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Abstract

Phishing attacks are a significant security threat to
users of the Internet, causing tremendous economic
loss every year. Past work in academia has not been
adopted by industry in part due to concerns about
liability over false positives. However, blacklist-based
methods heavily used in industry are slow in re-
sponding to new phish attacks, and tend to be easily
overwhelmed by phishing techniques such as fast-flux
and the proliferation of toolkits.

In this paper, we present the design and evaluation
of two blacklist-enhanced content-based algorithms.
The key insight behind our algorithms is to leverage
existing human-verified whitelists and blacklists, and
relax them via probabilistic methods to attain high
true positive rates while maintaining extremely low
false positive rates. Comprehensive experiments over
a diverse spectrum of data sources show that our
approach currently achieves a false positive rate of
0.0434% with a true positive rate of87.42%. Our
algorithms are able to adapt quickly to new phishing
attacks by incremental retraining, and present a new
framework that will generalize to evolving attacks.

1. Introduction

Phishing is a form of identity theft, in which phish-
ers build replicas of target websites and lure unsus-
pecting victims to give away their financial information
like passwords, personal identification numbers (PINs),
etc. The annual Internet crime report of IC3 [1] re-
vealed that through the year of2007, Internet crimes
had caused an unprecedented loss of $239.09 million
dollars. One particularly infamous group, known as
the “rock phish gang”, uses phish toolkits to create
a large number of unique phishing URLs, which puts

additional pressure on the timeliness and accuracy of
blacklist-based anti-phishing techniques.

Generally, mainstream phish detection methods em-
ploy a domain/URL blacklist, the creation of which
usually involves human effort, or apply classification
algorithms on heuristics extracted from the pages.
While the former has an extremely low false positive
rate, human-verified blacklists do not generalize well
to future unseen cases. Furthermore, human-verified
blacklists can be slow to respond to new phishing
attacks. For example, Phishtank [2] statistics in July
2008 show that it took on average14 hours to ver-
ify that a URL was a phishing attack [3]. Finally,
human-verified blacklists can be easily overwhelmed
by automatically generated URLs. On the other hand,
heuristics-based approaches enjoy the flexibility of
being able to recognize new phish, but they often
lead to a relatively higher false positive rate. The
three major phishing blacklists, operated by Google,
Microsoft, and Phishtank, all use human verification, in
spite of the amount of human labor required, primarily
due to concerns over liability for false positives.

The goal of our work is to demonstrate that combin-
ing human-verified blacklists with information retrieval
and machine learning techniques can yield a system
that is fast, highly reliable and adaptive to new attacks.
Cova et al observed583 unique toolkits over a2
month period beginning in April2008, suggesting that
many phishing attacks were generated by toolkits [4].
This lead us to explore techniques that exploit the
semantics of the webpage content in examining inter-
webpage similarity. Specifically, we investigate in this
paper a detection framework of two algorithms aided
by URL blacklists and domain whitelists. Our first
algorithm, shingling, which is based on well-known
search engine techniques, utilizes finer-grained units
of the page content, n-grams or n-shingles, to evaluate
inter-webpage similarity. Its best performance is a true



positive rate (TP) of87.42% with a false positive
rate (FP) of0.0434% in our experiment. Exploiting
skewed word distributions on typical phishing pages,
our second algorithm builds probabilistic language
models from the content, and classifies query pages
based on the distance between the language models
via the Dirichlet-smoothed Kullback-Leibler (KL) di-
vergence, achieving86.51% TP and0.286% FP in our
experiment.

To evaluate our algorithms, we also proposed two
baselines. The first is a hash-based near-duplicate
detection method using secure hash functions aiming
at capturing identical phishing sites, with a TP of
73.36% and FP of0% in our experiment. The second, a
heuristics-constrained k-centroid clustering algorithm,
exploits the patterns in URLs without accessing the
page content, achieving47.3% TP and 0% FP. In
addition, evaluation against CANTINA [5], which has
been demonstrated to be comparable to state-of-the-
art toolbars, shows that our content-based detection
approaches perform significantly better in terms of FP
while comparable on TP.

The major contribution of this paper is two fold.

1) Leveraging human-verified blacklists with a fo-
cus on minimizing false positives, we present
two novel and practical content-based algo-
rithms, which achieved a low FP of0.0434%
and a TP of87.42% in our experiment.

2) Being able to operate in an online fashion up-
dated incrementally by a few out of a large num-
ber of new phishing instances, our algorithms are
able to adapt quickly to the constantly evolving
zero-hour phish and toolkits and thus perform
robustly over time.

We don’t contend that our specific algorithms are
unbeatable, rather, we expect that our framework can
be easily extended to address new attacks. Discovering
and generalizing from patterns of attacks provides a
degree of leverage against toolkit and fast-flux tech-
niques, even if our proposed approaches lose efficiency
over time.

The structure of this paper is organized as follows. In
section2, we give a brief introduction of related anti-
phishing research, which is followed by an elaboration
of our approach in section3. The whole experiment
setup is described thoroughly in section4 and further
discussion is given in section5. Conclusions are drawn
in the last section.

2. Related Work

2.1. Existing Detection Methods

Phish detection is under intensive study recently, and
a plethora of methods have been proposed to attack this
problem.

In the URL signature camp, Garera et al [6] iden-
tified a set of fine-grained heuristics from URLs, and
combined them with other features including the page
rank features, domain-based features and keyword-
based features (a summarized set of eight sensitive
words that frequently appear in phishing URLs) to
detect phish. Specifically, they categorized phishing
URLs into four groups, each capturing a phishing
pattern. Applying a logistic regression model on18
features yielded an average TP of95.8% and FP of
1.2% over a repository of2508 URLs.

On another frontier, a variety of heuristics have been
proposed for phish detection. In [7], the authors came
up with a total of 18 properties after investigating
page structures, including forms, input fields, links,
whitelist references, script tags, suspicious URLs, use
of SSL (https), etc. The J48 decision tree algorithm
was applied on these features and achieved a TP of
83.09% and a FP of0.43% over a corpus with4149
good pages and680 phishing pages. Pan et al [8]
proposed a method to extract the webpage identity
from key parts of the HTML via theχ2 test, and
compiled a list of features based upon the extracted
identity. Trained with support vector machines (SVM),
their features achieved an average FP of about12%.
In another work, Zhang et al [5] proposed a content-
based approach named CANTINA applying the TF-
IDF metric in information retrieval (IR). A linear
classifier was built from a set of features including TF-
IDF and achieved89% TP and1% FP on100 phishing
URLs and100 legitimate URLs.

In addition to the research works introduced above,
anti-phishing toolbars based on different techniques
are also available, many of which exploit blacklists to
assure close-to-zero false positive rate. The working
mechanism of the EarthLink toolbar [9] is based on
a blacklist as well as some other heuristics such as
the domain registration information, etc. SpoofGuard
[10] examines phishing signatures via a list of heuris-
tics including seen domains, URL obfuscation, non-
standard port numbers, image hashes, etc. Alarm is
raised if the weighted sum of the heuristics exceeds
a threshold. Microsoft Internet Explorer (IE) 7 relies
on a domain whitelist and blacklist from Microsoft’s
servers to judge the legitimacy of an incoming URL.



Similarly, the Google Safe Browsing toolbar [11] and
NetCraft [12] also use a URL blacklist to detect phish.

All of the papers above have the view of maximizing
true positives while minimizing false positives. Our
view in this paper is subtly different, which is to
see how high our true positive rate can be while
maintaining close to0% false positives. As we noted
in the introduction, industry has not adopted many
of those heuristics above due to concerns about poor
user experience for false positives as well as reasons
of liability. Thus, our work here deliberately takes a
conservative approach, though as we will show, we still
get reasonably good true positive rates. Furthermore,
our work could also be combined later on with more
aggressive heuristics, providing an adjustable range
depending on a user or provider’s willingness to accept
false positives.

2.2. Rock Phish

The “rock phish gang”, first appearing in 2004,
refers to a group of cyber-space criminals that carry
out phishing attacks by using compromised machines
as proxies, relaying user requests to one of many
back-end servers that each serve a large number of
phishing websites. Multiple domains are typically reg-
istered within a short time frame, based on which long
URLs are crafted and assigned to those fake sites,
leading to unique URLs for different phishing sites and
thus rendering blacklist-based detection methods futile.
Rock phish websites are usually created with phishing
toolkits covering a variety of target organizations. The
rock phish gang is believed to be responsible for more
than half of the phishing attacks around the world. An
analysis of rock-phishing sites by Moore et al [13]
from February to April in 2007 reveals that52.6% of
all Phishtank reports are rock phish during that time
period.

Rock phish is constantly evolving, and a recent
report [14] by the RSA FraudAction Research Lab
provides evidence indicating that the rock phish gang is
updating its phishing infrastructure to the sophisticated
fast-flux Asprox botnets, which work by infecting more
machines and using them as proxies for either addi-
tional infection sources or phishing attack hosts. This
transition from the previous simplistic proxy clients
to the highly-advanced fast-flux network makes rock
phishing more effective and harder to cope with.

3. Algorithmic Methods

In this section, we first describe two baselines, based
on hard matching techniques. The point of these hard

matching methods is to serve as simple baselines.
Though demonstrated by our experiment to be rather
effective against today’s phishing toolkits, we also
expect them to be defeated fairly easily. Accordingly,
we also give two novel probabilistic detection methods
that are designed to be more robust and effective.

In our method, we only used positive examples of
phish in the training set and did not train our models
on any instances of legitimate pages. A merit of this
strategy is that we are extracting signatures that are
truly phish, and by means of soft matching techniques
and whitelist filtering, we are able to both enlarge the
capture scope and further reduce the false positive rate,
which addresses one of the major concerns of the anti-
phishing community.

We now give some notational conventions that will
be used in the remaining of this paper.

Notations Let q and d represent a query webpage
and a phishing page in the phish corpus respectively.
Let Q and D represent the set of all query pages and
the set of all training phish. We usew to denote a word
on the webpage, andp(w|d) is the word distribution
on paged. URL host names consist of a number of
dot-separated parts, and we define each part as a
“segment”.

3.1. Baseline 1: Hash-based Near-duplicate
Page Detection

The growth of rock phish as well as phishing toolkits
[4] produce an abundance of webpages very similar or
identical to each other in terms of page HTML. This
property motivated us to use duplicate identification
algorithms for phish detection.

The SHA1 security hashing algorithm, a popular
method for detecting duplicate documents suggested
by NIST [15], is a secure and fast procedure that pro-
duces20-byte or160-bit hash values and is applicable
to text of any length with a low likelihood of hash
collisions. We use hashes to identify matching phishing
sites, and so the odds of a chance collision with a
legitimate site are vanishingly small.

Based on SHA1 hashing, our duplicate detection
algorithm proceeds as follows. After filtering out good
webpages via a domain whitelist, it removes all the
spaces in the page HTML. Subsequently, it identifies
all default values to the input fields in the HTML forms
and replaces them with empty strings. This is often
seen in the value field for email inputs, in which many
phishing toolkits insert a random email address. These
meaningless addresses almost never point to actual
emails, but are sufficient to render the hashing process
to give different hash values. After these two steps,



we compute a SHA1 hash on the processed HTML,
which is then compared with a pool of hash values for
phishing webpages, and trigger an alarm if a match is
found.

3.2. Baseline 2: Heuristic-constrained k-
centroid Clustering

The central idea of the clustering algorithm is to
build k clusters out of the training phish URLs, and
in each cluster, choose the most representative URL as
the centroid. Future query pages are evaluated based on
their similarity with the cluster centroids. The average
distance to other URLs in the same cluster is our
heuristic in electing cluster centroids. In this method,
initial clusters are automatically learned without a
human-specifiedk.

Before delving into algorithmic details, we show
a few phishing URLs (truncated from behind due to
limited space) from our corpus below to illustrate
one typical obfuscation trick, i.e., putting the name of
the organization being phished in front of the mass-
registered domain names.

We now define a set of constraints for the clustering
algorithm.

1) Minimum host name length constraint. Host
names must have at least4 segments. URLs with
shorter host names will not be added into any
cluster.

2) Mandatory path constraint . URLs must have
at least one directory level in the path
part. For example, an eligible URL candidate
http://www.9x9x.web.ve/sc/saw-cgi/eBayISAPI.d
ll/login.htm has a3-level directory (/sc/saw-cgi/
eBayISAPI.dll/), while URL http://wellsfargo-
online3.4t.com/login.htmhas no directory hierar-
chy in the path part and is excluded from being
clustered.

3) Loose match host name constraint. Two host
names must have the same length in terms of
segments, and among them, at most2 corre-
sponding segment pairs are allowed to be dif-
ferent, and the remaining must either be iden-

tical, or share a common subsequence1 with
2 or more characters. For example, among the
4 segments in the following two host names
webexpress1.tdbanknorth.com.b06.suand web-
express6.tdbanknorth.com.asp8.su, pair webex-
press1 and webexpress6counts as one match
since they share a10-character subsequencewe-
bexpress, while pair b06 andasp8does not.

4) Exact match path constraint. The directory
hierarchy in the URL path part must be identical
for two phishing URLs to be clustered together.

5) Minimum cluster size constraint. Each phish-
ing URL cluster must have at least2 URLs,
which is the optimal value according to cross
validation.

Algorithm 1 LearnInitialClusters
1: Input: training phish URL corpus D, constraint

set S
2: Output: phish URL clusters C
3: shuffleD
4: C ← φ
5: for all d1 ∈ D do
6: c← {d1}, removed1 from D
7: for all d2(d2 6= d1) ∈ D do
8: if d1, d2 satisfy constraint1 to 4 in S

then
9: c← c ∪ {d2}, removed2 from D

10: end if
11: end for
12: if clusterc satisfies constraint5 in S then
13: C ← C ∪ c
14: else
15: restore∀d ∈ c back intoD, next iteration

starts with the URL afterd1

16: end if
17: end for
18: return C

Algorithm 1–3 show the procedures of initial cluster
learning, cluster centroid computation, and query page
evaluation respectively. Initial clusters are formed by
one scan of the phish URLs, which might be dependent
on the order of the URLs, and we apply random
shuffling beforehand to mitigate its influence on cluster
formation.

We now define the formula for computing distance
between host names in Eq (1)(2), in whichhj denotes

1. In this context, a subsequence is defined to be the longest
contiguous sequence of dashes and alphabetic letters. For in-
stance, ‘online-business9online’ has two such subsequences ‘online-
business’ and ‘online’.



Algorithm 2 LearnClusterCentroids
1: Input: training phish URL corpus D, constraint

set S
2: Output: centroids of phish clusters M
3: M ← φ
4: C ← LearnInitialClusters(D, S)
5: for all clusterc ∈ C do
6: distances← φ
7: for all URL d ∈ c do
8: dis ← compute the average distance of

d to all other URLs inc by Eq (1)
9: distances← distances ∪ {dis}

10: end for
11: centroid← argmin

d

{distances}

12: M ←M ∪ centroid
13: end for
14: return M

Algorithm 3 QueryPageEvaluation
1: Input: centroids of the phish clustersM , testing

URL q, constraint set S
2: Output: prediction on q
3: prediction← good page
4: for all d ∈M do
5: if d, q satisfy constraint1 to 4 in S then
6: prediction← phish
7: break
8: end if
9: end for

10: return prediction

the j-th host name,pj(i) denotes thei-th segment of
hj , | · | is the length operator, denoting length in terms
of segments in|hj | and characters in other occasions.
LCS returns the longest common subsequence (length
≥ 2) of two strings. One rationale behind this is that
close host names may indicate similar webpages.

Distance(h1, h2) =

|h1|
∑

i=1

dis(p1(i), p2(i)) (1)

dis(p1(i), p2(i)) =







0.0 if p1(i) = p2(i)

1−
|LCS(p1(i), p2(i))|

max(|p1(i)|, |p2(i)|)
if not

(2)

Initial cluster formation has a time complexity of
O(|D|2), centroid learning isO(|C| × Len2

avg), and
the detection procedure isO(|C|), whereLenavg is
the average size of the initial clusters.

3.3. Shingle-based Soft Matching

Phishing pages typically have a login form re-
questing financial information, and the textual content
usually shows a certain syntactic and semantic reg-
ularity, such as the vocabulary used (“welcome to”,
“sign in to your account”, “user ID”, etc.). Intuitively,
these linguistic-level pieces could be used to identify
phishing webpages. In this section, we give a soft
matching method in light of this semantic uniformity,
which allows more flexibility in classification than
rigid URL/domain matching and thus is more robust
to random noise often seen in the HTML. Further, this
method is based on a well-known technique used by
search engines to find duplicates and should perform
particularly well against fast-flux and toolkit based
attacks, which are evident in the large number of very
similar sites that result [4].

In an effort to capture the webpage semantics on
a finer-grained level, we used the notion of n-gram
or n-shingle, and measured the inter-page similarity
based on these basic units. n-gram, a term from
natural language processing (NLP) community, is a
subsequence ofn contiguous tokens. For example,
sample textconnect with the eBay community has3-
grams{connect with the, with the eBay, the eBay
community}. The shingling method [16] employs a
metric named resemblance to calculate the percent of
common n-grams between two webpages. LetS(p)
denote the set of unique n-grams inp and the similarity
metric resemblancer(q, d) is defined as

r(q, d) =
|S(q) ∩ S(d)|

|S(q) ∪ S(d)|
(3)

Our soft matching approach first breaks eachd ∈ D
into a set of unique n-grams, and saves them in mem-
ory to speedup running. After excluding good pages
whose domains appear in the whitelist, we compute
resemblancer(q, d) ∀d ∈ D for a query pageq, and
fire an alarm wheneverr(q, d) exceeds a thresholdt.
Cross validation (CV), a standard machine learning
procedure, is adopted to choose the value oft that
yields the best detection result.

3.4. Phish Detection via Probabilistic Lan-
guage Modeling

In light of the nature of the phishing sites, the
probability distribution of the words on webpages is
usually skewed, with terms related to sensitive cus-
tomer information like “account”, “password” occur-
ring more often than other words such as “algorithm”,
“IPv6”, etc. This observation offers insight into new



possibilities, and in this section, we present a method
exploiting the relative frequencies of the words in the
page content via language modeling techniques for
phish detection.

In particular, we build a unigram language model
for each webpage, and evaluate page similarity based
on this probabilistic representation of the webpages.
Unlike higher-order language models, unigram model
p(w|d) is memory-less, only considering individual
words while ignoring the context.

To measure the similarity of the unigram models, we
used KL divergence, a measure of distance between
two probability distributions in information theory

KL(q ‖ d) =
∑

w

p(w|q) log
p(w|q)

p(w|d)
(4)

which is non-negative and takes a zero value only
when distributionsq andd are identical.

With some derivation, we obtain the final scoring
function in measuring inter-page distance in our lan-
guage modeling detection method in Eq (5)

KL(q ‖ d) ∝ −
(

∑

w:tf(w,q)>0
tf(w,d)>0

p(w|q) log
(

1 +
tf(w, d)

µp(w|C)

)

+ log
µ

µ + |d|

)

(5)

Due to the limitation of space, we do not show the
steps in arriving at the scoring function in Eq (5) here
and refer readers to the appendix for details.

Our detection algorithm in this section builds a
language model for each webpage by learning a un-
igram distribution, and evaluates the discrepancy be-
tween each phishing page and the query page via the
Dirichlet-smoothed KL divergence in Eq (5). The algo-
rithm classifies the query as phish, once the KL score
is below a thresholdt, which is also learned by cross
validation. As in our other methods, domain whitelist
fulfills the function of reducing false positives.

Two things deserve mentioning before we close this
section. First, although Eq (4) is always positive, the
derivation (see appendix) leading to Eq (5) dropped a
positive term irrelevant to phishing documents, thus
allowing both positive and negative values for the
scoring function in Eq (5). In light of this, we also
experimented with negative thresholdt in our evalu-
ation. Second, a set of words called stopwords that
occur very often yet bear little actual meaning (“the”,
“of”, etc.) introduce tremendous noise to the language
modeling process and usually lead to highly-skewed

distributions. We removed them from the page text
beforehand.

4. Experiment

4.1. Evaluation Metric

We adopted the standard true positive rate (TP)
(also called recall), false positive rate (FP) and preci-
sion (Prec) in our evaluation defined below, in which
p2p, p2n, n2p, n2n stand for the number of phishing
webpages correctly classified as phish, the number of
phishing pages wrongly classified as good pages, the
number of legitimate pages wrongly classified as phish
(false positive) and the number of legitimate instances
correctly classified as legitimate respectively. We will
use shorthand notationsTP, FP, Prec to represent
these three metrics in the rest of this paper.

TP =
p2p

p2p + p2n
(6)

FP =
n2p

n2p + n2n
(7)

Prec =
p2p

p2p + n2p
(8)

4.2. Data Source and Usage

Phishing sites are usually ephemeral, and most pages
won’t last more than a few days. To fully study
our approach over a larger corpus, we downloaded
the phishing pages when they were still alive and
conducted our experiment in an offline mode. Our
downloader employed the Internet Explorer to render
the webpages and execute Javascript, so that the DOM
of the downloaded copy truly corresponds to the page
content and thus gets around phishing obfuscations. We
also downloaded images to allow us to use CANTINA
[5] for comparison.

Known good domains are a crucial part of our
detection framework, and we collected such domains
from three sources. Google safe browsing provides
a publicly-available database [17] with2770 white
domains by the time of our experiment, and after
duplicate removal, we obtained a total of2682 unique
domains. Millersmiles [18] maintains an archive of
the most common spam targets such as ebay, and we
extracted424 unique domains out of732 entries after
mapping organization names to domains and removing
duplicates. Moreover, we also employed an online
white domain service [19], which uses DNS lookup
to determine if the query domain is on the whitelist.



Like other whitelists, this online database’s coverage
is rather limited.

Our webpage collection consists of phishing cases
from one source, and good webpages from six sources.
To eliminate the influence of language heterogeneity
on our content-based methods, we only downloaded
English webpages in our experiment.

For phishing instances, we used the XML feed of
Phishtank [20], a large community-based anti-phishing
service with29, 245 accounts [2]. Phishtank depends
on web users from around the world to submit sus-
picious phish, which are then verified via a simple
threshold voting mechanism. Genuine phishing URLs
are added into a downloadable blacklist after verifica-
tion, and so far, Phishtank has369, 905 verified phish.
We started downloading the feed in early May of2008
and manually examined the downloaded webpages to
remove legitimate cases,404 errors, and other types
of noisy pages, collecting a total of6944 phishing
webpages during a four-month period.

Alexa.com maintains a top100 websites list [21]
for a variety of languages, and we crawled the home-
pages of the top100 English sites to a limited depth,
collecting1039 good webpages in that category.

To introduce webpages with login forms into our
data set, we downloaded961 login pages, utilizing
Google’s “inurl” operator and searching for pages with
keywords such as “signin”, “login”, etc. in the URLs.
Although it is not necessarily true that each page
we downloaded contains an actual login form, it is
guaranteed that all of these URLs point to legitimate
websites.

3Sharp [22] released a public report on anti-phishing
toolbar evaluation two years ago, and we downloaded
101 good English pages out of the500 provided in the
report that still existed at the time of downloading.

Moreover, we went to Yahoo directory’s generic
bank category [23], crawling the bank homepages for
a varying number of steps within the same domains
and collecting988 bank pages.

Likewise, we conducted crawling on other categories
[24]–[29] of Yahoo directory including US bank, credit
union, online escrow services, travel agencies, real
estates and financial services, and gathered371 web-
pages. We name this data set “Yahoo misc pages” for
reference convenience.

To test the robustness of our methods, we chose
83 login pages of the most common phishing target
websites, such as ebay, bankofamerica, paypal, etc. We
call this data set “prominent pages” in the rest of this
paper. Note that none of the other five categories has
overlap with URLs in prominent pages, rendering this
category truly independent.

4.3. Test Methodology

In our experiment, we adopted the standard train-
validation-test methodology based on machine learning
common practices, in which we held out a portion of
the whole data set for final testing, used one portion
of the remaining data for model training, and the other
portion for model tuning. All the train-validation-test
splits were performed randomly.

Specifically, we held out3472 phishing pages,519
alexa pages,480 login pages,50 3sharp pages, all
988 bank pages,185 Yahoo misc pages, and all83
prominent pages for testing. Since our training set was
composed entirely of phishing instances, we used all
the remaining good webpages for parameter tuning,
which had520 alexa pages,481 login pages,51 3sharp
pages, and186 Yahoo misc pages. These numbers are
approximately half of each corresponding corpus size.
Among the remaining3472 phishing pages we chose
for training purposes, referred to as “whole training
corpus” for convenience,p percent was selected to
train the models, and the rest1− p percent was used
for tuning model parameters. We varied the values of
p to examine the size of the training phish set on the
detection performance.

To reduce random variation and avoid a lucky
train/validation/test split, we used the average statistics
of 10 runs in all our experiments.

4.4. Experimental Results

In this section, we will first report the experimental
results of model tuning, and then present the final
testing statistics of our detection methods based on the
optimal parameters. All model tuning was conducted
on a training set with70% phish from the whole
training corpus. Note that the hashing baseline has no
parameters to tune.

4.4.1. Model Tuning.
k-centroid Clustering Baseline
The parameter in our clustering baseline is the min-

imum cluster size, and we achieved different detection
performance under various values, as seen in Fig.1.

Since good URLs usually differ drastically from
phishing URLs (see [6] for phish URL taxonomy)
and we imposed strict constraints on the formation of
initial clusters, we achieved0% FP and100% precision
regardless of the minimum cluster size thresholds. It
is unsurprising that average TP (Fig.1) decreased as
the threshold grew, because we lost clusters due to
the stricter constraints. The highest TP is47.18% at
a threshold of2 and lowest is41.18% at a threshold



2 4 6 8 10 12 14 16 18 20
41

42

43

44

45

46

47

48

Minimum cluster size threshold

T
P

 (
%

)
k−centroid clustering

Figure 1. k-centroid clustering parameter tuning.
Unsurprisingly, TP declines as the minimum cluster
size grows, with the highest 47.18% occurring at 2
clusters and lowest 41.18% appearing at 20 clusters.
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Figure 2. Shingling parameter tuning. As resem-
blance threshold is increased, the rate of detection
drops as expected. TP tops at 86.61% under 3-gram
and a threshold of 0.65.

Table 1. Average number of clusters and cluster size. 2430 training phish URLs form less than 70 clusters,
the centroids of which are used for query page evaluation, dramatically boosting the testing efficiency.

Minimum cluster size threshold

2 3 4 5 6 10 15 20

Avg cluster number 68.00 46.60 40.20 36.40 35.20 27.50 20.40 17.60

Avg cluster size 21.08 29.84 34.09 37.34 38.42 47.33 59.97 66.80

of 20. Since no false positives occurred and precision
remained100% for all conditions, we do not plot
the graphs for FP and Prec here. The optimal setting
according to cross validation is a threshold of2.

Table 1 shows the average number of clusters and
average cluster size under each minimum cluster size
(10 runs for each threshold). As expected, the former
kept declining and the latter continued ascending.
Noticeably, we had a total of2430 training phish
URLs in this experiment, and the clustering method
dramatically reduced this figure to below70 centroids.

Shingle-based Soft Matching

Fig.2 shows the validation performance of this ap-
proach under different shingle lengths and resemblance
thresholds. For alln-grams in the evaluation, the true
positive rate monotonically decreased as we raised
the resemblance bar higher. Fig.2 also suggests that
shingling with shortern-grams tends to capture more
phish, which makes perfect sense, in that we have more
such fine-grained units in a webpage with smallern.
With a resemblance of65%, shingling achieved over
85% TP under all shingle lengths, which manifested
the prevalent similarity among phishing webpages due
to rock phishing. All scenarios had0% FP and100%

Prec, which are not plotted here.

Language Modeling

When it comes to unigram modeling of the page
content, the trend of the three metrics is still pre-
dictable, since the smaller the threshold of the inter-
distribution distance (KL) is, the stricter the criterion
becomes to classify a query page as phish, and there-
fore the lower the true positive and false positive rate,
and the higher the precision.

The influence of various Dirichlet prior parameter
values, however, is not that straightforward, and Fig.3
suggests that smallerµ almost unanimously outper-
formed bigger values. We would give an intuitive
interpretation based on the analytical form of the
scoring function in Eq (5). Considering the property of
logarithm log(x) that the curve to the left ofx = 1 is
much steeper than that to the right, a smallµ will yield
a very small negative number (big in terms of absolute
value) for the second termlog µ

µ+|d| in the parenthesis
in Eq (5). The first term in parenthesis, however, tends
to be a small positive number regardless ofµ due to the
multiplicative factorp(w|q) and the logarithm property.
The net result is thus a positive score for Eq (5) and
for sufficiently small distance thresholds, classification
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Figure 3. Language modeling parameter tuning. With smaller µ, it is harder to classify a page as phish,
under which FP is low under all threshold values. Optimal setting is a TP of 86.71%, a FP of 0.19% and a
Prec of 99.74% at µ = 0.1 and threshold = −3.0

is in favor of a low false positive rate. Optimal setting
for this model is0.1 for µ and−3.0 for the distance
threshold, with a TP of86.71%, FP of 0.19% and
precision of99.74%.

4.4.2. Model Testing. The optimal parameters ob-
tained via cross validation in the previous section were
used for each model, and the performance of our
methods and the baselines on the held-out data set is
shown in Table 2-3.

The TP on the testing corpus is shown in Table 2.
By removing spaces and default input values of the
forms in the HTML, our hashing baseline was able to
identify over60% phish using only20% of our training
data, which is an indicator of the widespread use of
phishing toolkits. Based on webpage URLs only, the
clustering baseline was able to correctly detect over
40% of the testing phish. It missed more than half,
however, probably due to the fact that URLs could
be easily obfuscated in different ways [6], but this
40% is based on an extremely simple technique that
could be improved by trying different constraints. The
soft n-gram-based shingling method and probabilistic
language modeling approaches avoided the brittle hard
matching strategy, and recognized over80% phish,
much more than the baselines. Within each model, the
TP increased monotonically as more phishing pages
were introduced into the training set.

For the FP (Table 3), hashing and clustering per-
formed perfectly (0%) under training sets of all sizes.
This is one of the merits of the strict matching mecha-
nisms, because it is unlikely that a legitimate webpage
could match our URL pattern heuristics, or contain the
same HTML as a phishing page without also being on
a whitelist. The soft shingling method and probabilistic
language modeling technique misclassified a few good
instances, but still kept the false positive rate as low

as0.0434% and0.286% respectively.
The TP-FP dilemma is an analog of the bias-

variance tradeoff in machine learning, which basically
states that bias and variance are two inevitable com-
ponents of the general error and introducing a certain
amount of extra bias in the model may eventually boost
its performance. In here, the much higher true positive
rate as a result of increasing model complexity in our
probabilistic approaches came at the price of non-zero
false positives.

Manual examination on the false positives of the
language modeling approach reveals that this type of
error mostly came from three sources, all partially
due to the limited scope of the whitelist. First, the
query page is very short and contains only a few
words, resulting in a big positive number for the first
term in the parenthesis in Eq (5) and accordingly a
negative KL score smaller than the threshold. Second,
the legitimate query page and some phishing page are
very similar or even identical in terms of page content.
Third, the query page and some phishing page have
similar vocabularies and word distributions, though the
content might look quite different. This is the hard
case that needs some ingenuity to solve. The shingling
method considers the order of the terms in computing
similarities and only suffers from the second problem
above, thus achieving fewer false positives.

4.4.3. Evaluation against Toolbars. In [5], Zhang
et al proposed CANTINA, a content-based method,
which performed competitively in their experiment
against two state-of-the-art toolbars, SpoofGuard
and Netcraft. We implemented an offline version
of CANTINA, and evaluated our algorithms with
CANTINA on the same10 randomly generated testing
sets as above.

Table 4 shows that the TPs of the shingling



Table 2. Test TP (%) with optimal model parameters. All techniques improve in performance given a larger
training set. The shingling and language modeling algorithms significantly outperform the hashing and

clustering baselines, with a maximum TP of 87.42% and 86.51% respectively.

Percent of training phish (%)

Method 20 30 40 50 60 70 80 90 100

Hashing baseline 64.02 66.05 67.82 69.18 70.39 71.26 72.06 72.75 73.36

Clustering baseline 45.12 45.88 46.32 46.72 46.83 46.99 47.18 47.24 47.3

Shingling 82.47 83.86 84.82 85.4 86.07 86.44 86.81 87.19 87.42

Language Modeling 80.16 81.92 83.22 84.05 84.84 85.31 85.83 86.16 86.51

Table 3. Test FP (%) with optimal model parameters. The shingling and language modeling approaches
have low but non-zero false positives, a cost of higher model complexity. The hard-matching hashing and

clustering baselines have 0% FP under all conditions.

Percent of training phish (%)

Method 20 30 40 50 60 70 80 90 100

Hashing baseline 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Clustering baseline 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Shingling 0.013 0.0087 0.0174 0.0217 0.0217 0.0304 0.0434 0.0347 0.0434

Language Modeling 0.15 0.2 0.195 0.21 0.25 0.26 0.282 0.27 0.286

Table 4. Baselines and our probabilistic algorithms vs CANTINA. Shingling and language modeling
methods perform comparably with CANTINA in terms of TP, while far outperform it on FP (0.0434%/0.286%
vs 5.4%). Hypothesis tests compare all our methods against CANTINA under TP and FP, with all FP cases

giving statistically significant results (marked by ∗).

Baselines Probabilistic methods Existing method

Hashing Clustering Shingling Language Modeling CANTINA

TP(%) 73.36 47.3 87.42 86.51 91.34

FP(%) 0.0 0.0 0.0434 0.286 5.4

p-value (TP%) 0.99999 0.99999 0.99999 0.99999

p-value (FP%) ≪ 0.00001 (∗) ≪ 0.00001 (∗) ≪ 0.00001 (∗) ≪ 0.00001 (∗)

and language modeling algorithms are comparable to
CANTINA, while their FPs are much better (0.0434%/
0.286% vs 5.4%). Hypothesis tests were conducted
comparing the TP/FP of the baselines and our prob-
abilistic methods with CANTINA, all with the null
hypothesis hypothesizing equal performance while al-
ternative hypothesis favoring our methods. Table 4
shows statistical significance in all FP cases (marked
by ∗) with strong evidence in favor of our detection
algorithms.

Even though phishing signatures constantly evolve,
the conclusion from [5] still carries and our experi-
ment results in this section suggest that our proposed
algorithms are at least as good as, if not better than,
the state-of-the-art anti-phishing toolbars.

5. Discussion

5.1. False Positives

One important issue in our framework is our do-
main whitelist. For example, all false positives of the
shingling method and partial of the language modeling
method using100% training phish (rightmost column
of Table 3) are caused by the incompleteness of this
whitelist. Enlarging the coverage of the whitelist is
a necessary step to a more practical phish detection
system. Alternatively, the TF-IDF heuristic in [5],
which utilizes search engines to search top TF-IDF
terms from the page content and reports phish based
on the discrepancy of top result entries and the page
domain, can be applied here when the query domain
is absent from the whitelist, to further reduce false
positives. Due to the use of a whitelist, however, it
is difficult for phishers to actively introduce errors that



will raise the FP of our algorithms. The problem is also
alleviated somewhat, however, by the fact that phishing
activities usually target only a small number of well-
known websites, and building a compact whitelist still
often yields decent performance.

5.2. The Dominance of Rock Phish

In this paper, we proposed two hard matching meth-
ods as simple baselines with73.36% and 47.3% TP
respectively in our experiment, strongly illustrating the
prevalence of rock phishing and toolkit-based attacks.

Phishing pages have to look somewhat legitimate
to the users for the attack to succeed, and there are
generally two ways to achieve that. The first involves
visual similarity, a common practice of which is to
put target brand logos on the fake sites. The second
centers around the semantics of the textual content
of the phishing pages, which often adopts finance-
related phrases and words as analyzed in section3.
Both are unlikely to change in light of the nature of the
phishing attacks, which lend strong credibility to the
effectiveness and practicality of our proposed methods.

5.3. Running Time

Time complexity is another issue that deserves our
attention. The theoretical complexity of our algorithms
for query page evaluation is linear in the number
of training phish. Table 5 shows the10-run average
running time of our algorithms and the baselines on
each test webpage (a total of5777 pages) using the
whole training corpus with the models in memory
on a machine with 1.73GHz CPU and 1G RAM.
Test on each case consists of three phases, i.e., load-
ing, processing, classifying, and the value in each
cell was the total time of the three stages. Hashing
and clustering were comparable, while both were at
least an order of magnitude faster than the two soft
matching algorithms, mainly in that the latter had
to compute distance scores, which was much more
computationally expensive. Moreover, the number of
unique words on a webpage is usually much smaller
than the number of unique n-grams, which partially
explains the superiority of language modeling over
shingling in terms of running time. Training the mod-
els, however, took significantly longer time, but we
can do it offline and the online testing stage does not
have to relearn the models, thus running much faster.
The statistics in the table suggest that with proper
caching, all methods are fast and potentially applicable
for realtime phish detection. To further optimize our
algorithms, we could distribute our models to multiple

servers to parallelize the detection process or leverage
advanced architecture assigning different weights to
blacklist URLs and traversing the phishing URLs in
a particular order to achieve faster-than-linear running
time.

5.4. The Robustness of Our Algorithms

Unlike invisible DOM objects, such as the href
field of anchors and the action field of forms, the
semantics of the visible page content are nontrivial
to obfuscate, because the phishing sites have to show
the users what information is requested via text and
there are only a limited number of finance-related
representations. Exploiting this linguistic uniformity,
our proposed content-based methods achieved87.42%
and86.51% respectively.

Phishers could try to subvert our algorithms by
injecting garbage text to the DOM with colors designed
to be hardly perceptible. This is, however, more of an
implementation issue than a design one, and we can
easily fix this by removing text which makes use of
such color manipulations as part of our pre-processing.

A more extreme approach might involve removing
all textual components and only using images of text
on the phishing sites. This is a hard case. However,
we really doubt if any legitimate entity would design
their website this way (especially the login page), and
would probably directly classify this kind of page as
phish.

Raw IP addresses are heavily used in the phishing
world, and detection methods based on machine learn-
ing techniques usually take the use of a raw IP address
as a feature in learning classifiers. Our algorithms work
by examining page content via the DOM in detecting
phish, rendering URL/IP oriented obfuscation futile.

Another issue is the zero-hour attack, i.e., new
phishing patterns, which presents a rather serious prob-
lem to the existing blacklist-based methods, because
the large number of new unique phishing URLs can-
not be identified and added to the blacklists rapidly
enough. Though the first a few cases of the new attacks
are initially able to evade our detection, we only need
to identify a few new phishing instances, update our
models via online retraining, and we are subsequently
able to block the rest of the attacks while maintaining
a nearly zero false positive rate. This is a significant
improvement over the blacklist-based methods that are
generally unable to cope with a high volume of unique
phish URLs.

Although phishers will likely adapt their tech-
niques and defeat our specific algorithms eventually,
the general idea of relaxing human-verified blacklists



Table 5. Average running time on each test webpage (out of 5777 pages) of 10 runs using the whole
training corpus with the models in memory on a machine with 1.73GHz CPU and 1G RAM.

Algorithms hashing baseline k-centroid clustering baseline shingling language modeling

Running time (ms) 0.002203 0.001969 0.126642 0.065550

via probabilistic approaches still holds, and further
content-based or vision-based methods could be inves-
tigated which would again provide strong protection.

6. Conclusions and Future Work

Combining human-verified blacklists with informa-
tion retrieval and machine learning techniques, we pre-
sented in this paper a phish detection framework that
is fast, highly reliable, and adaptive to new phishing
attacks. Specifically, we designed and evaluated two
content-based algorithms for phish detection harness-
ing the semantic regularity of the phishing webpages,
with a focus of achieving the lowest (ideally zero)
false positive rate, a concern which is of paramount
importance to anti-phishing industry.

Our algorithms fully exploit the high similarity in
the phishing page content. One of our methods relies
on finer-grained components, n-gram or n-shingle, to
measure the inter-webpage similarity, while another
builds language models from the webpages and ex-
amines the webpage distances probabilistically via the
Dirichlet-smoothed KL divergence. In addition, we
proposed a hash-based duplicate detection method and
a heuristics-constrained k-centroid clustering algorithm
as baselines for comparison. Domain whitelists ful-
filled the role of controlling false positives. Extensive
experiments over phishing data from Phishtank and
good pages from six authority sources showed that our
method was able to detect87.42% of the phish with
a low false positive rate of0.0434%. Moreover, our
methods are able to adapt quickly to zero-hour attacks
by incrementally updating the models with a few new
phishing instances out of the huge magnitude of rock
phish attacks, thus providing a feasible framework
for industry to vastly improve the existing limited
blacklists without increasing their false positives.

It is likely that phishers adapt their techniques and
defeat our specific algorithms eventually, however, the
general idea of combining human-verified blacklists,
information retrieval and machine learning techniques
for phish detection still holds, and more content-based
or vision-based methods could be investigated to detect
further phishing attacks.

Currently, we access domain whitelists by sim-
ple lookups, and considering the scarcity of easily

available white domains, one possible future research
direction is the automatic assessment of new domains
given the known good ones. Dealing with webpages
of different length is another area that could improve
the performance of the language modeling approach.
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Appendix
Derivation of the KL Scoring Function

KL divergence can be rewritten as

KL(q ‖ d) =
∑

w

p(w|q) log p(w|q) −
∑

w

p(w|q) log p(w|d)

∝ −
∑

w

p(w|q) log p(w|d)

(9)

in which the first term is dropped out because it does
not involve phishing webpaged, and can be regarded
as a constant here.

Maximum likelihood estimator is often employed
to learnp(w|q) and p(w|d). However, it suffers from
data sparseness, leading to a zero estimated probability
when a word is absent in the training corpus, especially
for phish detection where the vocabulary on phishing
webpages is rather limited. As a remedy, we applied
smoothing, a core concept in language modeling to



reallocate probabilities to avoid zero counts, and as-
signed to an unseen word a probability proportional
to its overall frequency in a background language
collection.

p(w|d) =

{

ps(w|d) if word w is seen

αdp(w|C) otherwise
(10)

where αd is a document-dependent constant, and
p(w|C) is a background language model.

With some derivation, the KL divergence in Eq (9)
reduces to

KL(q ‖ d) ∝ −
(

∑

w

p(w|q) log
ps(w|d)

αdp(w|C)
+ log αd

)

(11)
Smoothed by a Dirichlet prior [30], [31], the

model for seen wordsps(w|d) becomesps(w|d) =
tf(w,d)+µp(w|C)

|d|+µ
and the document-dependent constant

translates toαd = µ
µ+|d| , which guarantees thatp(w|d)

is still a valid distribution.tf(w, d) denotes the number
of occurrences ofw in d.

Pluggingps(w|d) and αd into Eq (11), we obtain
the KL divergence scoring function as in Eq (5)

KL(q ‖ d) ∝ −
(

∑

w:tf(w,q)>0
tf(w,d)>0

p(w|q) log
(

1 +
tf(w, d)

µp(w|C)

)

+ log
µ

µ + |d|

)

p(w|q) andp(w|C) are learned by maximum likeli-
hood estimation given by

p(wi|q)=
tf(wi, q)

∑

wj∈q tf(wj , q)
(12)

p(wi|C)=

∑

dj∈C tf(wi, dj)
∑

dj∈C

∑

wk∈dj
tf(wk, dj)

(13)

whereµ is a parameter in the Dirichlet prior and is
tuned via cross validation in our experiment.


