

Marmite: End-User Programming for
the Web

Abstract
A tremendous amount of semi-structured data is
available today on the web but is not necessarily in a
form which is suitable for a user’s tasks. For example, a
website may show a listing of local events but a user
wants to filter out those which are too far from him. To
address this problem, we are developing a tool called
Marmite that helps users extract data from web pages
and create new applications using a dataflow
architecture in a manner similar to Unix pipes. In this
paper, we describe formative user studies, some
evaluations of low-fidelity prototypes, and a set of
design recommendations for this tool.

Keywords
End-user programming, web automation, web browsers

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User
Interfaces. - Graphical user interfaces; D.2.6
[Programming Environments]: Interactive
environments;

Introduction
Imagine a visitor to a new city has found a web page
listing recommended restaurants. He wants to get a
sense of where they are, but the web site does not
provide an easy way of doing this. With a standard web
browser, he would have to copy each address, paste it
into a separate map service, and return to the list to
get the next address. This task could be done more
efficiently if the user could tell his computer how to
extract relevant information from the web page and
enter it into the mapping application for him. In short,
we wish to address this problem with a tool which
enables end-user programming on the web.

Because web developers cannot foresee all possible
needs of end users, users must find cumbersome
workarounds to get the information they want. Web
services APIs (WSAPIs) partially alleviate this problem
by making the content and functionality of websites
accessible, but require systems-level programming,
which is difficult for average users.

Copyright is held by the author/owner(s).

CHI 2006, April 22–27, 2006, Montreal, Canada.

ACM 1-xxxxxxxxxxxxxxxxxx.

Jeffrey Wong

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15217 USA

jeffwong@cmu.edu

Jason Hong

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15217 USA

jasonh@cs.cmu.edu

 2

In this paper, we present a design for a tool called
Marmite that addresses two major problems in this
domain: 1) extraction of relevant data from the web
and 2) helping the user build a program which
manipulates the data correctly to complete his task.
Extracting relevant data without being very explicit (i.e.
cutting and pasting) is difficult, repetitive, and tedious.
Data also has internal structure, which needs to be
identified in order for a computer to work with the data
(i.e. an event has a name, a place, and a time). Our
design addresses this problem by looking for patterns
on a web page using a combination of typographical
and content-based heuristics and asking the user to
choose the pattern that matches their intention.

Our design represents programs both as data-flows and
as a spreadsheet, letting users observe their data as it
changes (see Figure 1). Programs are graphically
represented as a series of small steps, or “operators”,
which transform the data. Examples might include

“selecting only messages from a particular person” or
“compute the time left until each event.” Marmite
supports iterative, interactive programming by
providing before and after views (similar to those in the
StageCast system [14]) which show the effects of
operators on live data.

This paper describes the user studies and design
rationale that led to Marmite’s design and outlines
design recommendations which we will use to for our
first hi-fi prototype.

Related Work
Our work applies research on end-user programming to
improve upon existing web automation and commercial
end-user programming tools.

Creating a data-flow to manipulate many pieces of data
often requires a user to engage in some form of
programming. Research on end-user programming has
found that programming is difficult for novices for a
number of reasons [10]: it is difficult to enter
syntactically correct code; finding appropriate
operations is difficult; and it is hard for novices to
understand their own programming errors [11]. There
are a variety of solutions to these problems (for a
review, see [8]). Marmite minimizes code entry
problems by having users work with graphical dialog
boxes that represent operations. It also helps prevent
errors by allowing users to incrementally add steps to
their program and observe changes to their data.

Another problem in web automation is extracting lists
of data from a page. Most web pages do not provide
semantic tags to find, for instance, all phone numbers
on a web page. Humans can recognize lists of

Figure 1. This
figure shows the
conceptual design
for Marmite. The
left side of the
screen shows
operators that have
been added to the
dataflow. The right
side is a space
where the before-
after views of the
data can be shown
for each operator.

 3

information based on semantic and/or typographic
patterns. Identifying patterns of relevant information
on a web page can be done with web page parsing
APIs, frameworks for existing programming languages
[7], or specialized languages [2] [9]. These
approaches, however, require programming and HTML
knowledge. Recent work has attempted to mitigate
these problems. Chickenfoot [3] can match text using
natural language expressions (e.g. “just before the text
box”) but still requires programming in Javascript. C3W
[5] is a point-and-click tool to identify data and input it
into other web applications. However, C3W doesn’t
scale well beyond a handful of items, doesn’t make
operations obvious, and cannot easily extract multiple
pieces of data. We are designing Marmite to avoid
these issues by having users interact with a set of
pattern-matching algorithms that automatically locate
lists based on regularities in HTML structure and
content-based heuristics, thus requiring no
programming experience.

Finally, there are some commercial tools which
automate tasks or perform mass operations on text
data. iOpus Internet Macros [6] records user behaviors
but requires the user to edit code to create patterns.
Anthracite [12] visually represents the automation but
requires knowledge of the HTML structure of web
pages. Apple’s Automator end-user programming
environment [1] suffers from similar problems.
Feedback in these tools is poor since users must
execute their programs in their entirety to verify that
they are correct. Marmite avoids these problems
through incremental program construction and
manipulation of graphical objects representing code.

User Studies
Our design process consisted of a user test of Apple’s
Automator [1], a blank paper study, and low-fidelity
paper prototypes. The tasks used in our studies had a
similar structure: extract some data from a web page,
perform some kind of processing on the data, and
output the results. Because knew we wanted to create
something like Apple’s Automator (but more focused
towards data extraction from the web), we conducted a
user test to identify its usability problems for our task.
To design a method for interactively extracting text
from a web page, we conducted a blank paper study,
inspired by similar studies in natural programming
designs [13], where we asked users to write down
instructions that they believed would unambiguously
extract text. We then iterated through six paper
prototypes with twenty users.

AUTOMATOR STUDY
As our initial prototypes began to resemble Apple’s
Automator tool, we first conducted a user test with
Automator to anticipate the kinds of usability problems
users might encounter. We created 3 tasks. The first
task was a simple warmup task and the other two were
that were mass operations that involved traversing
links and downloading images. We found the following
problems:

 Users had no feedback about what the state of the
data was in-between steps.

 For a mass operation, once a program that visited
many web pages had been constructed, executing it is
time consuming. Detecting problems early in the data-
flow makes problems easier to understand.

 4

 Users generated theories about why problems
occurred but were not very good at coming up with
theories to test them. This is consistent with prior work
on EUP [11].

 Operator organization and grouping was a factor
which affected whether the user could find the right
operator.

BLANK PAPER STUDY
Our goal for the blank paper study was to understand
users’ concepts of text patterns and provide inspiration
for natural interaction methods for selecting text
patterns. Three participants were asked to write
unambiguous instructions for another person that
would extract multiple instances of a data type (such as
a company or hotel name). They used semantic
references such as “get all of the names of companies.”
Some participants used drawings and referred to the
typographical features (e.g. “all of link text up until the
hyphen”). Based on these observations, we decided it
would be simpler to automatically detect text which
appears to be in a list and let the user choose amongst
some guesses before delving into more manual
methods of specifying the text. Recent work in HTML
pattern detection [4] suggests that this is possible.

LO-FI PROTOTYPES
We conducted six rounds of paper prototypes with
twenty participants. The primary task for our design
was to extract a list of restaurants and addresses from
a local nightlife website, get geographic coordinates for
those restaurants, and plot those locations on a map.
Figure 1 shows an example of one of our paper
prototypes.

Final Design Strategies
Based on these prototypes, our studies, and prior work,
we arrived at some design strategies which we will be
employing in our implementation.

HYBRID DATA-FLOW/SPREADSHEET VIEW
Our design combines the advantages of data-flows and
spreadsheet views of the data. Data-flow views, as
seen in Automator [1] and Anthracite [12], allow users
to get an overview and add new operations to quickly
build new programs. Spreadsheets, on the other hand,
can show the effects of operations on a data set
immediately. Our design combines a data-flow view of
the program with before-after views [14] of the data,
which can help minimize errors. Data items are
organized rows of a table and each column is an
semantic attribute of the data item (e.g. name,
address, or phone number). Operators change the state
of this table.

ENCAPSULATE INTERACTIONS WITH THE WEB IN OPERATORS
A goal of our project is to create data-flows that
connect to web services that provide useful data
processing services, such as mapping, product code
lookup, or currency conversion. In our design, these
connections are encapsulated in operators that abstract
away the complexity of providing input to web apps and
extracting their results.

We made the simplifying decision that operators which
access web services could be created by more skilled
users using tools like Chickenfoot [3] or WSAPIs and
then shared with other users of our tool. Later, we may
provide an interface which allows average users to
create their own operators.

 5

INTERACTIVELY DETECT RELEVANT DATA
It is difficult to devise an intuitive interaction which
unambiguously lets a user select all data fitting a
pattern but does not require the user to be completely
explicit about the data required or create a pattern
syntax. We decided that Marmite find pattern in the
HTML structure of the page and the content and then
ask the user select the desired pattern (see Figure 3).
Although users had no difficulty with this type of style
of selection, we would have to verify whether the
algorithms [4] in practice could select relevant content
across a variety of information presentation styles.

SUPPORT INCREMENTAL EXECUTION
Marmite lets users control when their operators will
work on the input because some operators need to do
time-consuming things like visit another website for
each data item.

When users add a new step, the operator is not
executed immediately on the input data because
settings for the operator may need to be adjusted.

Each operator comes with Reload, Pause, and Play
buttons (see Figure 2). The Pause button halts the
execution of the operator. This supports testing the
entire data-flow quickly because the user can halt the
execution of an operator after it has finished executing
on a small sample of the inputs. The Reload button lets
the user re-run the operator on the input provided to it.

The Play button enables the operator such that any
input passed to it is automatically acted upon and
placed in the output for the subsequent operator.
Marmite also provides depth-first previews. If there is a
set of data that needs to be passed through a series of
steps, Marmite will pass each item through as many
steps as possible before working on the next item.

SUGGESTED NEXT ACTIONS
Marmite offers suggestions for actions based on the
guesses of the data types of the results of the last
operation because, in our Automator study, we found
that users had trouble locating and selecting a next
action.

SUPPORT REUSE
Data-flows constructed by Marmite users represent new
functionality if the data-flows can be packaged and
made available to others. Ideally, these packaged data-
flows should be able to take parameters so they can be
customized to other users’ needs. For example, a data-
flow that takes a list of locations and computes the
distance from the user’s current location might have an
operator that lets the user enter an origin point in the
Marmite interface. However, from our lo-fi prototypes,
we found that the idea of providing parameters to a
data-flow is a difficult concept for novice users to

Figure 2. Incremental
execution at the level of
each operator is supported
by the Resume, Pause,
and Play buttons.

Figure 3. Marmite will allow
users to select relevant list
items in a web browser.

 6

understand. We have yet to verify that the affordances
we provide in our most recent prototype make sense.

PROVIDE TEMPLATES FOR COMMON TASKS
Marmite will provide templates to solve common tasks
such as plotting a set of locations from a web page onto
a map. Templates will help users overcome the barrier
of design and action selection. Also, looking at
templates is similar to looking at sample code in other
programming environments, which has been found to
be common strategy for novice users when learning a
new programming environment [10].

Implementation
Our next step is to prototype a pattern extraction
system to verify that the pattern identification
interaction works for most web pages. We will then
build an interactive prototype to test our overall
concept using hand-built operators. Then build a
framework for constructing operators that work with
any web application, and make that framework public.
We hope that the new and interesting operators will be
created by users trying to solve their own problems.

Conclusion
We have designed an end-user programming
environment for data-flow processing which is we
believe is worthy of further validation and user testing.
By making providing a way for end-users to create new
data-flows, we hope that Marmite will help ordinary
computer users create new programs to meet their
needs.

References
[1] Apple Automator.
http://www.apple.com/downloads/macosx/automator/

[2] Barrett, R., Maglio, P., and Kellem, D.. “How to
Personalize the Web.” Proc. CHI’97, pp. 75–82.

[3] Bolin, M., Webber, M., Rha, P., Wilson, T., and
Miller, R. C. Automation and customization of rendered
web pages. Proc. UIST '05. ACM Press (2005), 163-172

[4] Chang, C. and Lui, S. IEPAD: information extraction
based on pattern discovery. Proc. WWW10. ACM Press
(2001), New York, NY, 681-688.

[5] Fujima, J., Lunzer, A., Hornbæk, K., and Tanaka, Y.
Clip, connect, clone: combining application elements to
build custom interfaces for information access. Proc.
UIST '04., ACM Press (2004), 175-184.

[6] iOpus Internet Macros. http://www.iopus.com/

[7] Miller, R. and Bharat, K. SPHINX: A Framework for
Creating Personal, Site-Specific Web Crawlers. Proc.
WWW7, (1998), 119-130.

[8] Kelleher, C. and Pausch, R. Lowering the barriers to
programming: A taxonomy of programming
environments and languages for novice programmers.
ACM Comput. Surv. 37, 2 (2005), 83-137.

[9] Kistler, T. and Marais, H. WebL - a programming
language for the Web. Proc. WWW7, (1998) 259-270.

[10] Ko, A. J., Myers, B. A., and Aung, H. Six Learning
Barriers in End-User Programming Systems. IEEE
Symp. On VLHCC, (2005) 199-206.

[11] Ko, A. J. Myers, B. A. Human Factors Affecting
Dependability in End-User Programming. 1st Workshop
on End-User Software Engineering (2005), St. Louis,
MI, 1-4.

[12] Metafy Anthracite.
http://www.metafy.com/products/anthracite/

[13] Myers, B. A., Pane, J. F. and Ko, A. Natural
Programming Languages and Environments. Comm. of
the ACM, (Sept. 2004), 47-52.

[14] Smith, D. C., Cypher, A., and Tesler, L.
Programming by example: novice programming comes
of age. Comm. of the ACM (Mar. 2000), 75-81.

