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ABSTRACT
In this paper, we investigate the feasibility of identifying a small 
set of privacy profiles as a way of helping users manage their 
mobile app privacy preferences. Our analysis does not limit itself 
to looking at permissions people feel comfortable granting to an 
app. Instead it relies on static code analysis to determine the 
purpose for which an app requests each of its permissions, 
distinguishing for instance between apps relying on particular 
permissions to deliver their core functionality and apps requesting 
these permissions to share information with advertising networks 
or social networks. Using privacy preferences that reflect 
people’s comfort with the purpose for which different apps 
request their permissions, we use clustering techniques to identify 
privacy profiles.  A major contribution of this work is to show 
that, while people’s mobile app privacy preferences are diverse, 
it is possible to identify a small number of privacy profiles that 
collectively do a good job at capturing these diverse preferences.  

1. INTRODUCTION
As of December 2013, the Google Play Store offered more than 
1,130,000 apps; the Apple App store offered more than 1,000,000 
apps. Each store has reported more than 50 billion downloads 
since its launch [1, 2]. The growth in the number mobile apps has 
in part been fueled by the increasing number APIs made available 
to developers, including a number of APIs to access sensitive 
information such as a user’s current location or call logs. While 
these new APIs open the door to exciting new applications, they 
also give rise to new types of security and privacy risks. Malware 
is an obvious problem [3, 4]; another danger is that users are often 
unaware of how much information these apps access and for what 
purpose. 

Early studies in this area have shown that privacy interfaces, 
whether for iOS or for Android, did not provide users with 
adequate information or control [5-7]. This was quickly followed 
by research exploring solutions that offered users finer grain 
control over the use of these APIs [8-10]. Perhaps because of this 
research, iOS and Android have now started to offer their users 
somewhat finer control over mobile app permissions, enabling 
them for instance to toggle permissions on and off on an app-by-
app basis (e.g. iOS5 and above, and also App Ops in Android 4.3). 
However, with users having an average of over 40 apps on their 
smartphone [11] and each app requiring an average of a little over 
3 permissions [12], systematically configuring all these settings 
places an unrealistically high burden on users.  

This paper investigates the feasibility of organizing end-users into 
a small set of clusters and of identifying default privacy profiles 
for each such cluster as a way of both simplifying and enhancing 
mobile app privacy. We use data obtained through static code 
analysis and crowdsourcing, and analyze it using machine 
learning techniques to highlight the limitations of today’s 
interfaces as well as opportunities for significantly improving 
them. Specifically, our results were obtained by collecting 21,657 
preference ratings from 725 users on 837 free Android apps. 
These preference ratings were collected on over 1200 app-
permission-purpose triples. Each such preference rating captures 
a user’s willingness to grant a given permission to a given app for 
a particular purpose. Identification of the purpose(s) associated 
with a given app’s permission was inferred using static code 
analysis, while distinguishing between different types of 3rd-party 
libraries responsible for requesting access to a given permission. 
For example, if location data is used by an app only because of an 
ad library bundled with the app, we can infer that location is used 
for advertising purposes.  

Our analysis indicates that a user’s willingness to grant a given 
permission to a given mobile app is strongly influenced by the 
purpose associated with such a permission. For instance a user’s 
willingness to grant access to his or her location will vary based 
on whether the request is required to support the app’s core 
functionality or whether it is to share this information with an 
advertising network or an analytics company. Our analysis further 
shows that, as in many other privacy domains, people’s mobile 
app privacy preferences are diverse and cannot adequately be 
captured by one-size-fits-all default settings. Yet, we show that it 
is possible to cluster users into a small number of privacy profiles, 
which collectively go a long way in capturing the diverse 
preferences of the entire population. This in turn offers the 
prospect of empowering users to better control their mobile app 
permissions without requiring them to tediously review each and 
every app-purpose-permission for the apps on their smartphones. 
Beyond just mobile apps, these results open the door to privacy 
interfaces that could help reconcile tensions between privacy and 
user burden in a variety of domains, in which explosion in 
functionality and usage scenarios are stretching demands on users 
(e.g. browser privacy settings, Facebook settings, and more). 

The contribution of this research is threefold. First, we provide an 
in-depth analysis of mobile app permissions that is not limited to 
the types of sensitive resources an app requests (e.g. location, 
contact lists, account information) but also includes the “purpose” 
associated with these requests – with purpose identified through 
static analysis of third party libraries and their API calls. Second, 
we describe the results of a larger-scale version of the 
crowdsourcing methodology originally introduced by Lin et. al. 
[13]), collecting over 21,000 privacy preferences associated with 
different permissions and purposes. This allows us to 
quantitatively link users’ mobile app preferences to different 
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types of app behaviors that involve sensitive resource usage. 
Third, we present a clustering analysis of the privacy preferences 
of 725 smartphone users, and show that, while these preferences 
are diverse, a relatively small number of privacy profiles can go 
a long way in simplifying the number of decisions users have to 
make. This last contribution offers the promise of alleviating user 
burden and ultimately increasing their control over their 
information. 

2. RELATED WORK
A great deal of past work analyzing smartphone apps has focused 
on developing useful techniques and tools to detect and manage 
leakage of sensitive personal information [8-10, 14-26] or 
studying how users react to these usages [6, 13, 27, 28]. In this 
section, we summarize the relevant mobile privacy literature, 
which we organize around three themes. 

2.1 Finer Grain Privacy Controls 
In Android, apps can only access sensitive resources if they 
declare permission requests in manifest files1 and obtain 
authorization from users to access these permissions at download 
time. Several studies have examined usability issues related to the 
permission interface displayed to users as they download Android 
apps [5-7]. The studies have shown that Android permission 
screens generally lack adequate information, with most users 
struggling to understand key terms and the implications 
associated with the permissions they are requested to grant. 

Android 4.3 saw the introduction of a hidden permission manager 
referred to as a “App Ops” that allows users to review and 
manipulate settings associated with the permissions of the apps 
they have downloaded on their smartphones [29, 30], This feature 
was later removed in Android 4.4 presumably due to usability 
problems – namely the unrealistically large number of permission 
decisions already mentioned in Section 1. Similar fine grain 
control over permissions has also been offered by third party 
privacy manager apps, such as LBE privacy guard [31], though it 
is only available on rooted Android devices. Similar settings are 
also available in iOS (iOS 5 and above), where users have the 
ability to turn on and off access to sensitive data or functionality 
(such as location, contacts, calendars, photos, etc) on an app-by-
app basis. ProtectMyPrivacy [32] offers similar settings to 
jailbroken iPhone users and also provides recommendations 
based on majority voting (effectively looking for popular one-
size-fits-all settings, when such settings can be identified). 

A number of research prototypes have also offered used fine grain 
controls over the permissions [8, 10, 32-35]. MockDroid [8] and 
TISSA [10] also allow users to ibject fake information in response 
to API calls made by apps. AppFence [9], a follow-up to 
TaintDroid [17], also allows users to specify resources, which 
should only be used locally. Apex proposed by Nauman et al. [34] 
provides fine-grained control over resource usage based on 
context and runtime constraints.  

These proposed privacy extensions aim to provide users with 
finer control over the data accessed by their apps. However, these 
extensions also assume that users can correctly configure all the 
resulting settings. We argue that asking users to specify such a 

1 The Android manifest file of each app presents essential 
information about this app to the Android system, information 
the system must have before it can run any of the app's code. 

large number of privacy preferences is unrealistic. In addition, we 
show that controlling permissions on an app-by-app basis without 
taking into account the purpose of these permissions does not 
enable one to capture important differences in people’s mobile 
app privacy preferences. The present paper complements prior 
work in this area by identifying a small number of manageable 
privacy profiles that takes into account purpose and offers the 
promise of empowering users to manage their mobile app privacy 
without imposing an undue burden on them.  

2.2 Modeling People’s Mobile App Privacy 

Preferences 

A second line of research has focused on studying users’ mobile 
app privacy concerns and preferences. For example, Felt et al. 
[28], Chin et al. [27], and Egelman et al [36] conducted surveys 
and interviews to understand mobile users’ mobile privacy 
concerns as well as their over understanding of the choices they 
are expected to make.  

Several efforts have researched interfaces intended to improve the 
way in which users are informed about mobile app data collection 
and usage practices. Kelley et al. evaluated the benefits of 
including privacy facts in an app’s description in the app store, 
effectively enabling users to take into account privacy 
considerations prior to download time [7]. Choe et al. showed that 
a framing effect can be exploited to nudge people away from 
privacy invasive apps [37]. The National Telecommunications 
and Information Administration (NTIA) released guidelines for a 
short-form mobile app privacy notice in July 2013, aiming to 
provide app users with clear information about how their personal 
data are collected, used and shared by apps [38, 39]. Work by 
Balebako et al. [40], suggests that more work may be required for 
these interfaces to become truly effective. More generally, Felt et 
al. discussed the strengths and weaknesses of several permission-
granting mechanisms and provided guidelines for using each 
mechanism [41].  

Studies have also shown that users are often surprised when they 
find out about the ways in which information collected by their 
apps is being used [13, 42, 43], e.g. what type of data is requested, 
how often, and for what purpose. In [13], we used crowdsourcing 
to identify app-permission-purpose triples that were inconsistent 
with what users expected different apps to collect. We further 
showed that such deviations are often closely related with lack of 
comfort granting associated permissions to an app. Our paper 
builds on this earlier work by scaling up our crowdsourcing 
framework and performing more advanced data analysis to allow 
for the development of finer privacy preference models. Our main 
contribution here is not only to show how mobile app privacy 
preferences vary with the purpose of app permission pairs but also 
in the form of a taxonomy of purposes, which we can later 
leverage to identify clusters of like-minded users.  

2.3 Privacy Preference Learning 
A first data mining study of mobile app permissions was 
presented by Frank et al., where they authors looked for 
permission request patterns in Android apps [44]. Using matrix 
factorization techniques, they identified over 30 common patterns 
of permission requests. Rather than looking for patterns of 
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permission requests, our work in this area aims to identify 
patterns in user privacy preferences, namely in the willingness of 
users to grant permissions to mobile apps for different purposes.  

This work more closely aligned with an earlier study published 
by three of the co-authors, looking at patterns among the Android 
permission settings of 239,000 LBE Privacy Guard [31] users for 
around 12,000 apps [12]. In this earlier work, the three co-authors 
showed that it was possible to define a small number of privacy 
profiles that collectively captured many of the users’ privacy 
settings. It further explored mixed initiative models that combine 
machine learning to predict user permission settings with user 
prompts when the level of confidence associated with certain 
predictions appears too low. In contrast to analyzing actual user 
privacy settings, our work focuses on deeper privacy models, 
where we elicit people’s privacy preferences in a context where 
they are not just about the permissions requested by an app but 
also about the one or more purposes associated with these 
requests (e.g. to enable the app’s core functionality versus to share 
data with an advertising network or an analytics company). 
While our results bear some similarity with those presented in 
[12], they are significant because: (i) they show that the purpose 
for which an app requests a certain permission has a major impact 
on people’s willingness to grant that permission., and (ii) using 
these more detailed preference models elicited from better-
informed users, it is possible to derive a small number of privacy 
profiles with significant predictive power.   

To the best of our knowledge, our work on quantifying mobile 
app privacy preferences is the first of its kind.  It has been 
influenced by earlier work by several of the co-authors on 
building somewhat similar models in the context of user location 
privacy preferences. [45-52]. For example, Lin et al. [45] 
suggested that people’s location-sharing privacy preferences, 
though complicated, can still be modeled quantitatively. Early 
work by Sadeh et al. [52] showed that it was possible to predict 
people’s location sharing privacy preferences and work by 
Benisch et al. explored the complexity of people’s  location 
privacy preferences [51]The work by Ravichandran et al. [46] 
suggested that providing users with a small number of canonical 
default policies can help reduce user burden when it comes to 
customizing the fine-grained privacy settings. The work by 
Cranshaw et al. [47] applied a classifier based on multivariate 
Gaussian mixtures to incrementally learn users’ location sharing 
privacy preferences. Kelley et al [49] and later Mugan et al. [48] 
also introduced the notion of understandable learning into privacy 
research. They used default personas and incremental suggestions 
to learn users’ location privacy rules, resulting in a significant 
reduction of user burden.  Their results were later evaluated by 
Wilson et al. [50] in a location sharing user study. 

As pointed out by Wilson et al. with regard to location sharing 
privacy in [50], “… the complexity and diversity of people’s 
privacy preferences creates a major tension between privacy and 
usability…” The present mobile app privacy research is 
motivated by a similar dilemma, which extends well beyond just 
location. It shows that approaches that worked well in the context 
of location sharing appear to offer similar promise in the broader 
context of mobile app privacy preferences, with a methodology 
enhanced with the use of  static analysis to identify the purpose of 
mobile app permissions. 

3. DATA COLLECTION
Before analyzing people’s privacy preferences of mobile apps, it 
is necessary to gain a deeper understanding of mobile apps with 
regard to their privacy-related behaviors as well as the implication 
of these behaviors. In this section, we provide technical details of 
how we leveraged static analysis to dissect apps and what we 
learnt. 

3.1 Downloading Android Apps and Their 

Meta-data 
We crawled the Google Play web pages in July 2012 to create an 
index of all the 171,493 apps that were visible to the US users, 
among which 108,246 of them were free apps. We obtained the 
metadata of these apps, including the app name, developer name, 
ratings, number of downloads, etc. We also downloaded all the 
binary files of free apps through an open-source Google Play API 
[3]. Note that Google has strict restrictions on app purchase 
frequency and limits the number of apps that can be purchased 
with a single credit card. Because of these restrictions, we opted 
to only download and analyze free apps in this work. Additional 
analysis using similar method of our work can be applied to paid 
apps as well.  

3.2 Analyzing Apps’ Privacy-Related 

Behaviors 

We used static analysis tools given that they are more efficient 
and easier to automate. We chose Androguard [53] as our major 
static analysis instrument. Androguard is a Python based tool to 
decompile Android apk files and to facilitate code analysis. We 
focused our analysis on the top 11 most sensitive and frequently 
used permission as identified earlier [19]. They are: INTERNET, 
READ_PHONE_STATES, ACCESS_COARSE_LOCATION, 
ACCESS_FINE_LOCATION, CAMERA, GET_ACCOUNTS, 
SEND_SMS, READ_SMS, RECORD_AUDIO, BLUE_TOOTH 
and READ_CONTACT. We created our own analysis scripts 
with the Androguard APIs and identified the following 
information related to apps’ privacy-related behaviors: 1) 
permission(s) used by each app; 2) The classes and segments of 
code involved in the use of permissions; 3) All the 3rd-party 
libraries included in the app; 4) Permissions required by each 3rd-
party library. The analysis of 3rd-party libraries provided us more 
semantic information of how users’ sensitive data were used and 
to whom they were shared.  

We obtained permission information of each app by parsing the 
manifest file of each apk file. We further scanned the entire de-
compiled source code and looked for specific Android API calls 
to determine the classes and functions involved in using these 
permissions. We identified 3rd-party libraries by looking up 
package structures in the de-compiled source code. It is possible 
that we may have missed a few libraries, though we are pretty 
confident that we were able to correctly identify the vast majority 
of them and in particular the most popular ones. For the sake of 
simplicity, we did not distinguish between different versions of 
the same third party library in our analysis. Similar to the 
permission analysis step described above, the permission usage 
of each 3rd-party library was determined by scanning through all 
the Android standard API calls that relate to the target permission 
in the de-compiled version of the library’s source code. 

We further leveraged five Amazon EC2 M1 Standard Large 
Linux instances to speed up our analysis of this large quantity of 
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apps. The total analysis required 2035 instance hours, i.e. 
approximately 1.23 minutes per app. Among all the 108,246 free 
apps, 89,903 of them were successfully decompiled (83.05%). 
Upon manual inspection of a few failure examples, we observed 
that failure to de-compile was primarily attributed to code 
obfuscation.  

In the static analysis, we identified over a thousand 3rd-party 
libraries used by various apps. We looked up the top 400 3rd-
party libraries that are most frequently used in all these apps to 
understand the purpose or functionality associated with each, 
based on which we organized these 3rd-party libraries into 9 
categories as detailed in Table 12. These categories include 
Targeted Advertising, Customized UI Components, Content 
Host, Game Engine, Social Network Sites (SNS), Mobile 
Analytics, Secondary Market, Payment and other Utilities. We 
also analyzed how different types of resources (permissions) were 
used for various purposes. For all the apps we analyzed, we 
observed an average usage of 1.59 (σ = 2.82, median=1) 3rd-party 
libraries in each app. There were some extreme cases where an 
app used more than 30 3rd-party APIs. For example, the app with 
the package name “com.wikilibs.fan_tatoo_design_for 
_women_2” used 31 3rd-party libraries, 22 of which were 
targeted advertising libraries, such as adwhirl, mdotm, 
millenialmedia, tapjoy, etc. In the majority of cases (91.7%), apps 
are bundled with less than or equal to 5 different 3rd-party 
libraries. The targeted advertising libraries are found in more than 
40% of these apps. SNS libraries achieved an average penetration 

2 The library uses follows a power-law distribution, therefore, the 
top 400 most popular libraries covered over 90% of uses. 

of 11.2% of the app market, and mobile analytics libraries had an 
average penetration of 9.8% of the app market. 

In additional to these nine categories of sensitive data uses by 
third parties, we also used “internal use” to label sensitive data 
usages caused by the application itself rather than a library. It 
should be noted that, for these internal uses, we currently cannot 
determine why a certain resource is used (e.g., whether it is “for 
navigation”, “for setting up a ringtone”, etc.). Based on existing 
practices, the fact that the API call is within the app’s code rather 
than in a 3rd party library indicates a high probability that the 
resource is accessed because it is required by the mobile app itself 
rather than to collect data on behalf of a third party. 

Our static analysis provided a systems-oriented foundation for us 
to better understand mobile apps in terms of their privacy-related 
behaviors, which enabled us to study users’ preferences in regard 
to these app behaviors in the later part of this paper. Note that, 
although we only collected users’ preferences of 837 apps among 
the apps we dissected as described in the following subsection, 
the static analysis of 89,000 + apps was necessary for us to 
understand the bigger picture of sensitive data uses and to identify 
the nine categories of 3rd-party libraries. 

3.3 Crowdsourcing Users’ Mobile App 

Privacy Preferences 
To link users’ privacy preferences to these app behaviors we 
identified through static analysis, we leveraged Amazon 
Mechanical Turk (AMT) to collect users’ subjective responses 
through a study similar what Lin et al. did in [13]. Participants 
were shown the app’s icon, screen shots, and description of apps. 
Participants were asked if they expected this app to access certain 
type of private information and were also asked how comfortable 
(from “-2” very uncomfortable to “+2” very comfortable) they 
felt downloading this app given the knowledge that this app 
accesses their information for the given purposes. Each HIT 
(Human Intelligence Task) examined one app – permission – 
purpose triple that we identified as described in the previous 
section. For example, in one HIT, participants were asked to 
express their level of comfort in letting Angry Birds (app) access 
their precise location (permission) for delivering targeted ads 
(purpose). We added one qualification question in each HIT, 
asking participants to select from a list of three app categories, to 
test whether they had read the app’s description and whether they 
were paying attention to the questions. The template of the HIT 
is shown in Appendix A. 

In total we published 1200 HITs on AMT, probing 837 mobile 
apps that we randomly sampled from the top 5000 most popular 
free apps. For each HIT, we aimed to recruit 20 unique 

Table 1. Nine categories of 3rd-party libraries 

Type Examples Description 

Utility  Xmlparser, 

hamcrest 

Utility java libraries, such as 

parser, sql connectors, etc  

Targeted Ads admob, 

adwhirl, 

Provided by mobile behavioral 

ads company to display in-app 

advertisements 

Customized UI 

Components 

Easymock, 

kankan, 

Customized Android UI 

components that can be inserted 

into apps. 

Content Host Youtube, 

Flickr  

Provided by content providers 

to deliver relevant image, video 

or audio content to mobile 

devices. 

Game Engine Badlogic, 

cocos2dx 

Game engines which provide 

software framework for 

developing mobile games. 

SNS Facebook, 

twitter,  

SDKs/ APIs to enable sharing 

app related content on SNSs.  

Mobile Analytics  Flurry, 

localytics 

Provided by analytics company 

to collect market analysis data 

for developers.  

Secondary 

Market 

Gfan, ximad, 

getjar… 

Libraries provided by other 

unofficial Android market to 

attract users. 

Payment Fortumo, 

paypal, 

zong… 

e-payment libraries 

Table 2. Participants’ demographic summary 

Education % Age Group % 

High School 31% Under 21 11% 

Bachelor 
Degree 63% 21-35 69% 

Graduate 
Degree 6% 36-50 16% 

51-65 3% 

Gender % Over 65 1% 

Female 41% 

Male 59% 



5 

participants to answer our questions. Participants were paid $0.15 
per HIT. We restricted our participants to U.S. smartphone users 
with previous HIT approval rate higher than 90%.  

The study ran for 3 weeks starting on June 15th, 2013. After the 
data collection period, we first eliminated responses that failed 
the qualification questions (~7%), and then we eliminated 39 
HITs because they had less than 15 responses. This yielded a 
dataset of 21,657 responses contributed by 725 AMT workers. 

4. DESCRIPTIVE RESULTS

4.1 Participants 
We collected demographic information of our participants 
including gender, age and education background to help us 
analyze our data, though we did not specifically control the 
gender ratio or any other demographic composition of our 
participants. Among these participants, 41% of them were female; 
69% of participants were between 21 and 35, 16% of them are 
between 36 and 50 (see Table 2). We also observed that more than 
60% of the participants were reported to have a bachelor’s degree 
or equivalent and 6% had a master’s degree or PhD. The average 
education level of our participants was significantly higher than 
the average education level of the entire U.S. population as 
reported in [54]. Compared to the demographics of crowd 
workers as reported in [55], our participant pool contains more 
people with bachelor’s degrees and fewer with graduate degrees.  

This difference in demographics may be caused by self-selection, 
since usually crowd workers would be more likely to work on 
HITs that interest them. However, other data collection methods, 
such as Internet surveys, often have similar sampling problems.  
While this sample bias has to be taken into account when 
interpreting our results, we suspect that our study is no worse than 

most others in terms of the representativeness of our participant 
pool. 

4.2 Users’ Average Preferences and Their 

Variances 

To visualize our results, we aggregated self-reported comfort 
ratings by permission and purpose. Figure 1 (a) shows the average 
preferences of all 725 participants, where white indicates 
participants were very comfortable (2.0) with the disclosure, and 
red indicates very uncomfortable (-2.0). In other words, darker 
shades of red indicate a higher level of concern. Entries with a 
short dash indicate the absence of data for a particular permission-
purpose. For example, in our analysis, we did not see any 
analytics library accessing users’ contact information or trying to 
send or receive SMS. Note that these heat map visualizations only 
display the most important six permissions and four purposes, 
since they are the most popular data uses and the sources of the 
primary distinctions among users (which we will introduce in the 
next subsection). 

The three use cases with the highest levels of comfort were: (1) 
apps using location information for their internal functionality 
(fine location: µ = 0.90, coarse location: µ = 1.16); (2) SNS 
libraries bundled in mobile apps using users’ location information 
so this context information can be used in sharing (fine location: 
µ = 0.28, coarse location: µ = 0.30); (3) apps accessing 
smartphone states, including unique phone IDs, and account 
information for internal functionality (µ = 0.13).  

For the remaining cases, users expressed different levels of 
concerns. Users were generally uneasy with (1) targeted 
advertising libraries accessing their private information, 
especially for their contact list (µ = -0.97) and account 

(a)   Average user preferences 
(b) Variances in user preferences 

Figure 1  (a) The average self-reported comfort ratings of different permission usages. The lighter shades represent permission-

purpose pairs users are more comfortable granting, whereas the darker shades of red indicate less comfort. (b) The variances in 

comfort levels. Many entries have large variances.  Entries with a short dash indicate the absence of data for a particular 

permission-purpose. 
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information3 (µ = -0.60); (2) SNS libraries that access their unique 
unique phone ID (µ = -0.42), contact list (µ = -0.56), as well as 
information related to their communication and web activities 
such as SMS (µ = -0.17) and accounts (µ = -0.23); and (3) mobile 
analytic libraries accessing their location (µ = -0.29) and phone 
state4 (µ = -0.09).  

This aggregation of data gave us a good starting point to spot 
general trends in users’ privacy preferences. At the same time, 
these are averages and, as such, they do not tell us much about the 
diversity of opinions people might have. An important lesson we 
learnt from previous literature of location privacy is that users’ 
privacy preferences are very diverse. To underscore this point, we 
plotted the variances of user preferences of the same use cases, as 
shown in Figure 1 (b). Here, darker shades of yellow indicate 
higher variance among users’ comfort rating for different 
purposes.  

Figure 1 (b) shows that users’ preferences are definitely not 
unified. Variances are larger than 0.6 (of a rating in a [-2, +2] 
scale) in all cases. In 25% of cases, variances exceeded 1.8. Users’ 
disagreements were highest in the following cases, including: (1) 
SNS libraries accessing users’ SMS information as well as their 
accounts; (2) targeted advertising libraries accessing users’ 
contact list; (3) users’ location information being accessed by all 
kinds of external libraries.  

This high variance in users’ privacy preferences suggests that 
having a single one-size-fits-all privacy setting for everyone may 
not work well – at least for those settings with a high variance. 
We cannot simply average the crowdsourced user preferences and 
use them as default settings as suggested in [32]. This begs the 
question of whether users could possibly be subdivided into a 
small number of groups or clusters of like-minded individuals for 
which such default settings (different settings in different groups) 
could be identified. We discuss this idea in the next section. 

5. LEARNING MOBILE APP PRIVACY

PREFERENCES 
Given the large variances identified above, a unified default 
setting evidently cannot satisfy all the users’ privacy preferences. 
Therefore, we chose to investigate methods for segmenting the 
entire user population into a number of subgroups that have 
similar preferences within the subgroups.  Then by identifying the 
suitable default settings for each of these groups and the group 
each user belongs to, we can suggest individual users with more 
accurate default settings. 

5.1 Pre-processing 

To identify these groups, we need to properly encode each user’s 
preferences into a vector and trim the dataset to prevent over-
fitting. More specifically, we conducted three kinds of 
preprocessing before feeding the dataset into various clustering 
algorithms. First, we eliminated participants who contributed less 
than 5 responses to our data set, since it would be difficult to 
categorize participants if we know too little about their 
preferences. This step yielded a total number of 479 unique 
participants with 20,825 responses. On average, each participant 

3 GET_ACCOUNTS permission gives apps the ability to discover 

existing accounts on managed by Android operating system without 

knowing the passwords of these accounts.  

contributed 43.5 responses (σ = 38.2, Median=52). Second, we 
aggregated a participant’s preferences by averaging their 
indicated comfort levels of letting apps use specific permissions 
for specific purposes. “NA” is used if a participant did not have a 
chance to indicate his/her preferences for a given permission-
purpose pair. Lastly, for each missing feature (“NA”), we found 
the k (k=10) nearest neighbors that had the corresponding feature. 
We then imputed the missing value by using the average of 
corresponding values of their neighbor vectors.  

After these preprocessing steps, we obtained a matrix of 77 
columns (i.e. with regard to 77 permission-purpose pairs) and 479 
rows, where each row of the matrix represented a participant. 
Each entry of the matrix was a value between [-2, +2]. This 
preference matrix was free of missing values.  

5.2 Selection of Algorithms and Models 

We opted to use hierarchical clustering with an agglomerative 
approach to cluster participants’ mobile app privacy preferences. 
In the general case, the time complexity of agglomerative 
clustering is O(n3) [56]. Though its time complexity is not as fast 
as k-means or other flat clustering algorithms, we chose 
hierarchical clustering mainly because its resulting hierarchical 
structure is much more informative and more interpretable than 
unstructured clustering approaches (such as k-means). More 
specifically, we experimented with several distance measures 
[56], including Euclidean distance, Manhattan distance [57], 
Canberra Distance [58], and Binary distance [59]. We also 
experimented with four agglomerative methods, including 
Ward’s method [60], Centroid Linkage Method [61], Average 
Linkage method [61], and McQuitty’s Similarity method [62].  

We limited our exploration to the above-mentioned distance 
functions and agglomerative methods, since other distance 
functions or agglomerative methods either produce similar results 
as the above-mentioned ones or are not appropriate for our tasks 
based on the characteristics of our data. As research on clustering 
techniques continues, it is possible that new techniques could 
provide even better results than the ones we present. We found 
however these techniques were already sufficient to isolate very 
different categories of mobile apps, when it comes to their 
permissions and the purposes associated with these permissions.  

To select the best model, we experimented with various ways of 
combining the four agglomerative methods and four distance 
measures and also varied the number of clusters k from 2 to 20 by 
using the R package “hclust” [63]. We conducted all the 
experiments on a Linux machine which has XeonE5-2643 
3.3GHz CPU (16 cores) and 32G memory. We had two selection 
criteria in determining which combination of distance function 
and agglomerative method to use. First, the combination should 
not generate clusters with extremely skewed structures in 
dendrograms. A dendrogram is a tree diagram frequently used to 
illustrate the arrangement of the clusters produced by hierarchical 
clustering. The tree structure in the dendrogram illustrate how 
clusters merged in each iteration. We check this by heuristically 
inspecting the dendrograms of each clustering result. The other 
criteria is the combination of three internal measures, namely 
connectivity [64], Silhouette Width [65] and Dunn Index [66]. 

4 READ_PHONE_STATE permission gives apps the ability to obtain 

unique phone id and detect if the users is currently calling someone.  
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These three internal measures validate the clustering results based 
on their connectivity, compactness and degree of separation. 

5.3 Resulting Clusters 

Based on the two criteria described in the previous sub-section, 
we obtained the best clusters by using Canberra distance and 
Average Linkage method with k=4.  

Figure 2 illustrates the resulting dendrogram produced by the 
above-mentioned clustering configurations, where four different 
colors indicate the four clusters when k=4. Among the four 
identified clusters, the largest one (colored in black in Figure 2) 
includes 47.81% of instances, whereas the smallest cluster 
(colored in red) includes 11.90% instances.  We assigned a name 
to each cluster based on its outstanding characteristics and 
overlaid these names on the dendrogram as well. The explanation 
of these names and the interpretation of our clustering results are 
discussed in the following section. 

6. RESULT INTERPRETATION
To make sense of what these clusters mean, we computed the 
centroid of each cluster by averaging the feature vectors of 
instances within the cluster. Note that we computed the centroid 
of each cluster based on the non-imputed data points, i.e. only 
averaging the entries when there were true values, since they 
better estimate the true average preferences of users in each 
category.   

6.1 Making Sense of User Clusters 

We used a heat map to visualize these clusters5 as shown in Figure 
3 – Figure 6. The vertical dimension of these heat maps represents 
the uses of different permissions, and the horizontal dimension 
represents why a certain permission is requested. In each figure, 
the left grids represent the centroid of the cluster. We use two 
colors to indicate people’s preferences. White indicates that 
participants feel comfortable with a given permission-purpose 
whereas shades of red indicate discomfort, with darker shades of 
red corresponding to greater discomfort. The right grids in each 
figure show the corresponding variances within the cluster. 
Compared to the variances in Figure 1, the variance of each 

5 Again, in these visualizations, we only display the most important six 

permissions and four purposes that strongly differentiate participants. 

clusters are significantly smaller. Some of them are almost 
negligible.  

We have labeled each cluster with a name that attempts to 
highlight its distinguishing characteristics. The labels are 
(privacy) “conservatives”, “unconcerned”, “fence-sitters”, and 
“advanced users”.  

The (Privacy) Conservatives: Although conservatives form the 

smallest group among the four clusters, they still represent 11.90% 
of our participants (see Figure 3). Compared to the heat maps of 
other clusters, this cluster (or “privacy profile”) has the largest area 
covered in red and also the overall darkest shades of red (indicating 
the lack of comfort granting permissions). In general, these 
participants felt the least comfortable granting sensitive 
information and functionality to third parties (e.g., location and 
unique phone ID). They also felt uncomfortable with mobile apps 
that want to access their unique phone ID, contacts list or SMS 
functionality, even if for internal purposes only.  

The Unconcerned: This group represents 23.34% of all the 
participants and forms the second largest cluster in our dataset 
(Figure 4). The heat map of this privacy profile has the largest 
area covered in light color (indicate of comfort). In general, 
participants who share this privacy profile showed a particularly 
high level of comfort disclosing sensitive personal data under a 
wide range of conditions, no matter who is collecting their data 
and for what purpose. The only concerning (red) entry in the heat 
map is when it comes to granting SNS libraries access to the 
GET_ACCOUNTS permission (e.g. information connected to 
accounts such as Google+, Facebook, YouTube). A closer 
analysis suggests that it might even be an anomaly caused by the 
lack of sufficient data points for this particular entry. Another 
possible interpretation might be that a considerable portion of 
participants did not understand the meaning of this permission 
and mistakenly thought this permission gives apps ability to know 
their passwords of all accounts  

The Fence-Sitters: We labeled participants in this cluster as 
"Fence-Sitters" because most of them did not appear to feel 
strongly one way or the other about many of the use cases (Figure 
5). This cluster represents nearly 50% of our population. 
Unsurprisingly, this group of participants felt quite comfortable 
letting mobile apps access sensitive personal data for internal 
functionality purposes. When their information is requested by 
3rd-party libraries such as for delivering targeted ads or 
conducting mobile analytics, their attitude was close to neutral 
(i.e. neither comfortable nor uncomfortable). This is reflected in 
the heat map with large portions of it colored in light shades of 
pink (close to the middle color in the legend). This group of 
participants also felt consistently comfortable disclosing all types 
of sensitive personal data to SNS libraries. Further research on 
why so many participants behave in this way is challenging and 
necessary.  We suspect that this might be related to some level of 
habituation or warning fatigue, namely they might have gotten 
used to the idea that this type of information is being accessed by 
mobile apps and they have not experienced any obvious problem 
resulting from this practice.  

This cluster of participants also reminds us of the privacy 
pragmatist group identified by Westin in producing privacy 

Figure 2. The resulting dendrogram produced by 

hierarchical clustering with Canberra distance and average 

linkage agglomerative method. Four different colors are 

used to indicate the cluster composition when k=4. We also 

overlay the cluster names on the dendrogram which will be 

explained in Section 6.1. 
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indexes [67]. Westin found that while small numbers of users 
would fall at both extremes of the spectrum (i.e. privacy 
fundamentalist, and unconcerned), the majority of users tend to 
be in-between (pragmatists). An interesting finding of our 
analysis is that the preferences of these middle-of-the-road users 
can generally be captured with just two profiles, namely the 
“fence-sitters” and the “advanced users” (see next subsection).  

The Advanced Users: The advanced user group represents 
17.95% of the population (see Figure 6). This group of 
participants appeared to have a more nuanced understanding of 
what sorts of usage scenarios they should be concerned about. In 
general, most of them felt comfortable with their sensitive data 
being used for internal functionality and by SNS libraries. One 
possible reason of why they felt okay with the latter scenario is 
because they still have control over the disclosures, since these 
SNS libraries often let people confirm sharing before transmitting 
data to corresponding social network sites. In addition, this group 
disliked targeted ads and mobile analytic libraries, but still felt 
generally agreeable to disclosing context information at a coarser 
level of granularity (i.e. coarse location). This observation again 

suggests that this group of users have better insight when it comes 
to assigning privacy risks to different usage scenarios. 

6.2 Estimating the Predictive Power of the 

Clusters 
As discussed above, the clusters we have identified give rise to 
significant drops in variance. Could these or somewhat similar 
clusters possibly help predict many of the permission settings a 
user would otherwise have to manually configure? Providing a 
definite answer to this question is beyond the scope of this paper, 
in part because our data captures preferences (or comfort levels) 
rather than actual settings and in part also because answering such 
a question would ultimately require packaging this functionality 
in the form of an actual UI and evaluating actual use of the 
resulting functionality. Below we limit ourselves to an initial 
analysis, which suggests that the clusters we have identified have 
promising predictive power  and that similar clusters could likely 
be developed to actually predict many permission settings – for 
instance in the form of recommendations. 

Figure 3. The centroid (left) and variances (right) of Privacy 

Conservatives. This group of participants expressed the most 

conservative preferences. They did not like their private 

resources used by any external parties. Notice how much lower 

the variances are relative to those in Figure 1. 

Figure 4. The centroid (left) and variances (right) of the 

unconcerned. This group of participants felt comfortable 

disclosing their data to 3rd-parties for most cases. 

Figure 5. The centroid (left) and variances (right) of the fence-

sitters. This is the largest cluster in our study. This group of 

participants felt neutral to ads and mobile analytics. This group 

also had the largest within-cluster variances. 

Figure 6. The centroid (left) and variances (right) of advanced 

users. This group of users were more selective in their privacy 

preferences. 
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Specifically, as part of our analysis, we transformed the four 
cluster centroids into four “privacy profiles” (i.e. sets of 
recommendations) by quantizing the [-2, 2] comfort rating into 
three options, namely “Accept” (average comfort rating higher 
than or equal to 0.67), “Reject” (average comfort rating lower 
than or equal to -0.67), and “Prompt” (average comfort rating 
between -0.67 and +0.67 exclusively).  In other words, in our 
analysis, we assumed that “Accept” meant the corresponding 
purpose-permission pair would be automatically granted. 
Similarly a “Reject” value is interpreted as automatically denying 
the corresponding permission-purpose pair. Cases with values 
falling in between are simply assumed to result in a user prompt, 
namely asking the user to decide whether to grant or deny the 
corresponding permission-purpose pair. In short, under these 
assumptions, a user would be assigned a profile, which in turn 
would be used to automatically configure those permission-
purpose settings for which the profile has an “Accept” or “Reject” 
entry, with the remaining settings having to be manually 
configured by each individual user.   

We now turn to our estimation of the potential benefits that could 
be derived from using clusters and privacy profiles to help users 
configure many of their app-permission-purpose settings. The 
results presented here are based on assumptions made about how 
one could possibly interpret the preferences we collected and treat 
them as proxies for actual settings users would want to have. 
While we acknowledge that an analysis under these assumptions 
is not equivalent to one based on actual settings and that the 
clusters and profiles one would likely derive from actual settings 
would likely be somewhat different, we believe that the results 
summarized below show promise both in terms of potential 
predictive power and potential reductions in user burden.   

We randomly split all the participants into 10 folds of (almost) 
identical sizes. We then used each possible combination of 9 folds 
of participants to compute cluster centroids and generate privacy 
profiles (in terms of “Accept”, “Deny”, and “Prompt” for each 
permission-purpose pair). The remaining fold of participants was 
used to evaluate the benefits of the learned profiles – both in terms 
of expected increase in accuracy and in terms of expected 
reductions in user burden. We assumed that all testing participants 

were able to choose a privacy profiles that closely captured their 
preferences (which will be discussed in Subsection 6.3-6.4). We 
averaged the following two metrics across all 10 runs: 

(1) Accuracy: the percentage of time that the selected privacy 
profile agreed with the comfort rating provided by each 
individual participants in the testing group for each of the 
app-permission-purpose triples available in the data set for 
that user. (Figure 7).  

(2) User burden: the percentage of time the participants in 
testing sets would be prompted to specify their decisions, 
weighted by the usages of all permission-purpose pairs 
among all apps (Figure 8).  These usages were measured by 
calculating the percentage of apps in crowdsourcing study 
(837 in total) that use a specific permission for a specific 
purpose. 

To evaluate the benefits of the profiles, we compare both of these 
metrics, as obtained using our profiles, with identical metrics 
obtained using a single one-size-fits-all grand profile for all users 
(as shown in Fig. 1 (a)). This is referred to as “Grand average 
profile”.     

As can be seen in Figure 7, the profiles result in an overall 
accuracy of nearly 80% (79.37%). In comparison predictions 
based on a single one-size-fits-all model result in an accuracy of 
merely 56%, which is not much better than simply prompting 
users all the time. In particular, using our four profiles, accuracies 
for people falling in the “unconcerned” and “conservative” 
groups are higher than 85%.  

Figure 8 shows how under our assumptions applying privacy 
profiles as default settings could significantly reduce user burden. 
In particular, when using a single- one-size-fits-all model, users 
would on average have to be prompted for nearly 87% of all their 
app-permission-purpose triples. In contrast, when using the four 
privacy profiles, the number of prompts drops to 36.5% of the 
user’s total number of app-permission-purpose triples. This 
clearly represents a significant reduction in user burden. For users 
falling in the “advanced” and “conservative” categories the 
number of prompts drops below 20%. While we acknowledge that 
further research is required, using actual permission settings 

Figure 7. Compared to using a single one-size-fits-all grand 

average profile to all participants, classifying participants 

into four profiles can significantly increase the accuracy in 

predicting if the system should grant , deny or prompt users 

for a specific app-permission-purpose triple (55.82% vs. 

79.37%). For two profiles (“unconcerned” and 

“conservatives”) the prediction accuracies are higher than 

85%.  All numbers were averaged over 10 runs with different 

partitions of training and testing data.  

Figure 8. Choosing a good privacy profile reduces the user 

configuration effort down to just 36.5% of all app-

permission-purpose triples, whereas users would need to 

configure nearly 87% of the triples if one were to rely on a 

single one-size-fits-all grand profile. For users in the 

“advanced” and “conservative” categories, user burden 

drops below 20%.  All numbers were averaged over 10 runs 

using different partitions of training and testing data and 

were weighted by the usages of all permission-purpose pairs 

among the 837 apps. 
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rather than measures of comfort levels, we believe that the results 
of our analysis show great promise and warrant further work in 
this area. 

6.3 Do Demographics Matter? 
Now we want to see how to assign users to the privacy profiles 
that most closely capture their privacy preferences. Here we first 
look at whether users’ demographic information – including 
gender, age and education level – is sufficient to determine which 
privacy profile a user should be assigned. This included looking 
at the distribution of gender, age and education level in each user 
cluster and also looking at variance (ANOVA) to see if there are 
significant differences in these distributions.  

In general, we found that in regard to the gender distribution, a 
one-way analysis of variance yield NO significant differences 
between groups, F(3, 475)=2.049, p=0.106. For age distribution, 
we encoded the age groups as (1:= under 21, 2:= age 21-35, 
3:=age 36-50, 4:=age 51-65, 5:=above 65) in our calculation. A 
one-way analysis of variance reveals significant differences 
between groups in regard to age distribution, F(3, 475)=4.598, 

p=0.003. Post hoc analyses also reveals that the unconcerned 
group on average are younger (µ = 1.69, σ = 0.57) than other 
groups combined (µ = 1.91, σ = 0.76), and the advanced user 
group on average are older (µ = 2.05, σ = 0.61) than other groups 
combined (µ = 1.83, σ = 0.71).  

We also performed a similar test on the education level of all four 
groups of participants. We encoded the education levels such that 
“1” stands for high school or lower level of education, “2” stands 
for bachelor or equivalent level of degrees, and “3” stands for 
master’s or higher level of degrees. An ANOVA test shows that 
the effect of education level was strongly significant, F(3, 

475)=7.52, p=6.3E-05. Post hoc analyses show that the 
conservatives (µ = 1.65, σ = 0.48) and the unconcerned (µ = 1.67, 
σ = 0.54) have lower education levels compared to the remaining 
groups combined (µ = 1.85, σ = 0.57), and the advanced users (µ 
= 2.01, σ = 0.60) are more likely to have a higher level of 
education.  

Although there are statistically significant effects in 
demographics, a regression from demographic information to the 
cluster label yields accuracy no better than directly putting every 
user as Fence-Sitters. In other words, we should not directly use 
gender, age, or education level to infer which privacy profile 
should be applied to individual user. This does not mean however 
that in combination with other factors, these attributes would not 
be useful. Below, we seek more deterministic methods to assign 
privacy profiles in the following sub-section. 

6.4 Possible Ways to Assign Privacy Profiles 
We start with a typical scenario where a privacy profile can be 
assigned to a user. When a user boots up her Android device for 
the first time (or possibly at a later time), the operating system 
could walk her through a “wizard” and determine which privacy 
profile is the best match for her. The profile could then be used to 
select default privacy settings for this user. As the user downloads 
apps on the smartphone, “App Ops” or some equivalent 
functionality would then be able to automatically infer good 
default settings for the user. The major challenge here is how we 
can accurately determine which cluster this user belongs to 
without any previous data about this user.  

One possible way is to ask users to label a set of mobile apps. We 
could present users with a small set of example apps together with 

detailed descriptions such as the sensitive data collected by these 
apps and for what purposes. Users could rate each app based on 
its sensitive data usages. We could then classify users based on 
these ratings. This would work well if we could identify a small 
number of particularly popular apps that can differentiate between 
users - say just asking people whether they feel comfortable 
sharing their location with Angry Birds game for advertising 
purpose and whether they feel comfortable posting their location 
on Facebook through the Scope app. Further research on selecting 
the most effective set of apps would make this process more 
effective and stable. 

Alternatively, we might probe users’ privacy preferences by 
asking them a small set of general questions.  Similar ideas have 
been suggested for helping users set up their location sharing rules 
[46] [48]. In particular Wilson et al. in [50] described a simple 
wizard for the Locaccino system, where a small number of 
questions were asked to guide users through the selection of good 
default location sharing profiles. A similar method could be used 
to identify a small number of questions to help determine 
appropriate mobile app privacy profiles for individual users.  

Given the four privacy profiles that we identified, we note several 
observations that could be used to differentiate between different 
groups of users. For example, the reported comfort ratings with 
respect to sharing data with advertising agencies can be used to 
separate the unconcerned group from the privacy conservatives 
and the advanced users; we could use people’s preferences with 
regard to sharing coarse location information for mobile analytics 
to further differentiate between the latter two groups; or we can 
isolate the privacy conservatives based on their extreme negative 
comfort rating with SNS libraries. One should be able to identify 
a small number of questions based on these or similar 
observations. The ideal scenario would be that, based on their 
answers to these questions, users could be accurately assigned to 
the most appropriate cluster. For example, we can ask one 
question with regard to targeted advertising, such as “How do you 
feel letting mobile apps access your personal data for delivering 
targeted ads?” or questions about mobile analytics, such as “How 
do you feel about letting mobile apps share your approximate 
location with analytics companies?” The exact wording and 
expressions used in these questions would obviously need to be 
refined based on user studies. 

The privacy profiles we extracted are a good estimation but might 
not perfectly match individual user preferences. It is necessary to 
clarify that applying privacy profiles does not prevent users from 
further personalizing their privacy decisions. In addition to 
choosing an appropriate privacy profile as a starting point, users 
could be provided with user-oriented machine learning 
functionality or just interactive functionality that helps them 
iteratively refine their settings [47-49]. 

7. DISCUSSION

7.1 Limitations of This Work 
This work has several limitations. For example, our study focused 
solely on free apps downloaded from the Google Play. Apps that 
require purchase might exhibit slightly different privacy-related 
behaviors with regard to what sensitive resources to request and 
for what purpose. There are two major challenges that prevented 
us to investigate paid apps: (a) the monetary cost of purchasing a 
large number of paid apps would be substantial (we estimate over 
$80K to get all the paid apps); (b) there is no way to 
programmatically do batch purchasing on Google Play, since 
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Google limits the frequency of app purchases using a single credit 
card in a single day. It should also be noted that free apps 
represent the majority of app downloads, and paid apps tend to 
request fewer permissions – in other words, they give rise to a 
somewhat smaller number of privacy decisions. This being said, 
there is no reason to believe that the models derived for free apps 
could not be extended to paid apps – while people’s privacy 
preferences might be different, there is no reason to believe that 
similar clusters could not be identified.  

In determining why certain sensitive resources are requested, our 
study used a relatively coarse classification. Our static analysis 
cannot give finer-grained explanations, such as requesting 
location for navigation vs. requesting location for nearby search. 
We acknowledge that our approach is not perfect. However, 
comparing to a finer analysis relying on manual inspection, using 
libraries to infer the purpose of permissions enables us to conduct 
our analysis at large scale. Additional techniques could possibly 
be developed over time to further increase accuracy. For example, 
the tool described by Amini et al. [26] that combines 
crowdsourcing and dynamic analysis might be able to provide this 
level of details, through it has not been publicly available yet. 

Among all the four clusters we identified, the Fence-Sitter cluster 
has a relatively high variance. By using more advanced clustering 
techniques better clusters could likely be generated with even 
smaller intra-cluster variances. However, we consider the primary 
contribution of this work is to demonstrate the feasibility of 
profile-based privacy settings. As part of future work, we hope to 
extend our data collection and experiments, such that we can 
further refine our clusters and possibly obtain even better results. 

7.2 Lessons Learned and Future Prospects 
Users’ mobile app privacy preferences are not unified. This 
paper quantitatively proved that mobile app users have diverse 
privacy preferences. This suggested that simply crowdsourcing 
people’s average preferences as suggested by Agarwal and Hall 
in the PMP privacy settings [32] might not be optimal. In spite of 
the diversity, we also show that there are a relatively small 
number of groups of like-minded users that share many common 
preferences. Using these identified groups, we derived mobile app 
privacy preferences profiles, find for each user a profile that is a 
close match, and use this information to automate the privacy 
setting process.  

Purpose is more important. Previous work in mobile app 
analysis as well as on users’ privacy concerns focused more on 
identifying the what sensitive information is accessed by apps 
[17, 42] as well as how often sensitive information is shared with 
external entities [43]. Lin et al. [13] pointed out the purpose of 
why sensitive resources are used is important for users to make 
privacy decision, though they did not quantitative backup this 
statement. Our work provides crucial evidence to support this 
statement. The clusters we identified in our participants are more 
differentiated in the dimension of why these resources are 
accessed. This finding also provides important implications to 
privacy interface design in the sense that properly informing users 
the purposes of information disclosures are at least as important 
as informing them what information is disclosed. Unfortunately, 
the current privacy interfaces, such as the Google Play’s 
permission list, fall short in making good explanation of the 
purposes. We strongly suggest mobile app market owners to 
consider notifying this important information to their customers.  

Make use of the naturally crowdsourced data. In our study, we 
use Amazon Mechanical Turk as the major platform to collect 
users’ privacy preferences. In reality, given the availability of 
“App Ops” in Android 4.3, “ProtectMyPrivacy” on jailbroken 
iPhone, or other similar extensions in rooted Android devices, the 
operating system or the third-party privacy managers could 
naturally crowdsource users’ privacy preferences without extra 
effort. These valuable datasets also presumably have better user 
coverage and are more representative than what we can collect 
with the limited resources we have. A significant portion of the 
methodologies discussed in this work can be directly applied to 
these dataset to build models of mobile users in the wild. We 
encourage industry to make fully uses of the findings we present 
in this paper to make real impact in providing users with better 
privacy controls. 

In short, the findings that we present provide important lessons 
about mobile app users, and also point out a way to make privacy 
settings potentially usable to end users. However, there is still 
much work that needs to be done to model users’ privacy 
preferences. We are also aware that users’ privacy preferences 
might keep on evolving and are influenced by the introduction of 
new technologies and the habituation effect that formed through 
interacting with the same practices for a long time. Therefore, in 
addition to all the techniques we proposed, we believe other 
prospects such as proper user education, improving and enforcing 
laws and regulations are also crucial and need to be promoted in 
the long run. 

8. CONCLUSION
This paper complements existing mobile app privacy research by 
quantitatively linking apps’ privacy related behaviors to users’ 
privacy preferences. We utilized the static analysis with specific 
focus on how and why 3rd-party libraries use different sensitive 
resources and leveraged crowdsourcing to collect privacy 
preferences of over 700 participants with regard to over 800 apps. 
Based on the collected data, we identified four distinct privacy 
profiles, providing reasonable default settings to help users 
configure their privacy settings. Initial results intended to 
estimate the benefits of these profiles suggest that they could 
probably be used to significantly alleviate user burden, by helping 
predict many of a user’s mobile app privacy preferences. Under 
our proposed approach, users would still be prompted when the 
variance of the predictions associated with an entry in a given 
profile exceeds a certain threshold. More sophisticated learning 
techniques could possibly further boost the accuracy of such 
predictions.  
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APPENDIX A.  

Template of Amazon Mechanical Turk Task 

Please read the description carefully and answer the questions 
below. HIT will be rejected if you just click through. 

[app name][app icon] 

Developer: [developer name] 

Average rating: [rating] / 5.0 

Rating count: [count] 

Description: [description text copied from Google Play] 

[App Screenshot from Google Play #1] 

[App Screenshot from Google Play #2] 

[App Screenshot from Google Play #3] 

You must ACCEPT the HIT before you can answer questions. 

Have you used this app before? (Required) 

a. Yes
b. No

What category do you think this mobile app belongs to? 
(Required) 

a. [Candidate category #1]
b. [Candidate category #2]
c. [Candidate category #3]

Suppose you have installed [app name] on your Android device, 
would you expect it to access your [describing permission in plain 
English]? (Required) 

a. Yes
b. No

Based on our analysis, [app name] accesses user's [describing 
permission in plain English] for [explaining purpose]. Assuming 
you need an app with similar function, would you feel 
comfortable downloading this app and using it on your phone? 
(Required) 

a. Most comfortable
b. Somewhat comfortable
c. Somewhat uncomfortable
d. Very uncomfortable

Please provide any comments you may have below, we appreciate 
your input! 

[text box]


