
Marmite: End-User Programming for the Web
Jeffrey Wong, Jason I. Hong

Human-Computer Interaction Institute, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15217

+1 (412) 268-1251
jeffwong@cmu.edu, jasonh@cs.cmu.edu

ABSTRACT
The recent popularity of mashups has shown that people can
recombine web services to create new and easier ways of
accessing or aggregating information. However, creating mashups
requires skills that are out of the reach of non-programmers. In
this paper, we describe how the end-user programming approach
might enable non-programmers to make mashups, discuss what
obstacles must be overcome for this type of system to work, and
present what we have learned from the our prototype so far.

1. INTRODUCTION
Much of the recent innovation behind mashups has been the
recognition of useful ways of combining information and services
from different websites to fulfill some unmet need or create
simpler ways of carrying out tasks. A key problem here, however,
is that creating mashups requires a great deal of programming
expertise in areas such as web crawling, text parsing, pattern
matching, and HTML. Thus, it takes a great deal of time and skill
to create such services. Past work tends to emphasize low-level
data processing or programming techniques that are beyond the
ability of average web users.

Although the recent flowering of Web Services has made it easier
for programmers to create mashups, there still is little support for
typical end-users. Furthermore, programming may be
uneconomical to solve some information problems that may be
unique to a few individuals. Sharing these solutions and
supporting them with server space and bandwidth may never
happen if there is little expected return.
The goal of Marmite (see Figure 1) is to solve these problems by
enabling users who have little or no programming experience to
create personal mashups and providing a common platform to
share these mashups. By making it easy to create and experiment
with different combinations of web services and share them,
mashup programmers can observe what needs are being unmet
and create more refined services to meet these needs. More
specifically, Marmite will let end-users:

• Easily extract interesting content from one or more web
pages (for example, names, addresses, dates, phone numbers,
URLs, and other kinds of data types)

• Process it in a data-flow manner, for example filtering out
values or adding metadata

• Integrate it with other data sources, either from local or
remote databases, from other already existing web pages, or
already existing services (similar to a database join
operation)

• Direct the output to a variety of sinks, such as databases, map
services, text files, web pages, or compliable source code that
can be further customized

We are developing Marmite to support a dataflow architecture,
where data is processed by a series of operators in a manner
similar to Unix pipes. For example, one scenario Marmite will
support is, “find all of the addresses on this set of web pages, keep
only the ones in Pennsylvania, and then put them all onto Google
Maps.” Another scenario that would let end-users create custom
calendars is, “Every week, crawl through these five different web
sites, extract all calendar events, sort by date, and publish it on our
intranet as a custom web page.” We are also designing Marmite so
that it can be integrated with Web Service Description Language
(WSDL) files, making it easy to integrate Marmite data flows
with web services that have publicly available WSDL
descriptions such as Google search, Google calendar, Amazon
book search, EBay, and FedEx.

Since the design space is quite large, we are focusing our energies
on several key research issues:
• Specifying what data to extract. In our preliminary user

studies, the greatest barrier for end-users has consistently
been how to select what web pages and what content on
those web pages they want. Currently, we are using simple
and well-known algorithms for finding and specifying
patterns in web pages, but it is not yet clear whether these
will be simple enough or sufficient for end-users.

• Designing, implementing, and evaluating a hybrid dataflow
/ spreadsheet model that makes it easy to see what the
current state of the extracted data is and provides before-after
views to help debug errors. Our preliminary user tests
suggest that people like and understand the basic model, but
it is not yet clear how well it will work for large data sets.

• Handling errors in parsing and dataflow processing. The
UI needs to make clear what errors there are and provide
graceful ways of recovery, for example, ignoring the errors,
trying an alternative operator, or having the end-user
manually fix the error.

The challenge for each of these risks is to provide a usable UI
coupled with effective algorithms. We are taking several
approaches to manage these risks, including starting with simple
approaches first, getting quick and constant feedback from
prototypical end-users to ensure that our solutions work, and
rapidly iterating on what we learn.

2. EXISTING APPROACHES
Creating a data-flow to manipulate many pieces of data often
requires a user to engage in some form of programming. Research
on end-user programming has found that programming is difficult
for novices for a number of reasons [11]: it is difficult to enter
syntactically correct code; finding appropriate operations is
difficult; and it is hard for novices to understand their own
programming errors [12]. There are a variety of solutions to these
problems (for a review, see [9]). Marmite minimizes code entry
problems by having users work with graphical dialog boxes that
represent operations. It also helps prevent errors by allowing users
to incrementally add steps to their program and observe changes
to their data.

Another problem in web automation is extracting data from a
page. In our experience, one of the key challenges of end-user
programming for the web is making it easy for typical end-users
to specify what parts of a page or set of pages they want, while
being flexible enough so that a variety of tasks can be supported.
Identifying patterns of relevant information on a web page can be
done with web page parsing APIs, frameworks for existing
programming languages [8], or specialized languages [2] [10] but
require programming and HTML knowledge. Recent work has
attempted to mitigate these problems. Chickenfoot [3] can match
text using natural language expressions (e.g. “just before the text
box”) but still requires programming in Javascript. C3W [6] is a
point-and-click tool to feed data into web applications but doesn’t
scale well beyond a handful of items, doesn’t make operations
obvious, and cannot easily extract multiple pieces of data.
PiggyBank [7] extracts data from websites that are augmented
with semantic data but requires JavaScript to extract data from
normal websites. We are designing Marmite to avoid these issues
by having users interact with a set of pattern-matching algorithms
that automatically locate lists based on regularities in HTML

structure and content-based heuristics, thus requiring no
programming. For our current implementation, we are using a
simple pattern-matching approach similar to that used by
PiggyBank [7].

There are some commercial tools that automate tasks or perform
mass operations on text data. Anthracite [13] and Apple’s
Automator [1] visually represent the automation but require
knowledge of the HTML structure of web pages. However,
feedback in these tools is poor since users must execute their
programs in their entirety to verify that they are correct. It is also
difficult to see intermediate results in both of these applications as
well, as they tend to focus on the program rather than the data.
Marmite avoids these problems through incremental program
construction and manipulation of graphical objects representing
code, as well as a spreadsheet view that shows the data as it is
being extracted from web pages and modified by Marmite’s data
flow.

More recent work in the mashup community includes Dapper [4]
and DataMashups [5]. Dapper is tool for creating screen-scrapers
that allow you to access any web page as if it was structured data
in an XML document. Although it is an excellent way to avoid
having to write a screen-scraper, this tool is geared more towards
programmers who can make use of its output. DataMashups is a
visual programming environment that lets one create a website
with common widgets that one might find in a web application.
However, we believe that this is similar to tools like Visual Basic
and over-emphasizes the construction of interfaces rather than
data manipulation.

3. CURRENT STATUS
We have created and evaluated 6 different mockups of Marmite,
and are currently developing our first interactive prototype of
Marmite as a Firefox extension using Javascript and XUL, a user
interface description language for the Firefox web browser.

Figure 0. Two examples from the current implementation of Marmite. The left shows a
small set of operators that can be chained together, a dataflow consisting of three
steps, and a spreadsheet showing extracted values. The right shows these values
being placed on top of a map.

We are also developing operators as WSDL-based web services,
meaning that operators can be developed in any programming
language.

We are currently in the process of running user tests with our
interactive prototype. Here, we examine the three research
challenges we are trying to address with Marmite, and informally
describe what we have learned thus far.

With respect to specifying what data to extract, we believe this is
a general problem that all mashup tools will face. The reason this
is difficult is because there is such a wide range of possibilities.
For example, by selecting a single link from a page, a person
might want just that link, all links in that group, all links on that
page that are not part of the overall navigation, all links on that
page, or all of the aforementioned possibilities but for a set of
pages. It is possible to apply well-known machine learning
techniques or programming by demonstration techniques here;
however, the challenge is to find the right combination of
simplicity and flexibility that will help end-users succeed.

With respect to the hybrid dataflow / spreadsheet model, the
observation here is that most programming environments are
either code-centric, focusing on the program itself (for example,
Java, Visual Basic, and Automator [1]), or on the data (for
example, spreadsheets). Our goal with the hybrid dataflow /
spreadsheet model was to develop an environment that supported
both, providing the flexibility of programming while also
providing concrete examples of data rather than abstract notions
that may be difficult for novices.

With respect to handling errors in parsing and dataflow
processing, we have not yet addressed errors in parsing, but have
encountered problems with end-users and dataflow processing.
Basically, the errors are either uncertainty as to how to start in a
new dataflow (a variation of the input problem), as well as what to
do next. For the latter issue, we have been adding simple data type
inferencing to Marmite, for example recognizing things like street
addresses and phone numbers, so that Marmite can also suggest
what kinds of operations an end-user might want to apply next.
This makes it easier for people to go through the list of existing
operators, as only the relevant ones are shown.

4. REFERENCES
[1] Apple Automator.

http://www.apple.com/downloads/macosx/automator/
[2] Barrett, R., Maglio, P., and Kellem, D.. “How to Personalize

the Web.” Proc. CHI’97, pp. 75–82.
[3] Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller, R. C.

Automation and customization of rendered web pages. Proc.
UIST '05. ACM Press (2005), 163-172

[4] Dapper. http://www.dappit.com
[5] DataMashups. http://www.datamashups.com

[6] Fujima, J., Lunzer, A., Hornbæk, K., and Tanaka, Y. Clip,
connect, clone: combining application elements to build
custom interfaces for information access. Proc. UIST '04.,
ACM Press (2004), 175-184.

[7] David Huynh, Stefano Mazzocchi, and David Karger. Piggy
Bank: Experience the Semantic Web Inside Your Web
Browser. International Semantic Web Conference (ISWC),
November 2005, Galway, Ireland.

[8] Miller, R. and Bharat, K. SPHINX: A Framework for
Creating Personal, Site-Specific Web Crawlers. Proc.
WWW7, (1998), 119-130.

[9] Kelleher, C. and Pausch, R. Lowering the barriers to
programming: A taxonomy of programming environments
and languages for novice programmers. ACM Comput. Surv.
37, 2 (2005), 83-137.

[10] Kistler, T. and Marais, H. WebL - a programming language
for the Web. Proc. WWW7, (1998) 259-270.

[11] Ko, A. J., Myers, B. A., and Aung, H. Six Learning Barriers
in End-User Programming Systems. IEEE Symp. On
VLHCC, (2005) 199-206.

[12] Ko, A. J. Myers, B. A. Human Factors Affecting
Dependability in End-User Programming. 1st Workshop on
End-User Software Engineering (2005), St. Louis, MI, 1-4.

[13] Metafy Anthracite.
http://www.metafy.com/products/anthracite/

