /* Note that the method below doesn’t exist so must be implemented 
  * and requires a call to the contacts provider 
     */ 
      String lookupURI = getLookupUriForNumber(phoneNumber); 
 
      int count = 0; 
 
      if (smsCount.get(lookupURI) != null) 
         count = smsCount.get(lookupURI); 
 
      smsCount.put(lookupURI, ++count); 
      maxSmsCount = Math.max(maxSmsCount, count); 
   } 
} 
smsInboxCursor.close(); 
smsSentCursor.close(); 
    

So the code above produces the call counts, total call duration, and SMS counts for 
each contact. There are a couple of things to note in the inconsistency between the 
APIs for the calls and SMSs. First, note that SMSs are split into different tables, 
depending on whether they are incoming, outgoing, drafts, etc. Thus, the developer 
needs to know to query both the inbox and the sent SMSs. Additionally, the SMS 
Content Provider does not provide the cached lookup URI, so that information has 
to be retrieved manually in the code from the Contacts Content Provider. 

The next step is to calculate a tie strength score for each contact. 

HashMap<String, Double> tieStrength = new HashMap<>(); 
 
for(Entry<String, Integer> e : callCount.entrySet()){ 
   String lookupURI = e.getKey(); 
   int callCount = e.getValue(); 
   int callDuration = callDuration.get(lookupURI); 
   int smsCount = 0; 
 
   if((int val = smsCount.remove(lookupURI)) != null) 
      smsCount = val; 
 
   double tieStrengthVal = (callCount/maxCallCount/3) +  
                           (callDuration/maxCallDuration/3) + 
                           (smsCount/maxSmsCount/3); 
 
 
   tieStrength.put(lookupURI, tieStrengthVal); 

 
} 
 
// For the remaining SMS counts, where a contact didn’t have any calls 
  
for(Entry<String, Integer> e : smsCount.entrySet()){ 
   String lookupURI = e.getKey(); 
   int smsCount = e.getValue(); 

 
   double tieStrengthVal = (smsCount/maxSmsCount/3); 
   tieStrength.put(lookupURI, tieStrengthVal); 
} 
 

The last step is to sort the HashMap by its values, so that the highest tie strength 
values are at the top of the list. That code is omitted here. 
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Comparing Implementations 
Again, as with the previous implementation example, it is clear that the Phenom 
implementation is much simpler for an application developer. The Phenom solution 
is more robust as well: it does not rely on the cached contact information or the 
phone’s contact list. This also means that adding in additional communication data 
(e.g. emails, social network, or instant messaging) would be easier with Phenom than 
in the custom implementation. Finally, the Phenom implementation can 
automatically and for free take advantage of any ground truth data provided by the 
user (i.e. fixing incorrectly labeled contacts whose real tie strength does not match 
that which was calculated). 

The reason that this approach works for Phenom is because there are many 
applications that might be able to make use of communication metadata, and of tie 
strength (e.g. contact ordering, notification prioritization, personal informatics). 
Additionally, these are both potentially useful as input to even higher-level inferences 
(e.g. mental health, social support, busyness). Thus, the code that supports this in 
Phenom is valuable because it can be reused across a variety of applications, 
eliminating the need for any of those developers to redo the common steps of these 
processes. 

5.3 Discussion 
Phenom is a proof of concept system that demonstrates the possibility and the power 
of an integrated service for managing personal data on the level of the individual 
rather than on the level of a company or data source. 

The architecture of Phenom described in this implementation organizes the personal 
data process into a modular set of reusable components that are flexible enough to 
store arbitrary types of personal data, support the linkages between personal data 
regardless of whether they are from the same or different sources, generate 
inferences and abstractions on the data, and provide access to that data through a 
unified API. As a result, individual applications do not need to solve the issues and 
challenges associated with storing personal data, those responsibilities can be 
delegated to Phenom and solved once. 

5.3.1 Reflecting On Design Goals 
Section 4.5 laid out an ambitious set of design goals targeted at addressing the issues 
and challenges that are associated with the current ecosystem of personal data. 
While no single developer, system, or approach could possibly address the entirety of 
these goals singlehandedly, the implementation of Phenom that is described in this 
chapter represents an important step towards reaching these goals. Phenom speaks 
directly to some of these goals, and indirectly to others. Each of those goals is 
discussed in turn below. 
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Minimize redundant effort required of developers 
Phenom dramatically reduces the net effort that is required of developers in order to 
make use of personal data, and each of the components of Phenom contribute to 
this. Through the abstraction of Data Providers, Phenom simplifies the process of 
working with multiple APIs and the only developer who needs to be concerned with 
the structure of the API of the data source is the developer who implements the data 
provider for that data source. The Epistenet data store supports rich interconnection 
between data, both homogeneous through the semantic network of 
OntologyClasses, and also heterogeneous through the use of 
ReferenceAttributes. The combination of these two types of interconnection is 
especially powerful. Finally, the API offers even more value to developers by 
simplifying operations that would otherwise be complicated and would require a 
deeper understanding of the underlying implementation. 

Phenom’s Bots offer the ability to support the reuse of machine learning by enabling 
the modular deployment of models that can generate inferences and abstractions 
based on the contents of Epistenet. This represents a good first step, but more can be 
done to further streamline the process of developing machine learning models. Part 
of that opportunity comes from better mechanisms for collecting ground truth and 
retraining models. Another opportunity is to provide better support for the actual 
process of coming up with an initial model. With the current design of Phenom this 
remains a challenge because Phenom does not offer developers who are 
implementing bots any way to access the personal data of individuals, even if a user 
is willing to offer their data. 

The real value of Phenom on this design goal is visible through the two examples 
highlighted in section 5.2. The amount of code required, the complexity, and the 
potential to make errors was dramatically better with Phenom than without it. The 
Phenom solutions are easier, more robust, and more flexible to future additions and 
improvements to the process. 

Organize data by individual, not by service 
Phenom addresses this goal very directly: in Phenom, the top level of organization 
for personal data is the user, not the service or data source that the data came from. 

Support connections within the data 
Again, Phenom directly engages the goal of supporting connections within the data. 
The main limitations of supporting connections within the data now likes in the 
hierarchical organization of the ontology, and in the choice of 
ReferencesAttributes to associate with a particular OntologyClass. 

Limit unnecessary disclosure 
Phenom’s API easily supports many queries that would have previously required the 
developer to have access to copious amounts of raw personal data. Not only does this 



Chapter 5: Phenom: A Service for Unified Personal Data 

 110 

capability help to minimize redundant effort by developers, but it also lays the 
groundwork for a system that offers users strong guarantees on how much data is 
being accessed by developers. While Phenom does not fully implement that system, it 
is now conceivable to do. 

Offer users transparency, and offer users choices and 
control, while specifying reasonable defaults 
These final two personal data design goals remain mostly untouched by Phenom, 
and are ripe for implementation and further work. 

5.3.2 Next Steps 
Phenom is a big idea and it represents a major shift in the approach to handling 
personal data. However, as the previous section suggested, there are a number of 
important aspects of Phenom that will need further development in order to realize 
its full potential. 

 

Privacy 
Without question, the topic of privacy is the aspect of Phenom requires the most 
attention. However, developing a strong approach to privacy here is a large topic 
that will require significant additional work. 

One approach to handling privacy in Phenom is to simply continue to enforce the 
Android permissions framework that is already in use on the platform. This 
implementation would involve tracking the permissions that were required to obtain 
all of the data that was used in the specification of a certain query, and ensuring that 
the client application has declared all of those permissions in its own 
AndroidManifest.xml file. This approach is in some ways the most obvious and 
probably the simplest to implement as well, however there are several problems with 
this approach. First, querying for something like tie strength, for example, would 
require Android’s permissions for contacts, call logs, and SMS logs, even though 
neither call logs nor SMS logs are directly accessible by the developer, and it would 
be very difficult to infer much meaning from the value produced by the tie strength 
bot (except to infer that the user has shared no communication with a particular 
contact). This approach is suboptimal because it does not allow for stronger 
guarantees on what data an application is or not accessing, which is an important 
aspect of the design goals. The next problem is that some data that Phenom 
aggregates or will be able to aggregate in the future does not have an Android 
permission (and did not come from Android in the first place). In these cases, a 
different permission approach would be necessary because developers would not 
have access to a permission that they should declare for those data types.  
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Another approach for handing privacy controls in Phenom is to define custom 
permissions for new types of data (e.g. a permission for tie strength, a permission for 
accessing aggregated statistics on calls, etc.). This is approach is a permutation of the 
previous approach that at least offers some solutions to the aforementioned issues. 
While this approach is more plausible, it suffers from an unfortunate tradeoff. In 
order for this approach to guarantee minimum access, it will likely result in an 
explosion of new permissions for every possible permutation of different 
combinations of data that might be accessed. This will be unwieldy for developers, 
and certainly will make the development process more complex. However, even 
more troubling is that users are likely to be overwhelmed or confused by the 
explosion of new preferences. This could result in the average user paying less 
attention to privacy preferences. Studies have already shown that users often do not 
understand the existing permissions (Kelley et al., 2012). 

Finally, a more progressive approach would be to rethink the permissions system 
more holistically. One idea in this directions is the idea of tiered permissions. The 
idea behind tiered permissions is that some kinds of data are considered to be less 
sensitive than others, and so permission to access this data should be presented 
differently to the user. For example, something as simple as how recently the user 
made a phone call, how many contacts are in the contact list, or the average number 
of text messages the user sends per month are all likely to be perceived as less 
sensitive, so these items might appear at a lower tier. By contrast, the exact location 
of the user’s home and work, her entire call log, or the amount of money the user has 
in her bank account might be considered more sensitive items and belong in the top 
tier. There are probably different kinds of data that belong in between these two as 
well. For example, tie strength seems like it might be in between the two extremes. 
The idea with this approach is that lower tier items would require less confirmation 
from the user in order to access, while higher tier things might be especially 
prominent to encourage the user to be cautious. 

This tiered approach feels promising, but also introduces its own challenges. For 
example, deciding what belongs in each tier requires non-trivial effort. Furthermore, 
adding additional bots or data sources is going to require even more decisions to be 
made. Finally, there is the question of this approach to the vulnerability of an 
inference attack. For example, the tiered permissions model may determine that 
simply knowing whether or not the user is currently at home is less sensitive than the 
exact location of the user’s home. However, if the application can gain access to the 
user’s current location in some other way, then the developer still has access to the 
more sensitive information. In this particular example, perhaps Phenom would 
check to be sure that the application has not declared permissions to access 
Android’s location APIs. However, there are many different combinations of 
inference attacks that might occur, and it seems intractable to be able to protect 
against all of them. Even the combination of different data that are accessed within 
Phenom might change something that was otherwise not very sensitive into 
something that was very sensitive. For example, it has been demonstrated that 
having access to an individual’s date of birth and place of birth (both fairly 
innocuous facts on their own), can be exploited to guess the considerably sensitive 
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information of the individual’s social security number (Acquisti & Gross, 2009). 
Ultimately, the challenges of creating usable interfaces for managing privacy and 
security are so difficult that an entire research area has developed to understand and 
address these challenges. This topic is a rich space for future work. 

Ground Truth and Mediation 
Beyond privacy, there are a number of opportunities to push Phenom forward. First 
is providing users with opportunities for correcting incorrect inferences and 
providing ground truth data to help improve inference mechanisms. It is conceivable 
that individuals would be willing to provide better labels for their own data if in 
exchange they receive better service. Existing examples of this include features like 
Netflix asking users to rate more movies so that they get better recommendations, 
and Gmail Priority Inbox asking users to select which items should be moved to the 
Priority Inbox and which items should be removed. There are many opportunities 
for individual applications to encourage this type of labeling and Phenom should 
provide a process for integrating with that. Also along these lines, as discussed in the 
previous section, there are opportunities to further simplify the process of developing 
machine learning models and improving those models after they have been 
deployed. 

Externally Defined Providers 
Next, it would be very useful for Phenom to accept incoming data from external data 
providers. This feature would allow client applications that otherwise do not want to 
expend resources to provide and maintain an API to still contribute that data to 
Phenom and thus offer access and control of that data to the user. This will lead to 
other important challenges to consider. For example, what if the data that an 
application wants to contribute to Phenom does not fit into the existing ontology or 
requires an additional attribute? The way that Phenom is implemented today, those 
decisions are made statically at compile time. However, in the future it is possible 
that the ontology definition and the attributes associated with a particular ontology 
class could be dynamically defined. Such an implementation would need to have a 
centralized component for handling the definition of the ontology. Otherwise, a 
decentralized version would mean that a developer could never depend on what 
ontology is implemented on a particular device, which is problematic from a 
development perspective. 

Architecture 
The topic of a centralized component for storing a dynamically changing ontology 
also leads to a broader discussion of the particular architecture that Phenom is 
implemented in today. Phenom is quite decentralized in its current implementation, 
with an instance of Phenom running on the phone of each user. This has a variety of 
tradeoffs: 
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• Individuals may feel more secure that their data is physically in their control 
on their own device. The reverse perspective is that a smartphone is much 
easier to physically steal than if the data was stored in the cloud. 

• There is no centralized cost for owning and maintaining servers, including 
the processing power, storage capacity, and electricity costs. This means that 
it might be easier to spark adoption of Phenom because there is no cost 
barrier to starting to use it. The reverse perspective here is that resources on 
a smartphone are certainly limited: storage space, processing power, and 
battery. If Phenom really became popular, its impact on the resources of the 
device might become more salient to the user.  

• Because Phenom is decentralized, there is no real support for non-phone 
applications to gain access to Phenom. This could become an issue, in 
particular if part of the value of Phenom is to offer a consistent user 
experience across all of the applications that an individual uses. 

If we collectively adopted a computing architecture more akin to one that would 
support the proposed Personal Server (Want et al., 2002), but given the widespread 
success of mobile data and cloud computing, the idea of changing our computing 
infrastructure to support this idea of a Personal Server seems unlikely. 

With a centralized architecture, the issues and concerns would be reversed. A third 
option to consider is the potential to support a hybrid architecture, with some 
components of Phenom centralized, and others decentralized. Such an approach 
might begin to offer the benefits of each approach while minimizing the drawbacks. 
One example of this idea of a hybrid decentralized platform is the social network 
platform Diaspora18. In Diaspora, the idea was that any individual could host their 
own server (called a pod), and that pods could connect with each other, but physical 
control of the server and the personal data is decentralized. Ultimately, a hybrid 
architecture would represent a massive undertaking, but may also offer the most 
promise for deploying the ideas behind Phenom out into the real world. 

5.4 Related Work 
Aspects of the approach that Phenom takes to handling personal data are related to 
a variety of project in the space of HCI and mobile computing. While Chapter 2 
gave a much broader overview of various work related to personal data, this section 
is mainly focused on systems that may appear similar or related to Phenom. 

The Context Toolkit (A. Dey et al., 2001) is a software framework for making 
software context-aware. In the context toolkit, data is collected from sensors by 
context widgets that separate the data that was collected from the specific complexity of 

                                                         
 

18 https://diasporafoundation.org/ 
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how it was collected, interpreters raise the level of abstraction of the data within each 
sensor, aggregators bring together related contextual information together from 
different sensors, services trigger actions based on the data, and discoverers maintain a 
registry of what capabilities exist in the framework. Phenom was inspired in part by 
The Context Toolkit. The most obvious difference between these two systems is that 
The Context Toolkit is designed to bridge the gap between very low-level, sensor-
based personal data. By contrast, Phenom is not designed to handle very low level 
sensor data but is much more focused on accepting the output of a system such as 
the Context Toolkit. 

Following on from The Context Toolkit, a number of frameworks and tools have 
been developed that further expand the idea that underlies The Context Toolkit. In 
particular, following the creation and widespread adoption of the Android operating 
system, a handful of tools have emerged that are focused on offering a unified 
framework for interacting with a phone’s contextual data, whose definition has in 
some instances been expanded beyond hardware sensors to include data from 
“software sensors” and even humans. These systems include the AWARE framework 
(Ferreira, Kostakos, & Dey, 2015), ohmage (Ramanathan et al., 2012), and the Funf 
Open Sensing Framework (Aharony et al., 2011). While the specific details of the 
implementations of these systems do vary, the basic structure is fairly similar across 
all of these systems. All three of these systems have a strong focus on collecting data 
in the context of a study: they all include a backend server component and tools for 
researchers to collect and analyze data from participants. In addition to these 
features, all three systems do offer a library that contains the core components for 
developers to integrate the framework into the development of their own 
applications. 

These systems do share some aspects of similarity with Phenom: they all run on 
Android, they all collect personal data, and in some cases (particularly with 
AWARE), there is some effort to raise the level of abstraction of the data beyond the 
level it was collected at. However, Phenom stands distinct from these systems. 
Perhaps most distinct is the combination of Phenom’s semantic data store and 
Phenom’s API. None of the three systems mentioned above support linking and 
interconnection of data across different data types. Instead, they all expose the 
underlying personal data through a very thin API layer. Phenom’s API offers the 
ability to easily specify complex cross-data-type queries. Furthermore, the 
ontological hierarchy in Epistenet offers additional power and flexibility in working 
with the data. Finally, Phenom’s framing as a service for managing the breadth of 
personal data is distinct from those presented in the above systems, where the focus 
is more directly on the information that is available on the phone. 

One idea that was proposed is that the phone’s operating system is what should be 
responsible for collecting and making inferences from contextual data (Chu, Kansal, 
Liu, & Zhao, 2011). This offers a different perspective on collecting personal data 
from a smartphone. For example, operating system-level support for collecting 
context could provide unified support for collecting user behavior within applications 
(Fernandes, Riva, & Nath, 2015). This is a perfect example of the kind of data that 
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Phenom would be perfect for collecting: information about what users do when they 
are in applications could dramatically improve the amount of data from which we 
can make personal inferences in Phenom. Again, the level of inference described in 
this work is at the lower levels of contextual inference, where Phenom is positioned 
to be making higher-level inferences. 

A number of personal data stores have been proposed over the years, with various 
architectures, access mechanisms, and privacy controls (Bell, 2001; Cáceres, Cox, 
Lim, Shakimov, & Varshavsky, 2009; de Montjoye, Shmueli, Wang, & Pentland, 
2014; “Higgins Personal Data Service,” n.d.; Hong & Landay, 2004; Mun et al., 
2010; Want et al., 2002). The motivations behind these systems echo each other: 
offering users ownership and control over her personal data, strongly emphasizing 
privacy. Echoing the points above, Phenom’s unique approach to storing, 
interconnecting, and querying the data makes it distinct from these other 
approaches. Furthermore, Phenom’s bots offer additional functionality for making 
inferences and abstractions internally in the system. The related work that offers 
something most similar is openPDS (de Montjoye et al., 2014). openPDS includes a 
component called SafeAnswers. SafeAnswers essentially offers functionality 
complimentary to bots. However, in the SafeAnswers model, individual developers 
are responsible for writing the code that will be run in the system, and the only data 
that is released to the developer is the answer to the question. By contrast, Phenom’s 
Bots are intended to be highly-reusable, application-agnostic modules. Furthermore, 
because the output of bots is also stored in the semantic data store, Bot output can be 
easily and flexibly combined with other parts of the user’s data, a functionality not 
supported by the SafeAnswers architecture. 

Recently, both Google and Apple have released platforms (Fit (“Google Fit,” n.d.) 
and HealthKit (“Apple HealthKit,” n.d.) respectively), which share some aspects 
with Phenom: they are intended to collect fitness and health data from arbitrary 
applications, store that data in a data-centric format rather than a source-centric 
one, and then make that data available to other applications with the user’s 
permission. The approach taken here is in some ways closer to Phenom’s ontology-
class-driven semantic approach to organizing data. However, these systems are 
restricted to health data, they lack the ability to generate inferences within the 
system, and they do not provide the same interconnected API querying facilities that 
Phenom offers. 



 

 
 

 

 

  

6 Conclusion 

Personal data today is abundant, and there remains enormous potential for it to 
grow both in the breadth of sources captured and in the duration of time captured. 
Applications that make use of this data are limited only by our own creativity. But 
between the vast amounts of personal data and the functional applications that are 
enabled by the data lies an orthogonal set of challenges. The ecosystem of personal 
data was not purposefully designed with a goal of unlocking the full potential of a 
collected and quantified world. In fact, it seems that nobody at all has approached 
personal data from a holistic perspective.  

This dissertation explores a holistic view of personal data. A broad survey of 
computer science in chapter 2 research reveals multiple domains where an 
integrated approach to personal data is the key to advancing the state of the art in 
that discipline. The case study in chapter 3 demonstrates the practical challenges 
and issues that transform the simple steps of a research project into a resource-
intensive distraction from the main goal of the work. Chapter 4 explores the 
ecosystem of personal data: What does it look like today? What is wrong with it? 
What would improve it? It introduces a conceptual framework for thinking about the 
process of working with personal data consisting of a continuum of abstraction levels 
of personal data, and three steps necessary for working with it. Using the frame of 
unified personal data, simplifies many of the challenges involved in this process. 
Chapter 5 demonstrates a proof-of-concept service for unified personal data that 
offers a single user-centric data store of richly interconnected personal data.  

This dissertation offers the following technical and design contributions to HCI: 

1. A proposal for unified personal data; a reframing of many HCI challenges, 
human needs, and technical opportunities that can all be advanced by more 
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holistically viewing all of the individual data amassing around people as their 
personal data that should work for them.  

2. The notion of personal data as a continuum, and a conceptual framework 
that unpacks the implicit process involved in working with personal data. 

3. A set of design goals for improving the ecosystem of personal data. 
4. The design of Phenom: a service that supports software development with 

personal data. Phenom modularizes the collection, interconnection, 
processing, and querying of personal data to solve a key set of challenges 
involved in developing applications that use personal data. 

5. The implementation of a proof of concept of Phenom which demonstrates its 
viability and utility as a personal data service. 

Personal data is only in its beginnings as a research domain. If researchers from 
many disciplines are going to continue to employ personal data to make research 
advances in their own disciplines, it is imperative that we establish this multi-
disciplinary domain. 

The possibility of a world where unified personal data can be used to enable 
powerful and complex applications is very real, however many important and 
interconnected questions remain in personal data research. What economic model 
will enable companies to maintain their value and competitive advantage while also 
enabling end-users fair access to their data? What software architecture offers the 
best compromise of across concerns? What access mechanisms will offer an effective 
balance between privacy and utility? 

Even beyond research, as a society we will need to answer a set of questions that we 
might not be ready for. Who “owns” my personal data? Is ownership even the most 
applicable concept? Does an individual have a right to access their own data? A right 
to demand that it is collected? A right to demand that it is deleted? A right to stop it 
from being deleted? In the context of these questions, Phenom is a software artifact 
that offers the ability to engage these questions, explore potential solutions, and 
continue to evolve the ecosystem of personal data. 
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