GurunGo: Coupling Personal Computers and
Mobile Devices through Mobile Data Types

lvan E. Gonzalez *
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA
ivangonz@microsoft.com

ABSTRACT

Networked devices like desktop computers and mopfiienes
make it possible for people to access any of ti@ohs of web
pages available on the Internet. However, mobileicds are
fundamentally different from desktop PCs in termfs imput
speeds, screen size, and network speeds, makihgrdter in
practice to find information when on the go. Instlpaper, we
introduce GurunGo, a system that monitors a pessantivities
on their PC for mobile data types—kinds of dataliikto be
useful to a person when mobile—and then proacticapies
these snippets of data onto his mobile device, tmaking it
easier to find that information when mobile. Ouitial prototype
finds and extracts mobile data types from web papes are
browsed on a desktop computer, annotates it wittitiadal
relevant information, and copies it to a mobile idevin the
background. We discuss the design and implementatit
GurunGo, as well as some of the tradeoffs and desitipnale.

Categories and Subject Descriptors
H.5.2. Information interfaces and presentation:rUsterfaces —
Interaction styles.

General Terms
Design, Reliability, Human Factors

Keywords
GurunGo, web, mobile data type, data type detector

1. INTRODUCTION

While people have easy access to a large amouinfamation
when at their personal computers, the same carmsaill when
those people are mobile. Mobile devices may hawédd or no
network access, slow text input, and small screésgssmaking it

hard in practice to find relevant content when on the go.

Examples of such information that can be useful whwbile
include maps, driving directions, movie show tim®duct price
comparisons and reviews, flight times, locationsl aeview of
both stores and restaurants, phone numbers, weattadiic
information, and social events (e.g. concerts, ®gkings, etc).

Permission to make digital or hard copies of alpart of this work for

personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commerciavadtage and that
copies bear this notice and the full citation oa fiist page. To copy
otherwise, or republish, to post on servers oreistribute to lists,

requires prior specific permission and/or a fee.

HotMobile 2010, Feb 22-23, 2010, Baltimore, MD, USA.

Copyright 2010 ACM 978-1-4503-0005-6/10/02...$5.00.

Jason Hong
Human Computer Interaction Institute
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15217 USA
jasonh@cs.cmu.edu

There is also a chasm between one’s personal cempund
mobile device. If a person finds useful informatiom their
desktop computer, there is usually no easy wagyftical users to
transfer that data to their mobile device. For epamit is more
likely that a person will print out a map or prinit details about a
product they want to purchase, than to copy tHatimation onto
their mobile device, despite the fact that thee raultiple tools
for copying and synchronizing data. Furthermorestmof the
synchronization tools that are available focus gnceg data
such as email, contacts, and calendar informafidrvese tools
overlook the fact that people encounter a gredtaféaformation
in the course of their regular web browsing, infatimn that may
be valuable to them later on when they are away fiwir PC.

Rather than copying data from the desktop to on®ile, an
alternative approach would be to find the relewaottent again
on the mobile device itself. However, there areesgweaknesses
here. First, the mobile device may have slow orwieless
network available. Second, finding the desired rimi@ation may
require the user to input a great deal of textrd;ht might not be
easy to find the information again. Past studiesetghown that
re-finding information is quite common, but ofteiffidult to
accomplish in terms of determining the correct cederms or
remembering the path that they followed to geti information
in the first place [2, 10, 14]. Combined, thesetdex make
searching and browsing for information while molpletentially
slow and tedious.

We address these problems wiBurunGo. GurunGo makes it
easy to acquire, annotate, and share web data drqrerson’s
desktop computer with their mobile device. Gurun&muires
dataimplicitly by monitoring the stream of web pages a person
visits and looking formobile data types, which are kinds of data
likely to be useful for a person when mobile. Guoncan also
acquire dataxplicitly by letting people use the familiar copy-and-
paste metaphor to copy data from their desktop tréy mobile
device. Next, Gurungo annotates the data to mak®it useful
when mobile. For example, for driving directionsurGnGo
includes synthesized speech output. Finally, GuonG
automatically transfers the annotated data withuer's mobile
device using a direct network connection like Bha¢h or USB.
On the mobile device itself, GurunGo provides ar usterface
that lets people browse through the copied molzlka dypes. In
this sense, GurunGo can be seen as a customizadrver one’s
web browser history, made available on one’s mateéce.

1 This work was conducted while a student at Carnddiellon
University.prior to joining Microsoft Corporation.

In this paper, we present the design and implertienteof

GurunGo, and show how GurunGo supports two diffeneobile

data types. We also discuss our design rationalesame of the
tradeoffs involved.

1.1 Use Scenario
Here, we present a user scenario to describe thaidmality of
GurunGo and how it would be used by people.

Alice is at home and plans to visit a local resadre to buy some
repair tools for her house. She goes online andvd®s through
several sites providing product reviews of varidosls. As she
does this, GurunGo detects each product page shes vtlips out
relevant portions, and then annotates the infoonatiith reviews
from other sites. Then, in the background, Gururi@pies the
annotated data plus the original web page to hdsilmalevice.
As the pages are sent to her mobile device, thera small
notification letting her know that the pages armbeopied over.

Alice finds a tool that she is especially interdste and manually
copies and pastes the page to her mobile. Whilepéige itself
would have been copied just by browsing it, maryuatipying
and pasting the page flags it and makes it easidint on the
mobile device.

Alice does not know how to get to the local retdre, so she
uses her desktop web browser and looks up directmthe store.
At this point, GurunGo detects that Alice is loakiat a map web
page. GurunGo then annotates the map web pagewithesized
voice directions. GurunGo finally copies the antedadata, plus
the link to the original page, over to her mobileope as a
background process. GurunGo also gives a smalficadion that

it is copying data over to her phone.

Once she has finished browsing, Alice takes hemphaith her
knowing that it has directions that she can lisgtewnhile driving.
Once at the store, Alice browses through a shoplistgwhich
contains all of the product pages she viewed ptesijo Browsing
through this list, Alice quickly finds the page shad previously
flagged as being of interest. She looks over théewes before
purchasing what she was looking for.

2. RELATED WORK
We have organized related work into three categpii&) user
needs and user interaction, (2) data caching anchsynization,
and (3) mobile web access.

2.1 User Needs and User Interaction

Sohn et al conducted a diary study examining useds when
mobile [13]. They found patterns in the kinds dbimation that
people desired, with trivia, directions, and poiotsnterest being
the most common needs. Based on this work and eur o
experiences, we created a list of mobile data tyagslescribed in
the intro), focusing on those that would be (1ptigely easily
detected and (2) things that a person would likelgwse for
beforehand on their desktop computers. For exartple would
be difficult to detect and is unlikely that peopteuld browse for
it beforehand, whereas directions fits both craavell.

From the perspective of web browser history, a remaf papers
have found that re-visiting past web pages is ancomactivity.
One study found that revisiting web pages make$&# of all
Internet browsing [14]. Another study found thatiséation is
common, with 81% of web pages having been prewousited

[2]. Obendorf et al broke down revisitation intoufocategories
[10], with 72.6% of revisits being within an hod2% of revisits
within a day, 7.8% of revisits within a week, an®% revisits
being after 1 week. These pieces of work suggetteds that
being able to access data that had been seen desksp would
likely be useful. However, it is important to ndkeat these papers
were with respect to desktop web browsing. To dagre has not
been a study on revisitation patterns on mobiléc#gsy or on the
interplay between the desktop and mobile devices.

In a separate line of work, both Dearman and Pigtetudied

work practices regarding multiple devices. Dearnaad Pierce
found that a common problem faced by people wadliffiesion

of information across multiple devices, includinglwbookmarks
and histories. Karlson et al [5] also studied homogle used
smartphones with PCs, and found that web browsougpunted
for 24.1% of all mobile activity and that peopleotwsed far less
pages when mobile than when at desktops.

Harding et al described how planning ahead can $ed uo
facilitate the delivery of information when it isost useful [4].
People can use a copy-and-paste metaphor to prepatent, and
then specify contextual triggers for when the infation should
be presented, for example using location or timer. Work with

GurunGo has a similar rationale, though takes thsitijpn that
people may not always know in advance what infoionathey

may want. For these cases, we opportunisticallychdata that a
person sees in their regular use of their desktompater,

focusing on data types that are likely to be usefutn mobile.

2.2 Data Caching and Synchronization

There are many commercial products that offer webtent
tailored for mobile devices. For example, AvantGasva service
that formatted and copied web content onto one’bilmalevice,
which let people read web content when disconnected

There has also been a great deal of past work scomiected
operation and caching in mobile and distributedesys (e.qg., [6,
15]). Perhaps the closest work to ours is Komneaas Dunlop’s
work on pre-caching web content for mobile devidessed on
entries on one’s calendar [7]. For example, if espe had the
name of a place in her calendar, one that was Glypor that
user, then the system would try to pre-cache mtlatmtent for
maps, hotels, and so on.

Our work builds on this past work in three waysskEiwe cache
data that people directly interact with. Based be papers
mentioned in the previous section that people igdylto revisit

web pages, we felt that caching could be a viahiategy for
helping people revisit data. We acknowledge thé ttoes not
cover all scenarios, but feel that it covers enoumfleresting
scenarios that it could be potentially useful. $ekoGurunGo
looks for mobile data types in the data it caclsesppets of data
that are likely to be useful when people are mobilgird,

GurunGo annotates the data so that it is more beefthe mobile
device, for example adding additional relevant iinfation or
improving its presentation.

2.3 Mobile Web Access

There has been a much work in improving the presiemt of web
content on mobile devices, all of which cannotibtetl here due
to space constraints. Two relevant pieces of woekbagestor [1],
a proxy that performs semantic and layout compoessin web
pages for mobile devices, and m-Links [12], whi&formats

Web Browser

Internet

-

[

GurunGo
Extension

a.Ls\.;qqc

Guruné-c;\}

Local Programs

L9 %:‘ﬁ G

Guru n-GU-l | T GurunGo
Annotator <:>| Data Transfer
| g

d

Data Péiect'or

c

Figure 2: GurunGo system architecture: (a) The usewisits a web page using a standard web browser wiita GurunGo browser
addon installed. (b) The addon sends newly loadedges plus some meta-data to GurunGo’s data detectdic) The Data Detector
identifies interesting data types and sends them tilve annotator for further processing. (d) The anntator augments the data with
extra information extracted by local programs, as vell as web services, and passes the augmented daiathe data transfer
component. (e) The Data Transfer component copiebé augmented data to the mobile device. The varioBurunGo components
do not obstruct the user’s regular browsing behavig providing a seamless interface with their mobiledevice.

content for small devices based on link navigato on data
detectors for phone numbers and street addresses.

The key difference here is that, reducing and re&iting web
based content, GurunGo pre-fetches useful datadbasethe
user’s activity on her desktop PC. Additionally, rtGugo can be
also useful without a wireless network connectias,it caches
content locally on the device.

2.4 Data Detectors

There has been a great deal of previous work &riiimfg structure
in text, for example, Apple Data Detectors [9], tBelection

Recognition Agent [11] and, Microsoft Office XP Stn@ags [8].

Our work with GurunGo simply makes use of these vikmo
techniques and applies them to mobile computing.

3. GURUNGO OVERVIEW

In this section, we present an overview of how G@a works,
along with our design rationale.

3.1 Acquiring Data for GurunGo

Data acquisition in GurunGo is based on detectimy@ocessing

mobile data types. Mobile data types are snippets of data

containing information that might be useful for sahile they
are on-the-go. Examples of mobile data types irelstreet
addresses, phone numbers, product information a@wvikbws,
driving directions, movie times, weather, stock tso social
events, traffic information, and flight times.

While all of these could potentially be valuableugers, for our
initial prototype we focused on two specific onedriving

directions, and product details and reviews. Nbtg these two
data types are static, in that they can be cacheddys or even
weeks and still be useful. Other kinds of data sypey be more
dynamic and require periodic updates, such astflighes and

traffic information. We opted to start simple aratds on static
mobile data types.

Data can be shared between desktops and mobileedegither
implicitly, by copying data from web pages that pleobrowse
(see Section 3.1.1), or by having the user explidbpy-and-
paste the data to the mobile device (Section 3.XG2yunGo
copies both extracted mobile data types as webhasoriginal
web page. The mobile data type is used for brow&ingelevant
information, while the original web page is used $eeing the
original context of the data.

3.1.1 Implicitly Acquiring Data from Web Pages

Data is implicitly gathered by GurunGo by monitayithe stream
of web pages for interesting data. Here, we distwssissues,
namely how web browser activity is monitored andwho
interesting data is detected.

Web browser traffic can be monitored by using eitheieb proxy
(either local or remote) or a browser extensiore &llvantage of
using a web proxy is that it is web browser neutrlwever, we
identified two disadvantages. First, a key limitatin using a web
proxy is that many web pages dynamically changé tantent
through asynchronous calls (i.e., AJAX). There isoano
standard data format for these asynchronous @altbat the data
can be sent as JSON objects, XML, HTML, or a custormat,
making it difficult to find and extract data. Thpahot is that there
may be a discrepancy between the page that they pnas
analyzed and what is being displayed to the ussoi®l, we had
concerns that it would be difficult for novice useo understand
how to setup their browser to use a web proxy. Un ioitial
prototypes, we used a proxy-based approach, buthed to a
browser extension later on because of these limitsit

Currently, we have implemented GurunGo as a Mo<@Fox
addon (Figure 2b). When a user visits a web pdge GurunGo

extension relays the content of the page plus soatadata to the
GurunGo Data Detector (Figure 2c), a web servioming locally
on the device. This web service takes as inputURé of the
page and the DOM tree for that page. The servier garses the
web page and applies a series of data detectdirsdt@nd extract
potentially interesting data. The web service mdun list of
extracted mobile data types. We chose to decobgl@arsing of
web pages from the browser extension, to makesiee#o port
the software to other web browsers and to extendui@so for
other streams of data, such as email.

At this point, the data detector uses one of twpraaches to
extract snippets of data. The first approach uspsedefined list
of domains known to contain mobile data types. Agded with

each domain are one or more XPath expressionssfieaify the
path to the data to be extracted. The second agiprisato scan
the HTML for mobile data types. We currently usegular

expressions as well as keywords that suggest rdlalata. We
use XPath expressions for cases that are difftoutapture using
regular expressions alone, for example movie timde. use
regular expressions for better coverage acrosssiteh

3.1.2 Copying and Pasting Data onto the Mobile
GurunGo also lets people explicitly state theireigst in a
particular page, by leveraging the familiaopy-and-paste
metaphor. Data that is explicitly copied is alsagfied on the
mobile device, making it easier to find. We chobgs tdesign
because we felt that manually copying and pastifigrination is
a stronger signal that the data is useful.

Users are presented with a GurunGo icon, whichdessin the
system tray (see Figure 3). To make an explici tiainsfer, users
can highlight some text and do the standard copyncand from
their browser (or other application), and then uke paste
command provided by the GurunGo system tray icoBeifd
‘iPod nan...” as Shopping”). Once such an actiondagfgrmed,
the GurunGo data detector examines the pasted érmtyrfior
mobile data types. After these are detected, psoogsontinues
as in the case of implicit acquisition. If the usetects a fragment
of text that does not contain any recognizable dgpes, the
copied information fragment is treated as plairn tex

GurunGo also lets users send copied snippets as tpbt over
SMS if it is less than 160 characters (see Figte \B/e opted to

Send as SMS
Send "iPod nan.." as Shopping
Exit

|) Adobe Photosho... R}'\) P30 £ & 0238

N [s[B3

Phone Mumber to send SMS messages to

ﬂgGurunGo

Jpos |519 1913

Apply | QK |

(b)
Figure 3. (a) A user pasting the item “iPod nano” ato the

GurunGo annotator. (b) The screen used to input tb phone
number to send SMS messages to.

include this feature to let people send informatiorphones that
do not have GurunGo installed, and to provide dcbl@vel of
compatibility in case the user does not have atspheme.

3.2 GurunGo Annotator

The GurunGo Annotator is responsible for taking extracted
mobile data type and enhancing its presentationfirmating
complementary related information. The annotator uae web
services or local programs to annotate mobile tigias. Using
local programs on one’s PC is good for computatidasks that
are too intensive for the mobile device.

We opted for this approach of augmenting mobileadgpes on
the PC, because desktop computers have fewer aorstwith

respect to power and Internet connectivity, and terhave faster
microprocessors. Furthermore, since GurunGo alreadyires
some software to be installed on the user's desktopputer, we
felt that having additional software for annotatinguld not pose
a barrier to entry.

As noted earlier, our current implementation of @Gu®o supports
two mobile data types: driving directions, and pretddetails and
reviews. For driving directions, we use a programtloe PC to
generate synthesized speech directions for playbat¢ke mobile
device. For product details and reviews, we use Yaboo!

Shopping API [16] to complement the product moliéta type
with prices from multiple vendors, customer reviearsd other
information. Here, we implemented this servicedtiieve details
about the three most relevant matches to a paatidgim.

3.3 GurunGo Data Transfer

Once a mobile data type has been detected and aedpit is

transferred to the mobile device. In our currenplamentation,
mobile data types and associated annotations presented by a
single folder containing the extracted data typgee briginal

context of the data, and any annotations. We alakenuse of
standard synchronization tools provided by Windddabile to

copy that folder over. The specific tools used described in
more detail in section 3.5.

Currently, data is persistently stored when itépied over and
must be manually deleted. Automatic garbage catiratf data is
an important design issue to consider, since riobfathe web
content a person views will be of use. We discussesof these
issues in the future work section.

3.4 GurunGo Mobile Device Interface

Currently, GurunGo has a very simple user interface the

mobile device. GurunGo offers two levels of browgsiiThe first

level of browsing lets users see what mobile dgted there are,
for example, driving directions and shopping Iisere, users can
also see what items have been manually copied astegh After

selecting a data type, users can then see what aeencontained
within, currently as a linear list.

Our current design is a proof of concept of an &ndnd system,
as it is suboptimal and has difficulties scalingtaphundreds of
entries. We discuss some possible solutions to ngattiis user
interface work well in practice in the future waéction.

Figure 4 shows the user interface for driving ditets. Here,
GurunGo copies driving directions from Google Mapad
Yahoo! Maps, and annotates the information withtlsgsized

K—/—A.:. -

Step 1 (of 3)
Head east from Forbes Ave

(5000 Forbes Ave Pitsburgh, | < »]

From 5000 Forbes Ave

Pittsburgh, PA 15213 gol3mi

To 880 Flemington St
Pittsburgh, PA 15217

|
GetDirections| Menu le

—

—
| " A A

Figure 4. The main screen of the Directions Applidéon
(left). A step in the directions, along with the ofion to play
synthesized speech of the directions (right)

iPod nano =3
Result 1
Shopping List Item
Product Name
fpod nano o Apple iPod nano 4GB Black
MP3 Player

I
o J| | |

Figure 5. The main screen of the Shopping List Apptation
(left), along with some more product details (right. Users
can also choose to view price comparisons and rewis.

speech as an alternative to reading the directitesally, this
synthesized speech would be automatically announdesh the
user needs it, but this feature is not supportedun current
implementation. Instead, a user can browse back fanith
through the steps at their own pace, playing thp atoud if they
so choose. Figure 4a shows the interface for $etpcthe
directions. Figure 4b shows a step in the direstionith the
option to play the text displayed as synthesizexbsh.

Figure 5 shows the interface for the shoppingitisitn emulator.
Here, GurunGo has copied product information from
Amazon.com and annotated the information with deefeom the
Yahoo! Shopping service, which includes similar ducts,
product specifications, price, and reviews from tiplé online
stores. This approach enables GurunGo users to intkretall
stores with a better idea of the product they wishuy and the
price range that the product is available for anwleb.

GurunGo’s phone interface lets users browse alldycts
currently stored on the phone and see the dewilarfy single
one. Users can also view the specific product namnsymmary
description, prices, and average consumer ratihgsdilable).

3.5 Implementation

GurunGo is implemented as a FireFox addon. The diettactor
web service is implemented using C# in combinatigth the
open source HTML parser HtmlAgilityPack v1.3. Thenatator
was also implemented in C# and makes us2™b$peech Center
for speech synthesis and the Yahoo! Shopping APl fbr
additional product reviews and price comparisonsataDis
transferred to the mobile device using tkiécrosoft Windows
Mobile Developer Power Toys utilities, which has a utility for
copying files onto a device connected to ActiveSyower
Bluetooth or USB. The mobile portion of GurunGo was
implemented using Windows Mobile 2003.

4. MOBILE INTERACTION DESIGN

Here, we discuss some of the design rationale foru@Bso’'s
mobile interface.

Due to the limited screen real estate of mobileiasy and since
we felt that people may have limited attention whihobile, we
opted to have a minimal amount of information oohescreen.

To minimize navigation between screens, detailseveambined
when they were related and short enough (e.g. 9ace ratings
are included in the same screen). Since navigatiooss several
screens was still necessary, the item which theyalirrelated to
persists at the top of the screen (e.g. the stalted address in
the directions application in Fig 4, and the prddguoery and
result number in the shopping application in Fig 3l
navigation can be done through the menus. Phorstigarrow
keys can also be used for quick navigation. The cae also use
the menu or joystick/arrow keys to go back to thevipus screen,
which we felt was made especially necessary dileetgensitivity
of many phone joysticks and navigation arrow bugton

We also used the conventional design of havingntost likely
action on any screen be the left button, and theunte the right
button.

ComboBox widgets were used on the main screen &whe
application to afford scrolling through items irethists. They also
provide users with an alternate view in which theole screen is
dedicated to the list, allowing for more efficies¢lection for

longer lists. On the Directions application maimegn (see Fig
4a), the start and end address of the currentgct item is
repeated in the labels below. Most addresses dit fito

completely within the visible bounds of the CombaBW@/e chose
repetition rather than decreasing the font sizea a=ll phone
screen is already quite small, and we did not wanfurther

compromise legibility.

5. DISCUSSION AND FUTURE WORK

In the short term, there are three things we waffid¢us on. First,
our implementation of GurunGo is currently limitedtwo mobile

data types. There are many other mobile data tyEesalso need
to be supported, such as traffic information, doeieents, movie
show times, and store locations. In particular, s@hthese data
types are dynamic in nature, making it necessanyetiodically

update these kinds of mobile data types. It is alsah noting

that different data types need different kinds pflate rates. For
example, traffic reports might need to be updatedre few

minutes, social events every day, movie showtimesyeweek,

and store locations every few months.

Second, as noted in Section 3.1.1, GurunGo cuyrests XPath
for predefined sites to extract information, anglular expressions
and keywords for all other sites. This approach eadk easier to
get data, but is fragile when a web site changefoiimatting or
layout. To be effective in practice, GurunGo woulded more
robust techniques for extracting data, perhapgusicombination
of our existing methods as well as basic naturaglage
processing techniques. Alternative ways to extcacttent could
include crowdsourcing extraction of relevant datapages to a
large scale of GurunGo users, or having contentigeos provide
shippets of information in the form of microformatsRSS feeds.

Third, we want to improve the interface for browvgsithrough

dozens or hundreds of entries. Here, we outline ways of

addressing this problem. The first is to garbagkecb copied

data, removing old data that is unlikely to be usdtk challenge
is knowing what to remove, as it may be unclearciidata is no
longer useful, though in some cases, data hasuaahatxpiration

date (e.g. social events and movie show times).sEwend is to
use contextual information to sort and filter théormation. One
approach is to use recency, making it easier fopleeto see what
they recently viewed on their desktop. GurunGo dalso make
use of one’s current location to filter out locasoof stores and
restaurants that are too far away.

In the long term, we want to expand GurunGo to suppther
sources of data beyond the web. Examples of ottnearas of
data with mobile data types include email, calendad contacts.
Each of these sources has unique challenges iacériy relevant
data and finding the best way of presenting it $ers. We also
want to evaluate GurunGo, to assess how often peaghen
mobile, use data seen on their desktop, as wehoas useful
automatic copying and manual copy-and-paste areders.

Another possible interaction we are consideringmisbile to
desktop, where the user’s interaction on their heotén provide
a feedback loop to content detection or usage afesktop.
Another possibility is pairing location with conterto surface
location relevant content, e.g. surfacing the taféght status
information when close to the airport.

6. CONCLUSION

In this paper, we introduced GurunGo, a systemgdesi to help
users find relevant information while they are be-go, based on
their interactions with their desktop personal catep. GurunGo
acquires relevant information based on mobile dgtes that it
detects in web pages that people browse. Gurun&odhnotates
that data with additional relevant information, ahdn copies the
data from a person’s desktop computer onto thebilmalevice.
From this perspective, GurunGo can be thought of aas
customized version of web browser history for thebite device.
GurunGo also lets people use a copy-and-paste hwtaio
manually copy information to their mobile device.

7. ACKNOWLEDGMENTS

We would like to thank Kayre Hylton for her help tine initial
prototype implementation of GurunGo.

8. REFERENCES

[1] Bickmore, T.W. and B.N. Schilit. Digestor: Device-
Independent Access to the World Wide Web. In Prdices
of 6th International WM Conference. pp. 1075-82 1997.

[2] Cockburn, A. and B. McKenzie, What Do Web Users Do?
An Empirical Analysis of Web Usénternational Journal of
Human-Computer Studies 2001.54(6): p. 903-922.

[3] Dearman, D. and J.S. Pierce. It's on my other coenpu
computing with multiple devices. In Proceedings Tofe
Twenty-sixth Annual SSIGCHI conference on Human factors
in Computing Systems (CHI 2008) 2008.

[4] Harding, M., O. Storz, N. Davies, and A. Fridayaring
ahead: techniques for simplifying mobile servicee.un
Proceedings offhe 10th workshop on Mobile Computing
Systems and Applications (HotMobile 2009) 2009.

[5] Karlson, A.K., B.R. Meyers, A. Jacobs, P. Johng] &K.
Kane. Working Overtime: Patterns of Smartphone R
Usage in the Day of an Information Worker. In Pextiags
of Pervasive 2009 2009.

[6] Kistler, J.J. and M. Satyanarayanan, Disconnecpetadion
in the Coda File SystenACM Transactions on Computer
Systems 1992.10(1): p. 3-25.

[71 Komninos, A. and M.D. Dunlop, A calendar based rimg¢
content pre-caching agent for small computing devic
Personal and Ubiquitous Computing 2007.

[8] Microsoft, Microsoft Office XP Smart Tags.
http://www.microsoft.com/technet/prodtechnol/office
fficexp/maintain/xptags.mspx

[9] Nardi, B.A., J.R. Miller, and D.J. Wright, Collaladive
Programmable Intelligent Agent€ommunications of the
ACM, vol. 41(3): pp. 96-104, 1998.

[10] Obendorf, H., H. Weinreich, E. Herder, and M. Mayé&teb
Page Revisitation Revisited: Implications of a Ldagn
Click-stream Study of Browser Usage. In Proceedinfs
CHI 2007. pp. 597-606 2007.

[11] Pandit, M.S. and S. Kalbag. The Selection Recammiti
Agent: Instant Access to Relevant Information and
Operations. In Proceedings biternational Conference on
Intelligent User Interfaces. Orlando, FL. pp. 47-52 1997.

[12] Schilit, B.N., J. Trevor, D.M. Hilbert, and T.K. Ko m-
links: An infrastructure for very small internetuiees. In
Proceedings dfiOBICOM 2001. pp. 122-131 2001.

[13] Sohn, T., K.A. Li, W.G. Griswold, and J.D. HollaA.diary
study of mobile information needs. In Proceedin§sTiee
twenty-sixth annual SIGCHI conference on Human factorsin
computing systems (CHI 2008) 2008.

[14] Tauscher, L. and S. Greenberg, How People Revigb W
Pages: Empirical Findings and Implications for Besign of
History Systemslinternational Journal of Human Computer
Studies 1997.47(1): p. 97-138.

[15] Terry, D.B., A.J. Demers, K. Petersen, M.J. Spegjti1.M.
Theimer, and B.B. Welch. Session Guarantees forkiyea
Consistent Replicated Data. In Proceeding®mafteedings
International Conference on Parallel and Distributed
Information Systems. pp. 140-149 1994.

[16] Yahoo! Yahoo! Shopping Web
http://developer.yahoo.com/shopping/

Services.

