GRAPHITE: A Visual Query System for Large Graphs

Duen Horng Chau, Christos Faloutsos,
Hanghang Tong, Jason I. Hong
Carnegie Mellon University
{dchau, christos, htong, jasonh}@cs.cmu.edu

Abstract

We present GRAPHITE, a system that allows the
user to visually construct a query pattern, finds both
its exact and approrimate matching subgraphs in large
attributed graphs, and visualizes the matches. For ex-
ample, in a social network where a person’s occupa-
tion is an attribute, the user can draw a ‘star’ query
for “finding a CEO who has interacted with a Secre-
tary, a Manager, and an Accountant, or a structure
very similar to this”. GRAPHITE uses the G-Ray al-
gorithm to run the query against a user-chosen data
graph, gaining all of its benefits, namely its high speed,
scalability, and its ability to find both exact and near
matches. Therefore, for the example above, GRAPHITE
tolerates indirect paths between, say, the CEO and the
Accountant, when no direct path exists. GRAPHITE
uses fast algorithms to estimate node prorimities when
finding matches, enabling it to scale well with the graph
database size.

We demonstrate GRAPHITE’s usage and ben-
efits wusing the DBLP author-publication graph,
which consists of 356K nodes and 1.9M edges.
A demo wvideo of GRAPHITE can be downloaded at
http://www.cs.cmu.edu/ dchau/graphite/graphite.mov.

1. Introduction

People often want to find patterns in graphs, such
as social networks, to better understand their dynam-
ics. One such use is to spot anomalies. For example, in
social networks where a person’s occupation is an at-
tribute, we might want to find money laundering rings
that consist of alternating businessmen and bankers.
But, then, we face several challenges: (1) we need a
conveninent way to specify this ring pattern as a query,
with appropriate attributes (e.g., businessman, banker)
assigned to each node; (2) we need to find all poten-

Brian Gallagher, Tina Eliassi-Rad
Lawrence Livermore National Laboratory
{bgallagher, eliassiradl}@lInl.gov

gation by Topological Example

@ Graphite graphi
L3

@ (omL1993

Figure 1. The GraPHITE user interface show-
ing the query pattern (left) for a chain
of authors from four different conferences.
Nodes are authors; attributes are confer-
ences; edges indicate co-authorship. One
best-effort match (right) is Indyk (STOC),
Muthu (SIGMOD), Garofalakis bridging Muthu
and Jordan (ICML), and Hinton bridging Jor-
dan and Fels (ISBMS).

tial matches for this pattern; we want near matches as
well, such as allowing another person between a busi-
nessman and a banker, because we may not know the
ezact structure of a money laundering ring; (3) the
graph matching process should be fast, avoiding expen-
sive operations, such as joins; (4) we want to visualize
all the matches to better interpret them.

We present GRAPHITE, a system designed to solve
the above challenges. GRAPHITE stands for Graph
Investigation by Topological Example. It provides a
usable integrated environment for handling the com-

*Accountant . SEC

CEO @ Manager

Figure 2. A ficticious network of people,
whose job titles (attributes) are represented
by shapes and colors.

(11
o ¥

(b) A matching subgraph

@
X
O
(a) Loop query

Figure 3. A loop query and a match

plete workflow of querying a large graph for subgraph
patterns. Users can (1) naturally draw the structure of
the pattern they want to find and assign attribute val-
ues to nodes; (2) run the query against a user-chosen
data graph, using the G-Ray method, to quickly locate
exact and near matches; (3) obtain matches in a matter
of seconds; and (4) visualize the matches.

Figure 1 is a screenshot of GRAPHITE when we ask
for a chain of four coauthors in DBLP: a STOC’05 au-
thor, a SIGMOD’06 author, an ICML’93 author, and
an ISBM’05 author. Such a chain does not exist, but
GRAPHITE returns a best-effort match, with two in-
termediate nodes (in white): Minos Garofalakis, who
bridges Muthu (SIGMOD) with Jordan (ICML, a pre-
mier machine learning conference) and Geoffrey Hin-
ton, who bridges Michael Jordan (ICML) and Sidney
Fels (ISBMS, a conference on biomedical simulation).

This paper is organized as follows. Section 2 gives
the formal definition of our subgraph matching prob-
lem. Section 3 describes the system details. Sec-
tion 4 describes what we will be demonstrating for
GRAPHITE. Section 5 discusses related work. We con-
clude our contributions in Section 6.

2. Problem Definition

We describe the subgraph matching problem that
GRAPHITE is designed to solve. Consider the fictitious

social network in Figure 2, where nodes are people,
whose attributes (job titles) are represented by shapes
and colors. We define the problem as: given

e adata graph (e.g., Figure 2), where the nodes have
one categorical attribute, such as job titles,

e a query subgraph describing the configuration of
nodes that the user wants to find (e.g., Figure
3(a)), and

e the number of desired matching subgraphs k,

find k matching subgraphs, that match the query as
well as possible.

For inexact matches, they should be ranked accord-
ingly to their quality, such as how “similar” they look to
the query. Incidentally, since we are using the G-Ray
algorithm, the matching subgraphs will be automati-
cally ranked according to its goodness function, giving
convincing and intuitive rankings [6].

3. Introducing Graphite

GRAPHITE is a system for visually querying large
social networks through direct manipulation, finding
exact and near matches, and visualizing them.

The User Interface and Interactions. Figure
4 shows GRAPHITE’s user interface. The left half is
the query area (a), where users draw their query sub-
graphs. They can assign an attribute to a node by
double-clicking on it and picking a value from a pop-up
dialog (f). Users can create nodes and edges with the
editing control (middle icon at (c)), reposition or delete
them with the picking control (arrow icon at (c)), pan
around the view port with the panning control (hand
icon at (¢)), and zoom in or out with the mouse scroll
wheel. The right half of the user interface is the results
area (b), which shows the exact and near matches as
tabs (e) that the user can inspect conveniently by flip-
ping through them. Users can specify the number of
matches they want to find with the text box at the bot-
tom of the interface (d). They can then click the Find
Matches button to start the pattern matching process.

Algorithm for Finding Matches. There are
many different subgraph matching algorithms that
could be used for GRAPHITE; if we only wanted ex-
act matches, we could write SQL queries to specify the
query patterns. However, we chose the G-Ray algo-
rithm for the following two advantages. First, when
no exact matches exist, it automatically searches for
best-effort matches (tolerating longer, indirect paths).
Second, thanks to its proposed goodness function [6], it
ranks the resulting matches, returning results that are

Al Graphite: Graph Investigation by Topological Example

@ Graphite graph
k @ b

'S Specify Vertex Attribute

VLDB

VLDB Surveys
VLDB PhD Workshop

VILLDB2004.

V1DB2005 | |

VLDB1993
VLDB1991
VLDB1994
VLDB2006
VLDB1974

f

Attributes

v/ Use Cache

. Sudarshan 8. Chawathe

Cancel

Find Matches

Figure 4. The GrAPHITE user interface. (a) User-specified ‘star’ query pattern. (b) Near match for the
‘star’ pattern. Nodes are authors; attributes are conferences; edges link co-authors. The query asks
for an author who has published in PODS, with connections to authors of IAT, PODS, and ISBMS. (c)
Users can select, create, move and delete nodes and edges; they can also zoom and pan. (d) Users
specify number of matches. (e) Matches shown as tabs. (f) Users double-click a node to bring up a
dialog for filtering attributes down to the ones that contain the filtering text.

empirically more important to the users, thus avoids
flooding the user with a potentially huge number of
less important matches.

Implementation. GRAPHITE is a Java SE 6 ap-
plication. It uses the JUNG! Java library for editing
and visualizing graphs. G-Ray, the backend algorithm
that GRAPHITE uses for subgraph matching is written
in the MATLAB programming language. GRAPHITE
uses the RemoteMatLab software library? to remotely
call into an instance of MATLAB that has been started
as a server, passing query patterns to the algorithm and
obtaining matches from it.

4. Demonstration

Datasets. We use the DBLP dataset, from which
we construct an attributed graph where each node is
an author and the node’s attribute is the combina-
tion of a conference name and a year (e.g., “ICDM

Thttp://jung.sourceforge.net/

’http://plasmapowered.com/wiki/index.php/
Calling MatLab_from_Java

Shttp://www.informatik.uni-trier.de/~ley/db/

2008”). We describe this attributed graph by two ma-
trices: (1) a node-to-node matrix, which represents the
co-authorship among authors where entry (i, 7) is the
number of coauthored papers between author ¢ and 7;
and (2) a node-to-attribute matrix, which represents
the author-conference relationship where entry (i, j)
equals 1 if author ¢ has published in conference j, and 0
otherwise. In total, there are 356,364 nodes, 1,905,970
edges, and 12,920 possible attribute values.

Demonstration Details. We will demonstrate
how to draw common query structures, such as a ‘line’
pattern (as in Figure 1, discussed in Section 1), and
a ‘star’ pattern (as in Figure 4). Our audience can
also create their own query patterns. The ‘star’ query
asks for an author who has published in PODS (in
red), who has co-authored papers with three other au-
thors from the conferences IAT (orange), PODS (red),
and ISBMS (yellow). In one of the highest-ranking
matches (on the right), the PODS author in the center
is Philip Yu, a prolific author in databases and data
mining. The other PODS author is Hector Garcia-
Molina, also extremely prolific, with an indirect con-

nection to Philip through Chawathe, his ex-advisee.
Zhongfei (Mark) Zhang is the matching author for IAT,
Intelligent Agent Technology, who is a computer vision
researcher with a recent interest in data mining, hence
the connection to Philip Yu.

We will show our audience how to assign attributes
to the query nodes, via the dialog shown in Figure 4(f),
which quickly filters possible attribute values down
to the ones that contain the filtering text. We will
also perform real-time pattern matching for the query
patterns by communicating with the backend Matlab
server. We will engage our audience to make sense of
the exact and near matches that GRAPHITE displays,
and to offer their feedback on the quality of the results.

5. Related Work

Graph matching algorithms vary widely due to dif-
ferences in the specific problems they address. G-
Ray is a fast approximate algorithm for inexact pat-
tern matching in large, attributed graphs. It extends
the ideas of connection subgraphs [2] and centerpiece
graphs [5] and applies them to pattern matching in at-
tributed graphs. This work is also related to the idea
of network proximity, which builds on connection sub-
graphs [3].

Our work focuses on finding instances of user-
specified patterns in graphs. Graph mining work in
the database literature focuses on related problems,
like the discovery of frequent or interesting patterns
[7], near-cliques [4], and inexact querying of databases
[1]. However, none of these methods can do ‘best-
effort’ matching for arbitrary shapes, like loops, that
GRAPHITE can handle.

6. Conclusions

We have presented GRAPHITE, a system for visually
querying large graphs. GRAPHITE’s contributions in-
clude (1) providing an integrated environment for han-
dling the complete workflow of querying a large graph
for subgraph patterns; (2) providing an intuitive means
for users to specify query patterns by simply draw-
ing them; (3) finding and ranking both exact and near
matches, using the best-effort G-Ray algorithm; (4) vi-
sualizing matches to assist users in understanding and
interpreting the results; and (5) delivering results in
high speed for large graphs (such as the DBLP graph,
consisting of 356K nodes), returning results in seconds,
on a commodity PC.

We believe GRAPHITE can become a useful tool for
scientists and analysts working on graph problems to

quickly find patterns of their choosing, to experiment
with and to confirm their speculations, and to better
understand the dynamics of their graphs.

7 Acknowledgement

This material is based upon work supported by the
National Science Foundation under Grants No. IIS-
0705359 and under the auspices of the U.S. Department
of Energy by University of California Lawrence Liver-
more National Laboratory under contract DE-AC52-
07NA27344 . This work is also partially supported
by an IBM Faculty Award, a Yahoo Research Alliance
Gift, a SPRINT gift, with additional funding from In-
tel, NTT and Hewlett-Packard. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessar-
ily reflect the views of the National Science Foundation,
or other funding parties.

References

[1] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing
in databases using banks. In ICDFE ’02: Proceedings of
the 18th International Conference on Data Engineering,
pages 431-440, 2002.

[2] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast
discovery of connection subgraphs. In KDD ’04: Pro-
ceedings of the 10th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, page
118127, 2004.

[3] Y. Koren, S. North, and C. Volinsky. Measuring and
extracting proximity in networks. In KDD ’06: Proceed-
ings of the 12th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages
245-255, 2006.

[4] J. Pei, D. Jiang, and A. Zhang. On mining cross-graph
quasi-cliques. In KDD ’05: Proceedings of the 11th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2005.

[5] H. Tong and C. Faloutsos. Center-piece subgraphs:
Problem definition and fast solutions. In KDD ’06: Pro-
ceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
404-413, 2006.

[6] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-
Rad. Fast best-effort pattern matching in large at-
tributed graphs. In KDD ’07: Proceedings of the 13th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 737-746, New York,
NY, USA, 2007. ACM.

[7] X.Yan, P. Yu, and J. Han. Graph indexing: A frequent
structure-based approach. In ICDM ’04: Proceedings of
the 4th International Conference on Data Mining, pages
335-346, 2004.

