

Putting People in their Place:
An Anonymous and Privacy-Sensitive Approach to

Collecting Sensed Data in Location-Based Applications
Karen P. Tang, Pedram Keyani, James Fogarty, Jason I. Hong

 Human Computer Interaction Institute
Carnegie Mellon University

 Pittsburgh, PA 15213
{kptang, pkeyani, jfogarty, jasonh}@cs.cmu.edu

ABSTRACT
The emergence of location-based computing promises new
and compelling applications, but raises very real privacy
risks. Existing approaches to privacy generally treat people
as the entity of interest, often using a fidelity tradeoff to
manage the costs and benefits of revealing a person’s
location. However, these approaches cannot be applied in
some applications, as a reduction in precision can render
location information useless. This is true of a category of
applications that use location data collected from multiple
people to infer such information as whether there is a traffic
jam on a bridge, whether there are seats available in a
nearby coffee shop, when the next bus will arrive, or if a
particular conference room is currently empty. We present
hitchhiking, a new approach that treats locations as the
primary entity of interest. Hitchhiking removes the fidelity
tradeoff by preserving the anonymity of reports without
reducing the precision of location disclosures. We can
therefore support the full functionality of an interesting
class of location-based applications without introducing the
privacy concerns that would otherwise arise.
Author Keywords
Hitchhiking, privacy, anonymity, location-based computing.
ACM Classification Keywords
H5.2. Information interfaces and presentation: User Interfaces;
H1.2. Models and Principles: User/Machine Systems.
INTRODUCTION AND MOTIVATION
A number of technologies are converging to support the
widespread deployment of location-based applications on
mobile phones, on handheld and laptop computers, and in
vehicles. In the case of vehicles, integrated navigation
systems are motivating the inclusion of Global Positioning
System (GPS) units. For phones and computers, the most

promising technology seems to be software that infers a
device’s location by detecting nearby phone towers or
wireless network (WiFi) access points [16, 23]. Because of
these advances, we can now build applications that require
only the hardware already included in devices that people
currently use. Location-based applications can therefore be
deployed entirely in software, at a very low cost.
The pending ubiquity of location-based applications has
significant implications for anonymity and privacy.
Consider an otherwise anonymous person who starts almost
every day in a given location and ends the day in that same
location. An application that is able to collect this data can
identify the person by checking a database to see who lives
at that address. There is also a potential for individuals to
abuse location-based applications for more malicious
purposes, targeting a specific victim and obtaining
information about that victim’s location and movement.
Significant prior work has examined anonymity and privacy
in location-based applications [2, 4, 8, 11, 12, 13, 23, 24].
While we defer a discussion of that work until the next
section, prior work generally makes two assumptions.
First, prior work generally treats a person as the entity of
interest. For example, a person might reveal their location
as part of a query about their surroundings or as a part of a
social interaction with friends. This has the implication that
prior work often treats location privacy as a fidelity
tradeoff. Revealing a more precise indication of one’s
identity or location often allows these social applications to
provide better service. This conception of the problem has
led prior work to focus on techniques for balancing the
fidelity of disclosure against the utility of an application.
This paper contributes hitchhiking, a new approach to
anonymous and privacy-sensitive collection of sensed data
in location-based applications. Hitchhiking applications
treat locations as the entity of interest. Because the
knowledge of who is in a location is irrelevant, the fidelity
tradeoff is removed. Instead, hitchhiking ensures the
anonymity of people providing information about a
location. We can therefore obtain the full functionality of
an interesting class of location-based applications without
the privacy concerns that would otherwise arise.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2006, April 22–28, 2006, Montréal, Québec, Canada.
Copyright 2006 ACM 1-59593-178-3/06/0004...$5.00.

Hitchhiking supports applications that combine location
information from many people to infer information about
locations. Such applications include, but are not limited to,
live traffic monitoring, inferring the availability of seats in a
nearby coffee shop, estimating the arrival time of a bus, or
monitoring the availability of a particular conference room.
For these location-centric applications, it is irrelevant who
is in a traffic jam or who is riding a bus. For example,
Zipdash allows GPS-enabled mobile phone users to check
current traffic conditions near their location [26]. But
Zipdash requires users agree to continuous fine-grained
location disclosure. These continuous location disclosures
are used to infer traffic congestion by monitoring the rate at
which people are moving, but continuous location
disclosure is a significant threat to personal privacy.
Hitchhiking provides an anonymous and privacy-sensitive
approach to this class of location-centric applications.
These applications hold significant promise, but it is
important to make hitchhiking safe. As discussed in the
next section, prior approaches to privacy and anonymity are
inadequate. Queries about the current traffic conditions at a
specific location can be masked using techniques developed
in prior work. For example, a person interested in traffic
conditions can mask their location with a query that asks
“Tell me the current traffic conditions everywhere in the
city.” This query reveals only what city a person is in, and
the person’s device can locally filter the resulting data to
obtain the information that is actually of interest. But this
reduction in location precision cannot be applied in an
application like Zipdash. Zipdash needs precise location
reports to model traffic, as it cannot model traffic
congestion using reports of the form “I am somewhere in
the city traveling at 15 miles per hour.”
The fundamental tenet of hitchhiking is to put people in
their place: reports are always strictly about a location and
cannot be tied to a person. Because a person’s anonymity

is protected, it is safe to agree to precise location
disclosures. The hitchhihking approach is implemented on
the client device, limiting the information reported to a
server. It can therefore be deployed on existing phone and
WiFi networks without the cooperation of a trusted
middleware provider and without an intentional reduction
in the precision of location reports.
Specifically, this paper makes three contributions. First, it
introduces hitchhiking as a novel approach to building an
interesting class of useful location-based services in a
manner that maintains end-user privacy. Second, it presents
a privacy risk analysis of hitchhiking, providing a design
rationale for this approach and discussing how the privacy
of end-users is protected in multiple ways. The hitchhiking
approach and its privacy risk analysis will be useful to
anyone who designs and implements location-based
applications, as it provides an alternative approach to
building a useful class of applications while also protecting
end-user privacy. Third, we demonstrate the application of
hitchhiking to a set of location-centric services, including
estimates of coffee shop space availability, traffic
monitoring, bus location tracking, and conference room
availability monitoring.
The next section reviews prior work, with a focus on
technical approaches to location privacy. We then present
Bustle, our first implementation of an application based on
the hitchhiking approach. Bustle uses WiFi to detect laptop
computers and infer space availability in coffee shops. We
then use Bustle as a case study to present the details of
hitchhiking. The presentation is organized as a privacy risk
analysis, detailing likely threats and presenting strategies
for addressing each. We then discuss three additional
potential applications: traffic monitoring, bus location
tracking, and conference room availability. We finally
present a short discussion and conclude.

Figure 1. Several screenshots of Bustle, a WiFi-based demonstration of the hitchhiking approach.
Bustle senses laptops on a WiFi network and anonymously reports an estimate of table availability in coffee shops.

RELATED WORK
It is important to recognize that location privacy is
impacted by social, legal, market, and technical forces [18].
Because our approach is technical, and because space is
limited, we focus our discussion of prior work on technical
approaches to location privacy. We also focus on methods
that are applied before an application obtains a person’s
location (as opposed to applications that collect complete
logs of precise location data and analyze that data using an
algorithm that preserves some notion of privacy). Focusing
on technical approaches that are applied before data
collection provides a specific advantage: information
cannot be abused if it has not been collected. Even when
social, legal, and market forces are considered, gross
violations can still occur. For example, a former America
Online employee was recently convicted of stealing and
selling 92 million customer email addresses, inflicting an
estimated $300,000 of damage [14].
Location-based systems can be based on detecting a variety
of radio beacons, such as WiFi access points [1, 3, 7, 10,
16, 23], GSM mobile phone towers [16], and FM radio
stations [15]. Different types of beacons have different
characteristics, but they are all deployed and maintained by
third party providers. Because existing devices can already
detect these beacons, applications can be built entirely in
software. Their deployment costs are therefore much lower
than approaches that require specialized hardware. The
Place Lab initiative is pursuing beacon-based location
estimates, with an explicit focus on how beacon-based
location estimates support privacy [16, 23]. Specifically,
location can be computed without connecting to a beacon or
otherwise revealing the presence of a device. This is
critical to preserving privacy in location-based applications,
as local computation gives people control over when to
share their location.
Prior work on privacy and beacon-based location estimates
has generally focused on two categories of applications.
The first category uses a person’s location to customize or
filter the information delivered to that person, such as
location-enhanced web services utilizing the Place Bar [23],
the Mobisaic system for location-aware web browsing [25],
or location-based reminder systems [6]. The second
category treats the person’s location as the information of
interest, perhaps revealing it to interested members of the
person’s social network. Significant work has examined
when and how people want to release their location to other
people [4, 13, 24]. Because the person is the primary entity
in these applications, anonymity is difficult or impossible to
achieve (anonymity is obviously precluded in applications
where a person is sharing their location with their social
network). In the case of location-enhanced web browsing,
anonymity is often breached when a person is required to
login to a website. As discussed in our introduction, our
approach treats locations as the primary entity of interest
and can therefore preserve end-user anonymity.

Gruteser and Grunwald describe spatial and temporal
cloaking to preserve k-anonymity [8]. In their approach,
people report their location to a trusted middleware server.
When an application needs a person’s location, it obtains it
from this server, which uses its knowledge of the locations
of many people to compute an obfuscated result that
describes both the location of the desired person and at least
k – 1 other people. While this approach can be applied to
many applications, the reduced precision is likely to
undermine the category of applications supported by the
hitchhiking approach. Hitchhiking also does not require a
trusted middleware server.
Beresford and Stajano present the notion of mix zones,
areas in which no application is monitoring a person [2].
Any time a person enters a location of interest, the person
begins using a new identifier. Once they leave that area of
interest (returning to the mix zone), they never again use
that identifier. If a new identifier cannot be linked to a
previous identifier, a person cannot be tracked. But a client
device cannot independently know whether two identifiers
can be linked, because it does not know how many other
people are in the mix zone or what paths people typically
take through the mix zone. A trusted middleware server is
therefore used to inform clients of the expected degree of
anonymity associated with a new identifier. Hitchhiking
does not require a trusted middleware server, as people do
not use identifiers. This is possible because we treat
locations, and not people, as the entities of interest.
Policy-based approaches, such as systems based on P3P,
allow an application to describe how it will store and use
provided information [5, 17]. Given this description,
people can make an informed decision about whether to
provide the information, though Palen and Dourish note
that the opacity of modern technology often makes it
difficult for people to make good decisions about privacy
[20]. It is often impossible to use technical mechanisms to
enforce the human-readable policy that is advertised when
data is collected, so these approaches are usually based in
the social, legal, and market ramifications of violating the
stated policy. But this does not mean that technical
solutions have no role in policy-based approaches. For
example, Hong and Landay present Confab, a client-
centered architecture in which personal data is sensed,
stored, and processed on end-users’ devices as much as
possible, with better user interfaces for sharing that
information [11]. A system built with Confab can also
audit its data usage, making it easier for applications to
ensure that they are following their stated policies.
Finally, Hong et al. present privacy risk models as a method
for refining privacy from an abstract concept into concrete
issues for a specific application [12]. Our work can be
considered an example of a privacy risk model: we have
identified the privacy threats encountered in a category of
location-based applications and have developed strategies
for addressing these threats. An application that uses our
approach therefore addresses these privacy threats.

APPLICATION: COFFEE SHOP AVAILABILITY
Figure 1 contains several screenshots of Bustle, our first
implementation of a hitchhiking application. Bustle senses
laptops on a WiFi network and anonymously reports an
estimate of table availability in coffee shops. Bustle is
implemented in approximately 3000 lines of Java, using
Place Lab for WiFi spotting [16, 23], jpcap for network
monitoring, and the Java Desktop Integration Components
for system tray support. In a typical usage scenario, a
person might visit a local coffee shop and begin working on
their laptop. Running in a background process, Bustle
continuously scans for nearby WiFi access points. When it
detects an access point in its database, Bustle infers that the
person is in a coffee shop. It then checks whether this
person has previously approved or denied reporting from
this coffee shop. If it finds that the person has not set a
policy, Bustle displays a dialog informing the person that
they are in a location that another user has said is a coffee
shop, asking whether it is okay to report from this location.
After obtaining a one-time approval, Bustle monitors the
WiFi network to determine how many other computers are
present. At regular intervals, it reports this count to a
server. The server uses a history of counts at that coffee
shop to infer whether the coffee shop is currently busy,
sharing this information with interested people.
Bustle’s detection of computers on a WiFi network is based
on Address Resolution Protocol (ARP) broadcasts. Every
computer (regardless of its operating system), sends an
ARP broadcast at least once every 10 to 20 minutes (even if
the computer is not actively generating network traffic).
Bustle maintains a list of detected computers, removing a
computer if no broadcast is detected for 20 minutes.
We conducted a small feasibility study of sensing coffee
shop space availability. It is clear that not everybody uses a
laptop in a coffee shop, but it is unclear whether the
correlation between laptop usage and the number of people
in a coffee shop is sufficient for inferring space availability.
We made 20 visits to a laptop-friendly coffee shop in a
nearby commercial district. On each visit, we monitored
ARP broadcasts for 20 minutes and then counted the
number of empty tables. We collected 20 samples over the
course of seven days, spacing each pair of samples by at
least 90 minutes and aiming for coverage between 9:00 AM
and 9:00 PM. The resulting data is shown in Figure 2.
In the coffee shop we sampled, there is a strong correlation
between the number of computers on the network and the
number of empty tables (r2 = .537, p < .001). In every case
that no tables were available, eight or more computers were
detected on the network. While the strength of this
correlation will obviously vary in different coffee shops,
this result shows that this approach can be successful in
some. The Bustle server applies a percentile-based
transformation to the reports collected from each coffee
shop, automatically learning a threshold for each coffee
shop. We use a conservative threshold, so Bustle will
sometimes report that a coffee shop is crowded when there

is still a reasonable chance that a table is available. We are
comfortable with this, as we feel the more damaging error
is when a person is told that space is available, walks to the
coffee shop, and is then unable to find a table.
ANONYMOUS LOCATION-BASED DATA COLLECTION
Bustle’s main contribution was to help us define and refine
the hitchhiking approach. To that end, this section presents
the details of using the hitchhiking approach to
anonymously collect information in locations of interest,
such as coffee shops, highways, public buses, or conference
rooms. It is organized as a privacy risk analysis,
introducing a series of threats to anonymity and discussing
how to counter each threat. This privacy risk analysis has
been developed and iterated upon in parallel with Bustle,
with specific threats in Bustle informing our analysis of
hitchhiking and vice versa. We consider a person’s
anonymity or privacy to have been violated in either of two
scenarios:
An identity violation has occurred if a single report
reveals a person’s identity. If a report allows the
determination of a person’s name, account number,
address, or some other identifier, the anonymity of the
person providing the report has been compromised.
A tracking violation has occurred if a report can be
identified as being provided by the same person
who provided an earlier report. Tracking violations
allow the movement of an individual to be tracked over
time. This does not necessarily mean their anonymity
has been breached, but it is probably a violation of
their privacy. Furthermore, a tracking violation can
likely be elevated to an identity violation by physically
visiting a location frequented by a tracked person.

Figure 3 lists four categories of threats that can result in
identity or tracking violations. The hitchhiking approach
addresses these threats with the seven requirements in
Figure 4. This section focuses on WiFi-based location
technology and uses Bustle for illustrative purposes, but
these threats and their counters also apply to other location
technologies and to other location-centric applications.

0

2

4

6

8

10

12

14

16

0 5 10 15

Sensed Computers

Em
pty

 Ta
ble

s

Figure 2. Computers sensed versus empty tables in a
local coffee shop (r2 = .537, p < .001). In every case that

no table was available, 8 or more computers were detected.

Location is Computed on the Client
As discussed in related work, local computation of location
is important to anonymous location-based applications. If a
WiFi-based application is continuously making queries of
the form “I can see access point 00-0C-F1-5C-04-A8, what
is my location?”, then it is continuously disclosing the
person’s location. In Place Lab [16, 23], this is addressed
by the local storage of a database mapping WiFi access
points to GPS coordinates. An application can therefore
infer its location by checking this local database, without
sending a query to a server.
In the case of Bustle and other hitchhiking applications, the
definitions of locations of interest must be stored on the
client device. Bustle stores a list of coffee shops, together
with the WiFi access points that can be detected from each
coffee shop. Applications discussed later in this paper store
lists of GPS coordinates to define each location of interest.
Regardless of the underlying technology, the requirement is
that no external communication is required for an
application to determine if it is currently in a location about
which it could report useful information.
Only the Client Device is Trusted
While it is fairly straightforward to design an application
that does not intentionally reveal a person’s identity or
support tracking, our approach sets the higher standard of
assuming that the servers used by an application are
completely untrusted. It is therefore necessary to counter
active attacks by the server that are intended to induce
identity or tracking violations.
By assuming the server is untrusted, we also prevent
malicious users from using a server to gain leverage in an
attack. For example, a malicious user might target a victim
after a face-to-face encounter in a coffee shop. But because
Bustle does not permit identity or tracking violations, it
does not provide the malicious user with any additional
information about the intended victim. We cannot prevent
the malicious user from sitting in the coffee shop and
waiting for the intended victim to return, but even a full
disclosure of all data collected by a Bustle server would not
allow the malicious user to identify the intended victim or
determine when the intended victim usually visits the shop.
Trusting only the client device is an important distinction
from prior work, as reliance on a trusted server provides a
single point of failure. If the server is compromised by a
malicious insider or by a security hole, an attacker gains
access to location data for everybody who uses a system.
Trusting only the client device removes this concern. For
the same reason, none of our proposed applications require
client storage of a location history, so client device theft
does not reveal information about a person’s movement.
Each Person Must Approve Reporting from a Location
If a malicious server operator or a malicious user targets an
individual, a tracking violation can be induced by defining a
location of interest that is likely to only generate reports

from that individual. For example, many people who use
WiFi-enabled laptops in coffee shops will also have a
wireless network in their home. If an attacker obtained the
MAC address of the home wireless network of an intended
victim, they could create a fake coffee shop with the
intended victim’s home access point. The attacker could
then track when the intended victim is home by noting
when reports are generated for the fake coffee shop. As the
intended victim is likely to be the only user of this wireless
network, they will also be the only person who reports on
the fake coffee shop. Therefore, the intended victim is
likely home when somebody is reporting on the fake coffee
shop, and is likely away when nobody is reporting.
To counter attacks that target a sensitive location, our
approach requires that each user approve every location
from which they report. In the case of Bustle, this is
implemented as a dialog that is presented the first time
Bustle wants to report on a given location. The person can
choose to approve the location for future reporting or to
permanently deny the release of information about that
location, with both choices being reversible.
Physical Constraints Prevent Location Spoofing
Because approval must be obtained in order to report from a
location, malicious server operators and malicious users can
be expected to attempt to spoof a location, getting an
intended victim to approve a location without realizing
what they are approving. In the case of Bustle, we would
expect that the fake coffee shop targeting an intended
victim would be given the name and street address of an
actual coffee shop that the intended victim regularly visits.
Recognizing the name and address of the actual coffee
shop, the intended victim might approve reports from the
fake coffee shop, enabling a tracking violation.
Our approach uses the physical constraints of real-world
location to prevent spoofing. In the case of Bustle, a
location can be approved only when Bustle detects that the

1) Collected location logs can be abused by a server
 operator or by other people who gain access.
2) A user could be targeted by monitoring their
 home or another similarly sensitive location.
3) A location approval could be spoofed, tricking a
 target user into approving a sensitive location.
4) By hiding an identifier in a location definition,
 a server could track when people visit a location.

Figure 3. Four categories of threats to
privacy and anonymity in hitchhiking applications.

1) Location is computed on the client.
2) Only the client device is trusted.
3) Each person must approve reporting from a location.
4) Physical constraints prevent location spoofing.
5) Location identifiers are based in the physical location.
6) Location identifiers are generated by the client.
7) Sensed identifiers are not reported to the server.
Figure 4. The seven requirements of our approach to

protecting privacy and anonymity in hitchhiking applications.

person is physically in the approved location. There is no
list of coffee shops that a person can browse by name, as a
real coffee shop would be indistinguishable from a fake.
The approval dialog (see Figure 1) is also carefully worded
to make it clear that somebody has claimed that the
person’s current location is a coffee shop and that Bustle is
requesting permission to report on their current location.
When presented with this dialog while sitting in their living
room, it should be clear to the intended victim that they are
not currently in a coffee shop.
As we will discuss in the coming sections, this requirement
can also be met by using the physical correspondence
between GPS coordinates and real-world locations. But an
application that uses maps of GPS coordinates for approval
must generate that map on the client device, as a map
provided by the untrusted server could have been spoofed.
Location Identifiers are Based in the Physical Location
A naïve approach to hitchhiking might assign each location
a random or sequential identifier, such as a unique index in
the server’s database. But this type of arbitrary identifier
allows an attack that can induce a tracking violation.
Consider a coffee shop with the arbitrary identifier
ID-COFFEE-SHOP. A malicious server could append a
unique suffix every time a user downloads the current list of
known coffee shops. So a user A would have
ID-COFFEE-SHOP-A and a user B would have
ID-COFFEE-SHOP-B. Normal operation of the server
could be maintained by mapping all reports and queries to
the root identifier, so it would appear that everybody was
using the same identifier to refer to this coffee shop. But
the malicious server operator would know that every report
on ID-COFFEE-SHOP-A indicates that user A is currently
in the coffee shop. While we use simple suffixes here, this
attack can be masked with randomly generated identifiers.
To address this attack, a location identifier must be based in
a physical property of the location. The choice of a
physical property will often be based in the location-sensing
technology. In Bustle, a coffee shop is identified by listing
the detected WiFi access points (see Figure 5). The server
checks the database of coffee shops to determine what
coffee shop is being reported from (using the same
matching algorithm used by the client), then updates its
records for that coffee shop.
Location Identifiers are Generated by the Client
While the correspondence between physical locations and
location identifiers allows clients and servers to exchange
information about a location without the use of arbitrary
identifiers, a malicious server can still induce a tracking
violation by carefully crafting a location identifier. The
location identifier must therefore be generated by the client,
using information it has sensed about the physical location.
Again, the choice of how to implement this requirement
will be largely driven by the location technology.

In the case of Bustle, a malicious server might attempt a
tracking violation by inserting fake access points whenever
a person downloads the current list of coffee shops. If
Bustle included the provided access points in later reports,
the server would have induced a tracking violation. But, as
stated in the last subsection, Bustle reports only the access
points it has physically detected in the coffee shop. It is
able to generate this identifier without assistance from the
server, and so the server cannot induce a tracking violation.
The more interesting case arises when using locations
defined by a list of GPS coordinates. For example, consider
a traffic monitoring application (discussed in detail later in
this paper) that reports the speed at which people are
traveling on an often congested length of highway. The
logical way to define the highway is with a list of GPS
coordinates, but a client cannot send this list back to the
server when making a report (as the list was provided by
the potentially malicious server). The server could hide a
unique identifier in the low-order bits of the GPS
coordinates or in the structure of the list itself. As we will
discuss, we address this attack by reporting the current
speed, direction, and GPS coordinate of a vehicle. It is then
up to the server to decide on what road the vehicle is
traveling. Meeting this requirement is especially difficult
for the bus tracking application, leading us to believe that
this requirement will generally be the most difficult part of
implementing a hitchhiking application.
Sensed Identifiers are Not Reported to the Server
Many applications sense identifiers associated with other
people or their devices. For example, the ARP broadcasts
that Bustle uses to estimate the number of people in a coffee
shop contain a unique MAC address associated with the
computer that sent the broadcast. These identifiers must not
be reported to a server, as this would allow a malicious
server to track the people sensed by Bustle. This is a very
serious invasion of privacy, as every Bustle user would
effectively be reporting the location of every other person
using a computer in the coffee shop.
Bustle addresses this requirement by reporting only a count
of the computers detected. This is sufficient for Bustle, as
every ARP broadcast is seen by every computer on the
network. Every computer therefore has an accurate count
of how many computers are on the network. In the case
that several networks are available in a single coffee shop,
we report the name of the network being used, allowing the
server to sum reports from different networks.

I see access points: 00:0C:41:66:64:00
I am connected to
a network named: Telerama
I have detected: 7 computers

Figure 5. Contents of a Bustle report, sent to a server

by a person in a coffee shop. Every field is a sensed property
of the location, so the report cannot be tied to a person.

This requirement does impose limits on certain types of
applications. For example, consider if Bustle ran on mobile
phones and used Bluetooth detection of other phones to
estimate the number of people in a coffee shop. Two
different phones in the same coffee shop might detect
different sets of phones, and we are not aware of any way to
give the server enough information to compute the union of
these sets without allowing the server to track the detected
phones. This an interesting area for future research, but we
note that neither a simple cryptographic hash nor a hash that
changes over time is adequate (as a malicious server could
track any phone with a known MAC address).
Requirement Summary
The seven requirements presented in this section combine
to ensure that a malicious server cannot induce identity or
tracking violations. Each person approves every location
they report from, and the use of physical constraints ensures
that a spoof cannot mask what location the person is
approving. Because none of the information in a report was
initially provided by the server, there is no opportunity for
the server to hide an identifier in the report. The server
knows the physical properties of each location (such as the
GPS coordinates of a highway or the WiFi access points in
a coffee shop), so it can infer what location is being
reported on. But the server cannot infer who made a report.
The next three sections present some of the most important
aspects of hitchhiking in the context of three applications.
We provide these applications as a demonstration of the
breadth of our approach, to provide more detail on how
other approaches can be attacked by a malicious server, and
to clarify how our approach counters these attacks.
APPLICATION: TRAFFIC MONITORING
As discussed in our introduction, Zipdash is a service for
GPS-enabled mobiles phones that provides live traffic
reports, but it requires that users consent to continuous
location disclosure [26]. It is very possible for these users
to incidentally reveal their home address (the location
where most trips start or end) and therefore their identity.
This section discusses the use of hitchhiking to build an
privacy-preserving application with the same functionality.
We assume that a mobile phone is generating GPS-based
location estimates (either via GPS hardware or Place Lab
inference [16, 23]). A location of interest, such as a bridge
or a length of highway, is defined as a polygon of GPS
coordinates. When a person is traveling in an area from
which they have approved reporting, their device
occasionally sends a current GPS coordinate, a direction of
travel, and a travel speed (the last two computed from
recent GPS coordinates). The server then infers on what
road the person is traveling and uses the speed to update its
current model of traffic congestion.
Physical Constraints Prevent Location Spoofing
Because it would obviously be inappropriate to ask people
to make disclosure approvals while driving, the physical

constraint of “approving your current location” cannot be
copied from Bustle. Instead, the phone notes each location
of interest visited by a person. It then later seeks approval
to report on future visits to those locations. A physical
constraint is implemented by using a client-generated map
during the approval process. The application queries a
trusted map source, such as a local database or an online
resource like Google Maps. It then maps the location of
interest using the list of GPS coordinates that define it.
This ensures that the map actually represents the area from
which information will be reported (whereas an image
provided by a server could be spoofed, showing a harmless
map while actually obtaining approval for a sensitive area).
Location Identifiers are Generated by the Client
It is important to note that each report contains only a single
GPS coordinate, and that this coordinate was actually
sensed by the client. The coordinates defining the highway
were provided by the server. If a report said “I am
traveling on the highway defined by this list of GPS
coordinates,” it would open the opportunity for a malicious
server to induce a tracking violation.
A simple attack hides an identifier in the low-order bits of
the coordinates defining the location of interest. But this
could be exposed if the points were plotted on a sufficiently
high-resolution map (as the coordinates might not exactly
align with the highway). A less detectable attack hides the
identifier by introducing artificial breaks in the coordinate
list. For example, consider if the actual list contains two
GPS coordinates that are 100 yards apart. A malicious
server could introduce a third coordinate between these two
points. This fake coordinate can be placed on the line
between the original coordinates, so that it would likely not
result in any visible change to a plot of the coordinate list.
Placing the fake coordinate in a different location each time
a person downloads the list would induce a tracking
violation. By reporting only a single GPS coordinate (one
that has been sensed by the device), our approach ensures
that no such manipulation can induce a tracking violation.
APPLICATION: BUS TRACKING
Various cities are using infrastructure-based approaches to
live bus location tracking [19]. These systems typically use
GPS or odometer-based dead reckoning, uploading the
location of the bus to a transit authority server. While very
effective for cities that can afford the instrumentation, the
cost can be prohibitive for many other cities.
We propose that bus location can be tracked by the mobile
phones of people who are currently riding a bus. When a
person’s phone decides that they are currently riding a bus,
it can anonymously report the current location of that bus to
a server that shares the information with interested people.
Further, these reports could include a Bluetooth-based
estimate of how many other mobile phones are currently on
the bus. We will not directly address the problem of
inferring whether a person is currently riding a bus, though

we note that the problem is simpler than it might seem
because most people ride only a handful of buses. The
application’s installer could therefore include a form asking
what buses the person uses, significantly reducing the
number of bus routes that need to be considered. Patterson
et al. have also shown GPS-based inference of bus use [21].
Most of the hitchhiking requirements for this application
can be addressed with the same methods used in Bustle and
in our traffic monitoring application. For example, a
client-generated map can be used to obtain approval for
reporting on a bus route. Similarly, the application should
report a count of how many phones have been detected on
the bus, not the identifier associated with each phone.
However, the client generation of the location identifier
proves very difficult for this application.
Location Identifiers are Generated by the Client
In both of our previous applications, the location identifier
was taken directly from the location sensor (either the
visible WiFi access points or the GPS coordinate). But the
difficulty with bus tracking is that the bus route is not
actually a physical location. It does not broadcast a MAC
address and no single GPS coordinate identifies it (there are
often several buses that travel along a particular road).
Rather, it is a convention, a path typically followed a bus.
The anonymity of hitchhiking is built on the physical
constraints of location, but a bus route is made up of many
locations. Bus tracking therefore stretches the hitchhiking
notion of sensing information about a location.
The best solution seems to be the short identifier that transit
authorities already associate with each bus route. In our
city, for example, we have a 71A, a 500, and a 61C. Riders
are familiar with these identifiers, so they are not arbitrary.
The client software can also enforce a limit on the length of
the identifier (such as 5 characters) to ensure that very little
space is available to attempt to hide a malicious identifier.
If international characters are accounted for and this
identifier is prominently displayed when agreeing to
disclose information on a route, it should be obvious if a
server has tampered with the identifier. A more descriptive
name can also be used the interface, but only the identifier
is included in reports. A report would therefore contain the
information seen in Figure 6.
APPLICATION: CONFERENCE ROOM AVAILABILITY
While our previous examples have focused on large-scale
applications, hitchhiking can also be applied on a smaller
scale. For example, consider the problem of finding an
available conference room for an impromptu meeting. The
typical scenario involves walking from room to room to see
if each is actually in use (as people sometimes reserve
rooms but do not actually use them). Sensing infrastructure
(such as wireless motion detectors) can be installed, but this
infrastructure often has few other uses and so it can be
difficult to justify the installation and maintenance costs.

A hitchhiking approach to this problem can use WiFi-based
location estimates in much the same way as Bustle.
Because there are often offices very close to conference
rooms, care needs to be taken to ensure that people working
in their office are not reporting that they are using the
conference room. This might be as simple as also reporting
the signal strength of each access point. The client might
also prompt for confirmation before reporting that a person
is using a conference room (providing a “never report from
this conference room” option for people who trigger many
false prompts).
Assuming a system can reliably determine when people are
in a conference room, anonymity requirements can be
addressed with the same methods used in Bustle. Each
report provides enough information for the server to infer
what conference room a person is reporting from, but does
not allow the server to determine who is reporting. Further,
no information is released by people not in a conference
room. A server could therefore make live room information
available without introducing any new privacy concerns.
DISCUSSION
We have presented hitchhiking, a new approach to
anonymous and privacy-sensitive collection of sensed data
in location-based applications. Hitchhiking supports a
general category of applications that collect sensed data
from locations of interest. We have used Bustle as an
example to illustrate potential threats to hitchhiking
applications and demonstrated how hitchhiking counters
each threat. Several additional examples show that
hitchhiking can be applied to a diverse set of problems.
Some of our later examples are implemented using the
same methods in earlier examples, providing evidence that
our approach addresses a general category of applications.
While the focus of this paper is on preserving privacy and
anonymity, it is worth addressing the question of whether
these types of location-based applications are appropriate.
The applications presented in this paper can all be built in
other ways, typically by installing custom sensing
infrastructure. We believe that hitchhiking warrants
consideration exactly because it requires no additional
infrastructure. Based entirely in software on devices that
people already carry, hitchhiking applications can be
deployed at extremely low cost. But applications that
ignore privacy concerns (such as the continuous location

I am riding bus: 71A
I am at coordinate: N 40.44843

W 79.93399
I am traveling
in the direction: East Northeast
I have detected: 5 mobile phones

Figure 6. Contents of a bus tracking report. It reveals the
current location of the bus, but cannot be tied to a person.

disclosure required by Zipdash) can be dangerous. We
have therefore presented a general approach to anonymity
and privacy in hitchhiking applications. We preserve the
full desired functionality of these applications while
removing privacy threats that would otherwise arise.
Query Anonymity
While our approach ensures the anonymity of reports from
a location, it cannot protect the anonymity of queries about
locations. People requesting information about a location
may not be in that location, so they can only refer to the
location via an identifier or some other server-provided
information. If live data is critical, prior work on masking
queries can be applied (such as querying for all of the
locations in a sufficiently large region to mask which
location a person is actually interested in). It might also be
appropriate to use a model of typical conditions at a
location. A server could use reports to update this model,
and clients could occasionally download the most recent
model. The model could then be evaluated locally without
revealing interest in a specific location.
The exception is that a person can anonymously query for
information about a location that they have previously
visited. For example, consider that Bustle could make a
note of what access points were detected when a person
visited a particular coffee shop. Next time the person
wanted to query information about that coffee shop, it could
send a query of the form “Tell me about the current state of
the coffee shop in which I previously detected these access
points.” Because this query is based on the access points
that Bustle actually sensed in that location (not just those
that the server claims are located in that coffee shop), it
does not contain any server-provided identifier.
Live Reports
The applications presented in this paper all make live
reports, but connectivity and live reports are not a critical
component of hitchhiking. Applications could store reports
locally, uploading them when a connection becomes
available. This seems especially appropriate if the issue of
query anonymity has led an application designer to use a
locally cached model instead of live queries. For example,
Bustle can detect ARP broadcasts on a network even though
the laptop user has not yet authenticated with the WiFi
provider. While Bustle is unable to send live reports in
such a situation (because the WiFi provider requires
authentication before allowing Internet access), data could
be stored locally until a connection is available. If Bustle
were based on temporal models of when space is typically
available in a given coffee shop, this would be appropriate.
Transport Layer Attacks
Because hitchhiking is based in controlling what
information is released to an application server, it cannot
protect against malicious network operators or other
transport layer attacks. Consider that the provider of a
mobile phone network always knows the location of each

phone (otherwise the provider would be unable to route an
incoming call to the phone). Similarly, a malicious WiFi
operator could log the MAC address of every computer that
uses an access point. The potential for this type of attack is
inherent to current phone and WiFi networks, but our
approach allows applications to collect sensed data without
introducing any new threats. If these types of attacks need
to be addressed, prior work on Onion Routing [22] or
temporary WiFi MAC addresses [9] provide a solution.
Denial-of-Service Attacks
The anonymity provided by our approach opens servers to
denial-of-service attacks that flood an application with
fraudulent reports. The usual approach to this problem
would be to give each person an identifier to include with
their reports, banning their identifier if they appear to
submit fraudulent data. But this obviously undermines
anonymity. Instead, application servers might note the IP
address used to transmit each report, as it seems unlikely
that an IP address would be used to legitimately report on
more than a handful of locations in a short period of time
(consider that all of Bustle’s reports on a given coffee shop
will be coming from the external IP address of that shop’s
WiFi service provider). Databases can also be seeded with
false data to detect attacks. Bustle servers could include a
non-existent MAC address in the list of access points for
each coffee shop. Any report that claims to have detected
this access point is clearly fraudulent. Such approaches do
not completely preclude denial-of-service attacks, but they
do make such attacks more difficult.
Timing-Based Attacks
Because the content of a report does not allow for tracking,
the final avenue for inducing a tracking violation lies in
timing-based attacks. If a Bustle client reported from a
coffee shop every 5 minutes, then there is a high probability
that two reports received 5 minutes apart were generated by
the same person. More advanced inference might allow the
later recognition of the same person. These attacks can be
addressed by synchronizing reports (clients synchronize
with an Internet time server and report at the same time,
making the timing of their reports indistinguishable).
A more subtle issue arises if there are many locations of
interest defined in an area. If a person approves disclosure
from two locations that are near each other, it might be
possible to track their movement from one to the other. If
they have approved many locations along a path, it might
be possible to track their movement along the path. In
many ways, this is the problem of mix zones discussed by
Beresford and Stajano [2]. As such, we can address this
problem by limiting the frequency with which a device
makes reports (not just the frequency of reports to a
particular application). If a device makes only one report
(whether that is about a coffee shop, traffic, bus, or
conference room) every 5 to 10 minutes, reports will be
sufficiently sparse to ensure that timing is not a threat.

CONCLUSION
We have presented hitchhiking, an anonymous and
privacy-sensitive approach to a category of location-based
applications. The fundamental tenet of hitchhiking is that
reports are always strictly about a location and cannot be
tied to a person. By presenting a privacy risk analysis of
hitchhiking, this paper provides designers of location-based
applications and services with an approach to building a
useful class of application while also protecting end-user
privacy. Implemented entirely in software on the client
device, hitchhiking does not require new hardware or a
trusted middleware platform. It is therefore possible to
deploy applications on existing phone and WiFi networks,
without the active cooperation of the network provider. By
enabling anonymous and privacy-sensitive data collection,
hitchhiking protects users and removes personal privacy as
an obstacle to a category of location-based applications.
ACKNOWLEDGMENTS
We thank all of the contributors to Place Lab, jpcap, libpcap,
and the JDesktop Integration Components. We also thank Ian Li
for his help with the artwork used in Bustle. This material is based
upon work supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. NBCHD030010, by an
AT&T Labs fellowship, and by the National Science Foundation
under grants IIS-0121560 and IIS-032531.
REFERENCES
1. Bahl, P., Balachandran, A., Miu, A., Voelker, G.M., Russell,

W. and Wang, Y.-M. (2002) PAWNS: Satisfying the Need
for Ubiquitous Connectivity and Location Services. IEEE
Personal Communications Magazine (PCS), 9 (1).

2. Beresford, A.R. and Stajano, F. (2003) Location Privacy in
Pervasive Computing. IEEE Pervasive Computing, 2(1). 46-55.

3. Cheverst, K., Davies, N., Mitchell, K. and Friday, A. (2000)
Experiences of Developing and Deploying a Context-Aware
Tourist Guide: The GUIDE Project. Proceedings of the ACM
Conference on Mobile Computing and Networking
(MOBICOM 2000), 20-31.

4. Consolvo, S., Smith, I., Matthews, T., LaMarca, A., Tabert, J.
and Powledge, P. (2005) Location Disclosure to Social
Relations: Why, When, & What People Want to Share.
Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 2005), 81-90.

5. Cranor, L., Langheinrich, M., Marchiori, M. and Reagle, J.
The Platform for Privacy Preferences 1.0 (P3P1.0)
Specification. http://www.w3.org/TR/P3P

6. Dey, A.K. and Abowd, G. (2000) CybreMinder: A Context-
Aware System for Supporting Reminders. Proceedings of the
International Symposium on Handheld and Ubiquitous
Computing, 172-186.

7. Griswold, W.G., Shanahan, P., Brown, S.W., Boyer, R.S.,
Ratto, M., Shapiro, R.B. and Truong, T.M. (2004)
ActiveCampus: Experiments in Community-Oriented
Ubiquitous Computing. IEEE Computer, 37(10). 71-81.

8. Gruteser, M. and Grunwald, D. (2003) Anonymous Use of
Location-Based Services Through Spatial and Temporal
Cloaking. Proceedings of the ACM Conference on Mobile
Systems, Applications, and Services (MobiSys 2003), 31-42.

9. Gruteser, M. and Grunwald, D. (2003) Enhancing Location
Privacy in Wireless LAN through Disposable Interface
Identifiers: A Quantitative Analysis. Proceedings of the

ACM International Workshop on Wireless Mobile
Applications and Services on WLAN (WMASH 2003), 46-55.

10. Hightower, J. and Borriello, G. (2001) Location Systems for
Ubiquitous Computing. IEEE Computer, 34(8). 57-66.

11. Hong, J.I. and Landay, J. (2004) An Architecture for Privacy-
Sensitive Ubiquitous Computing. Proceedings of the
International Conference on Mobile Systems, Applications,
and Services (MobiSys 2004), 177-189.

12. Hong, J.I., Ng, J.D., Lederer, S. and Landay, J. (2004) Privacy
Risk Models for Designing Privacy-Sensitive Ubiquitous
Computing Systems. Proceedings of the ACM Conference on
Designing Interactive Systems (DIS 2004), 91-100.

13. Iachello, G., Smith, I., Consolvo, S., Chen, M. and Abowd,
G. (2005) Developing Privacy Guidelines for Social Location
Disclosure Applications and Services. Proceedings of the
Symposium on Usable Privacy and Security (SOUPS 2005).

14. Kearney, C. Ex-AOL Employee Sentenced to 15 Months in
Spam Case. Washington Post, August 17, 2005.

15. Krumm, J., Cermak, G. and Horvitz, E. (2003) RightSPOT:
A Novel Sense of Location for Smart Personal Object.
Proceedings of the International Conference on Ubiquitous
Computing (UbiComp 2003), 36-43.

16. LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J.,
Smith, I., Scott, J., Sohn, T., Howard, J., Hughes, J., Potter,
F., Tabert, J., Powledge, P., Borriello, G. and Schilit, B.N.
(2005) Place Lab: Device Positioning Using Radio Beacons
in the Wild. Proceedings of the International Conference on
Pervasive Computing (Pervasive 2005), 116-133.

17. Langheinrich, M. (2002) A Privacy Awareness System for
Ubiquitous Computing Environments. Proceedings of the
International Conference on Ubiquitous Computing
(UbiComp 2002), 237-245.

18. Lessig, L. (1999) Code and Other Laws of Cyberspace. Basic
Books, New York, NY.

19. Maclean, S.D. and Dailey, D.J. (2001) MyBus: Helping Bus
Riders Make Informed Decisions. IEEE Intelligent Systems,
16 (1).

20. Palen, L. and Dourish, P. (2003) Unpacking "Privacy" for a
Networked World. Proceedings of the Conference on Human
Factors in Computing Systems (CHI 2003), 129-136.

21. Patterson, D.J., Liao, L., Fox, D. and Kautz, H. (2003)
Inferring High-Level Behavior from Low-Level Sensors.
Proceedings of the International Conference on Ubiquitous
Computing (UbiComp 2003), 73-89.

22. Reed, M., Syverson, P. and Goldschlag, D. (1998) Anonymous
Connections and Onion Routing. Proceedings of the IEEE
Symposium on Security and Privacy (SP 1997), 44-54.

23. Schilit, B.N., LaMarca, A., Borriello, G., Griswold, W.G.,
McDonald, D., Lazowska, E., Balachandran, A., Hong, J.I.
and Iverson, V. (2003) Challenge: Ubiquitous Location-
Aware Computing and the Place Lab Initiative. Proceedings
of the ACM International Workshop on Wireless Mobile
Applications and Services on WLAN (WMASH 2003), 29-35.

24. Smith, I., Consolvo, S., Hightower, J., Iachello, G., LaMarca,
A., Scott, J., Sohn, T. and Abowd, G. (2005) Social Disclosure
of Place: From Location Technology to Communications
Practices. Proceedings of the International Conference on
Pervasive Computing (Pervasive 2005), 134-151.

25. Voelker, G.M. and Bershad, B.N. (1994) Mobisaic: An
Information System for a Mobile Wireless Computing
Environment. Proceedings of the IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA 1994), 185-190.

26. Zipdash - Mobile Map and Traffic App.
http://www.zipdash.com

