
SATIN: A Toolkit for Informal Ink-based Applications
Jason I. Hong and James A. Landay

Group for User Interface Research, Computer Science Division
University of California, Berkeley
Berkeley, CA 94720-1776 USA

+1 510 643 7354
{jasonh, landay}@cs.berkeley.edu

ABSTRACT
Software support for making effective pen-based
applications is currently rudimentary. To facilitate the
creation of such applications, we have developed SATIN, a
Java-based toolkit designed to support the creation of
applications that leverage the informal nature of pens. This
support includes a scenegraph for manipulating and
rendering objects; support for zooming and rotating objects,
switching between multiple views of an object, integration
of pen input with interpreters, libraries for manipulating ink
strokes, widgets optimized for pens, and compatibility with
Java’s Swing toolkit. SATIN includes a generalized
architecture for handling pen input, consisting of
recognizers, interpreters, and multi-interpreters. In this
paper, we describe the functionality and architecture of
SATIN, using two applications built with SATIN as
examples.

Keywords
toolkits, pen, ink, informal, sketching, gesture, recognition,
interpreter, recognizer, SATIN

INTRODUCTION
Sketching and writing are natural activities in many
settings. Using pen and paper, a person can quickly write
down ideas, as well as draw rough pictures and diagrams,
deferring details until later. The informal nature of pens
allows people to focus on their task without having to worry
about precision.

However, although more and more computing devices are
coming equipped with pens, there are few useful pen-based
applications out there that take advantage of the fact that
pens are good for sketching1. Most applications use pens
only for selecting, tapping, and dragging. These
applications simply treat the pen as another pointing device,
ignoring its unique affordances.

Furthermore, the few compelling applications that do exist
are built from scratch, despite the fact that many of them
share the same kinds of functionality. This is because of the
rudimentary software support for creating pen-based
applications. Despite the fact that many new and useful pen-

based interaction techniques have been developed, such as
gesturing1 and pie menus [5], these techniques have not yet
been widely adopted because they are difficult and time-
consuming to implement.

With respect to input and output for pens, we are at a stage
similar to that of windowing toolkits in the early 1980s.
Many example applications and many novel techniques
exist, but there are no cohesive frameworks to support the
creation of effective pen-based applications. As a first step
towards such a framework, we have developed SATIN2, a
toolkit for supporting the creation of informal ink-based
applications [15]. From a high-level perspective, there were
three research goals for SATIN:

• Design a generalized software architecture for
informal pen-based applications, focusing on how to
handle sketching and gesturing in a reusable manner

• Develop an extensible toolkit that simplifies the
creation of such informal pen-based apps

• Distribute this toolkit for general use by researchers

As a first step, we surveyed existing pen-based applications
(both commercial and research) in order to determine what
shared functionality would be most useful. Afterwards, we
implemented the first iteration of the toolkit in Java, and
built our first significant application with it, DENIM [26]
(see Fig. 1). From the lessons learned, we developed the
second iteration of SATIN, and built another application,
SketchySPICE.

In this paper, we first outline functionality common in
existing pen-based applications, and take a look at current
software support for pen-based interfaces. We continue by
describing the high-level and then detailed design of the
SATIN toolkit. Specifically, we focus on a generalized
architecture for handling pen input, consisting of three
components: recognizers, interpreters, and multi-
interpreters. We describe how pen input is handled in terms
of the two applications, DENIM and SketchySPICE. We
conclude with an evaluation of the toolkit, as well as our
plans for future work and a discussion of lessons learned.

1 By sketching, we mean the process of drawing roughly and

quickly. We use the term ink for the strokes that appear. By
gesturing, we mean a pen-drawn stroke that issues a command

2 The SATIN project page and software download is at:
http://guir.berkeley.edu/projects/satin

LEAVE BLANK THE LAST 2.5cm
OF THE LEFT COLUMN
ON THE FIRST PAGE
FOR US TO PUT IN

THE COPYRIGHT NOTICE!

PEN APPLICATION SPACE
Recently, there have been many applications developed that
use sketching and gesturing. We performed a survey of
these applications, looking specifically for examples of
informal ink-based interaction, ones that step away from
rigid structure and precise computation, instead supporting
ambiguity, creativity, and communication [15]. Many pen-
based research systems have headed in the direction of
informal interfaces in recent years, either by not processing
the ink [11, 41, 43] or by processing the ink internally while
displaying the unprocessed ink [14, 24, 32, 40].

The applications we examined include design tools [9, 12,
14, 20-22, 24, 43, 47]; whiteboard applications [1, 32, 33,
37]; annotation tools [41, 44-46]; note-taking applications
[10, 11, 42]; and applications demonstrating new
interaction techniques [19, 28, 40]. These applications
share much functionality with each other, including:

• Pen input as ink
• Pen input as gestures
• Pen input for selecting and moving
• Interpreters that act on ink input
• Manipulation of other kinds of objects besides ink
• Grouping of objects
• Layering of objects
• Time indexing of ink input
• Transformation of ink to other cleaned-up objects
• Immediate and deferred processing of ink

Later, in the process of developing DENIM, our first
application, we discovered we needed techniques for
managing information, and turned to using zooming and
semantic zooming, as demonstrated in Pad++ [3] and Jazz
[4]. We decided that this functionality was useful enough to
developers that it should be included in the toolkit.

EXISTING PEN FRAMEWORKS
In this section, we outline existing frameworks for
developing pen-based applications, and describe where
SATIN builds on their ideas.

Commercial Software Support for Pens
PalmOS [8] offers some very simple pen input processing.
The default behavior is to process strokes and taps in the
silk screen area as key events, with all other strokes passed
on to the application for processing. PalmOS also provides
some APIs for getting individual stroke points, enabling
and disabling the Graffiti shorthand recognizer, and for
getting the last known location of the pen.

Microsoft Windows for Pen Computing [29] provides
minimal support for pens. Text entry areas were replaced
either by handwriting edit controls (hedit) or by boxed
edit controls (bedit), in which individual characters can
be written. Simple gesture recognition was also supported.
These extensions give the developer very little support for
building informal ink-based applications.

In Windows CE [30], pen input is treated as a subset of
mouse input. Applications can receive messages when the
pen is moved, goes down, comes up, and is double-tapped.
Windows CE also provides simple handwriting recognition.

NewtonOS [2] uses sheets of paper as its input metaphor.
Users can write on these sheets without having to explicitly
save. Furthermore, users can specify several ink modes in
which strokes are processed as text, as shapes, or left
unprocessed as raw ink. Recognition errors can be
corrected by choosing from an n-best list. Gestures are also
integrated into the system. Drawing a zig-zag shape over a
word or shape, known as scrubbing, deletes that object.
Holding down the pen for a second activates select mode.
After select is enabled, the user can drag the pen and either
highlight or circle the objects to select. Lastly, NewtonOS
provides an extensive widget set for pens, designed to
minimize the amount of end-user writing necessary.

Perhaps the most sophisticated commercial support for pens
was in GO Corporation’s PenPoint [6]. PenPoint is an
operating system built from the ground up to support pens.
Besides providing many of the services described above,
such as gestures and pen widgets, PenPoint also has such
features as live embedding of documents within documents,
and extensive integration of gesture recognition and
handwriting recognition.

There are two main differences between SATIN and the
systems described above. First, all of the systems listed
above are designed to build formal user interfaces, and are
thus focused on handwriting recognition and form entry
tasks. In contrast, SATIN is targeted towards the
development of informal ink-based applications. The
second difference is extensibility. Aside from handwriting
recognition, the systems listed above provide minimal
support for manipulating and processing ink. In contrast,
one of our primary goals with SATIN was to give
developers flexibility in how ink is processed and to make it
simple to do so. For example, new gestures cannot be added
in the systems described above.

Figure 1 – A screenshot of DENIM, a sketch-based web
site design tool created on top of SATIN

Research Software Support for Pens
Simple ink and gesture support is provided in Artkit [16].
Artkit uses the notion of sensitive regions, invisible
rectangles that can be placed on top of screen objects. The
sensitive region intercepts stroke input, and processes the
input in a recognition object, which possibly forwards a
higher-level event to the screen object underneath.

Mankoff et al., extended the subArctic toolkit [17] to
support inking, gesturing, and recognition, specifically for
exploring techniques in resolving ambiguity [28].

Garnet [23, 34] and Amulet [36] also have support for
gestures. A gesture interactor was added to these toolkits to
support recognizing pen gestures using Rubine’s algorithm
[39]. The recognizer simply calls the registered callback
procedure with the result as a parameter. No other pen and
ink-based support is provided.

Flatland [18, 37] is a lightweight electronic whiteboard
system that has much in common with SATIN. Flatland
uses the notion of segments to divide up screen space, and
uses strokes both as input and as output. Furthermore,
behaviors can be dynamically plugged into segments,
changing how stroke input is processed and displayed. This
architecture is very similar to SATIN.

One clear difference between Flatland and SATIN is
Flatland combines mechanism and policy in several cases,
mixing how something is done with when it is done. For
example, in Flatland, all strokes belong to a segment, and
new segments are automatically created if a stroke is not
drawn in an existing segment, whether or not an application
designer wants a new segment. Our goal with SATIN was
to focus on fine-grained mechanisms that can be used for a
range of ink-based applications. Another difference is that
Flatland only allows one application behavior to be active
in a segment at any time. We introduce the notion of multi-
interpreters to manage multiple interpreters.

Kramer’s work in translucent patches and dynamic
interpretations [21, 22] significantly influenced the design
and implementation of SATIN. We use Kramer’s notions of
patches and dynamic interpretation, but again, our focus is
at the toolkit level.

The chief characteristics that differentiate SATIN from all
of the work above are flexibility and fine granularity. We
are focused on developing an extensible toolkit. We
provide a set of mechanisms for manipulating, handling,
and interpreting strokes, as well as a library of simple
manipulations on strokes, with which developers can build
a variety of informal pen-based applications.

HIGH LEVEL DESIGN OF SATIN
SATIN is intended to support the development of 2D pen-
based applications. We chose to support 2D instead of 3D
since most of the applications surveyed utilize two
dimensions only. The current implementation of SATIN
does not support multiple users, as that introduces another
level of complexity beyond the scope of this project.

SATIN is built in Java, using JDK1.33. SATIN uses Java2D
for rendering, and makes extensive use of the Java core
classes as well as the Swing windowing toolkit [31].

Fig. 2 shows how a pen-based application would be built
using SATIN, Swing, and Java. Roughly speaking, SATIN
can be partitioned into twelve interrelated concepts (See
Table 1). Each of these concepts is briefly summarized in
the next section. Some of these concepts are very loosely
coupled to one another, and can be used independently of
the rest of the toolkit. In other words, a developer can use
some portions of the SATIN toolkit without a complete
buy-in of the entire system.

Figure 2 – This diagram shows the relationship between
Java, Swing, SATIN, and pen-based applications.

Concept Can use outside SATIN? For pens only?

Scenegraph No No

Rendering No No

Views No No

Transitions No No

Strokes Some portions Yes

Events No Yes

Recognizers Some portions Yes

Interpreters No Yes

Clipboard No No

Notifications Yes No

Commands Yes No

Widgets Yes Yes

Table 1 – The twelve major components in SATIN. Some
portions of SATIN have been designed to be independent
of the rest of the system and can be used outside of SATIN.

Design Overview
We call objects that can be displayed and manipulated
graphical objects. Like most 3D modeling systems (such as
Java3D and OpenGL) we use the notion of a scenegraph, a
tree-like data structure that holds graphical objects and
groups of graphical objects. The simplest graphical object
that the user can create is a stroke, which is automatically
created in SATIN by the path drawn by a pen or mouse.
Another primitive graphical object is a patch, an arbitrarily
shaped region of space that can contain other graphical

3 We began SATIN in JDK1.2, and transitioned to each early

access version of the JDK as they were released.

objects. Patches interpret strokes either as gestures or as
ink. Our notion of patches is derived from the work by
Kramer [21, 22]. SATIN also provides a sheet, which is a
Java Swing component as well as a graphical object. A
Sheet serves as the root of a scenegraph, and is essentially a
drawing canvas that can contain SATIN objects.

Graphical objects have x-, y-, and layer-coordinates. The x-
axis and y-axis coordinates are Cartesian coordinates. The
layer-coordinate is used to denote the relative position of
one graphical object to another along the z-axis. That is,
SATIN simply keeps track of which objects are on top of
others, but does not store exact z-axis coordinates.

Graphical objects also have styles. Styles take many of the
graphics concepts in Java, such as line style, color, and
font, and translucency, abstracting them out into a single
object. Styles are automatically applied by the rendering
subsystem when rendering.

When rendering, SATIN uses the same damage-redraw
cycle that is standard in windowing systems. The system
never repaints a region unless it is marked damaged. If an
area is damaged, then only the graphical objects in the
damaged area are traversed. For common operations, such
as translation and rotation, graphical objects automatically
damage the region they are in. For application-specific
operations, however, the developer may need to explicitly
call the damage method.

SATIN also automatically changes the rendering quality
depending on the current context. For example, when the
user is drawing strokes, the damaged areas are rendered in
low quality in order to speed up performance. However,
when the stroke is completed, SATIN reverts to the highest
quality rendering level.

Graphical objects have one or more view objects, which
dictate how a graphical object is drawn. If a graphical
object has more than one view, then it must also have a
MultiView, an object that specifies the policy of which view
objects are rendered and when. An example multi-view we
have included is a Semantic Zoom Multi View, which uses
the current zoom scale to choose the view to be displayed,
as in Pad++ [3] and Jazz [4].

SATIN provides support for simple transitions on graphical
objects, such as zooming and rotation. Given a graphical
object and a transform, the system can automatically
generate and render the intermediate steps, providing a
smooth animation. The default transition type is Slow-In /
Slow-Out [7, 25], a transition that spends the majority of
time in the beginning and in the end of the animation.

There are also several classes for manipulating strokes. The
stroke assembler aggregates user input into strokes and
dispatches them as events to graphical objects. Each
graphical object knows how to handle stroke events, and
can choose how the stroke events are handled. This process
is described in more detail in the Detailed Design section.
There are also utility classes for manipulating strokes, such

as splitting strokes, merging strokes, turning strokes into
straight lines, and for simplifying strokes.

We use the term recognizers to mean subsystems used to
classify ambiguous input, such as ink strokes. In SATIN,
we have defined recognizers as objects that take some kind
of ambiguous input and return a well-defined n-best list of
classifications and probabilities ordered by probability.
This definition allows us to plug in other stroke recognizers
into the system. Examples of stroke recognizers include
Rubine’s recognizer [38, 39] and neural net recognizers.
Currently, SATIN only contains the gdt [27]
implementation of Rubine’s recognizer. Recognizers may
or may not retain state across classifications. However,
recognizers do not take any kind of action based on the act
of classification. Instead, this is left to interpreters.

Interpreters take action based on user-generated strokes.
For example, one interpreter could take a stroke and
transform it into a straight line. A different interpreter could
issue a command if the stroke resembled a gesture in the
system. Interpreters can use recognizers to classify strokes,
but are not required to do so.

We distinguish between gesture interpreters and ink
interpreters. A gesture interpreter tries to process a stroke
as a command (e.g., cut), while an ink interpreter processes
a stroke and displays the result as ink (e.g., straightens it
out). We also make the distinction between progressive-
stroke interpreters and single-stroke interpreters. A
progressive-stroke interpreter tries to perform actions as a
stroke is being drawn, while a single-stroke interpreter only
takes action after a stroke is completed. SATIN currently
does not support multi-stroke interpreters.

A graphical object can have one or more gesture
interpreters, as well as one or more ink interpreters. Like
views, a MultiInterpreter specifies the policy for which
interpreters are used when more than one is present. Multi-
interpreters are a new concept introduced in SATIN, and
are discussed in the Detailed Design section.

The clipboard acts the same as in modern GUIs, supporting
cut, copy, and paste for graphical objects.

Notifications are messages generated and sent internally
within the system in order to maintain consistency. These
messages are often used to maintain constraints between
graphical objects or to notify objects that a graphical object
has been deleted.

Commands are a common design pattern used for
supporting macros, as well as undo and redo [13, 35].
Commands reify operations by encapsulating a transaction
into an object that knows how to do, undo, and redo itself.
SATIN’s command subsystem extends the one provided in
Java Swing (javax.swing.undo), by adding in the
notion of executing a command (instead of simply undoing
an operation). The command subsystem also has a notion of
time, tracking when commands were executed, as well as
allowing classes of commands to be enabled and disabled.

Application developers are not required to use the
command subsystem in order to use SATIN. The Command
subsystem can also be used outside of SATIN.

SATIN also provides some widgets optimized for pens.
Currently, the only new widget we provide is a pie menu [5]
that can be used as a normal Java Swing widget. The pie
menu implements javax.swing.MenuElement,
Swing’s menu interface, and in many cases can be used in
lieu of normal pop up menus with few changes to the code.

We also provide a Pen Pluggable Look and Feel
(PenPLAF). The PenPLAF uses Java Swing’s pluggable
look and feel [31] to modify the standard file opener and
slider widgets to make them easier to use for pens. The file
opener was modified to accept single mouse clicks to open
folders (instead of double clicks). The slider was modified
to have a larger elevator, as well as the ability to have the
slider value changed by tapping anywhere on the slider. The
pie menu and the PenPLAF are not tied to SATIN, and can
be used in Java applications outside of the toolkit.

Bridging the Gap between Java Swing and SATIN
We also provide some classes to help bridge the gap
between SATIN and Java Swing (See Fig. 3). Currently,
SATIN support for Swing consists of two classes. The first,
GObJComponent4, wraps up Swing widgets in a SATIN
graphical object. Thus, Swing widgets can be displayed in
SATIN, though full interaction (e.g., keyboard input), has
not yet been completed. The second, GObImage, allows
Java Image objects to be displayed in SATIN. This
enables SATIN to be able to display any image file format
that Java understands.

Conversely, SATIN can be used in Swing applications. As
stated before, the Sheet is both the root of a scenegraph in
SATIN and is a fully compatible Swing widget. A
JSatinComponent is a Swing widget that wraps around
a SATIN graphical object, letting SATIN graphical objects
be displayed in Swing applications. Lastly,
SatinImageLib provides some utilities for turning
SATIN graphical objects into Java Image objects. This
enables SATIN to be able to write out to any image file
format that Java understands.

DETAILED DESIGN OF SATIN INK HANDLING
In this section, we describe strokes, recognizers, and
interpreters in more detail, as well as how they interact with
each other at runtime.

Strokes
In SATIN, strokes are simply a list of (x, y, t) tuples,
where x is the x-coordinate, y is the y-coordinate, and t is
the time the point was generated (since the Unix epoch).

SATIN also provides some utilities and interpreters for
manipulating strokes, including splitting a stroke into

4 JComponent is the parent class of all Swing widgets.

Figure 3 – Classes bridging the gap between SATIN and Java
Swing. Swing widgets can be displayed in SATIN, and SATIN
graphical objects can be embedded in Swing applications.

Figure 4 – Two example policies of splitting strokes. The thicker
line is a gesture created by pressing the right button.

Figure 5 – At the top, two separate strokes near each other are
combined into a single stroke. In the middle, two separate
strokes that intersect near their endpoints are merged into a
single stroke. At the bottom, two separate strokes that intersect
near both of their endpoints are merged into a closed shape.

Figure 6 – Two examples of straightening strokes.

smaller substrokes, merging strokes together, straightening
strokes into straight lines, and simplifying strokes.

Strokes can be split by specifying a rectangle in which all
substrokes will be removed. Fig. 4 shows a sample
interpreter that removes substrokes that lie in the bounding
box of the gesture stroke.

Fig. 5 shows some examples of merging strokes. To see if
two strokes can be merged, the algorithm first checks if the
two strokes are near each other. If they are, then the
algorithm checks if either extremity of one stroke is near an
extremity of the other. If a successful match is made, then
the two extremities are joined together in a new stroke, with
short trailing ends discarded.

SATIN straightens strokes by changing strokes to lines that
go up, down, left, or right (See Fig. 6). To straighten a
stroke, we first examine each pair of adjacent points and
classify each pair as going up, down, left, or right. For each
subsequence of points that is going the same direction, we
create a line that goes through the average value of that
subsequence. After this is done, all of the lines created are
joined together and returned as a new stroke.

Figure 7 – Two examples of stroke simplification. The
algorithm generates a stroke similar to the original stroke,
but has fewer points and can thus be rendered faster.

SATIN also provides utilities for simplifying strokes (See
Fig. 7). This technique is automatically used to help speed
up animated transitions. The following approach is used to
simplify a stroke:

• For each point, calculate the absolute angle relative
to the stroke’s top-left corner using atan2()

• Calculate the angle delta between each adjacent pair
of points

• Add the starting and ending point of the original
stroke to the simplified stroke

• Go through the deltas and add each local minima to
the simplified stroke

Once a stroke is simplified, it is cached in the system. On a
sample set of fifty strokes, the number of points reduced
ranged from 20% to 50%, averaging a 32% reduction.
Using a battery of performance regression tests using 100 to
1000 strokes, the performance speedup5 for animating the
simplified strokes ranged from 1.02 to 1.34, with an
average speedup 1.11. Speedup improves somewhat
linearly as the number of strokes is increased, as expected.

5 Speedup overall = Execution time old / Execution time new

Recognizers
In SATIN, a recognizer is a subsystem that classifies
ambiguous input, which in our case are strokes. SATIN
defines a standard interface for two types of recognizers:
progressive stroke and single stroke recognizers. These
definitions are not mutually exclusive, so a recognizer could
be both a progressive and a single stroke recognizer.
SATIN also defines a Classification object, which
recognizers are defined to return when passed a stroke to
classify. The classification is simply an n-best list of beliefs,
ordered by probability. This definition for recognizers
means that new recognizers can be plugged into the system
simply by implementing the defined interface.

Interpreters
The class diagram in Fig. 8 illustrates the relationship
between the classes used for interpretation, and shows some
of the interpreters built in SATIN.

Besides processing strokes, interpreters are also stroke
event filters, meaning they can specify what kinds of strokes
they will accept. The simplest filter accepts or rejects
strokes depending on which pen button was held when
creating the stroke. Another kind of filter rejects strokes
that are too long. In addition to filtering, individual
interpreters can also be disabled, meaning that they will not
process any strokes at all.

Some of the interpreters, on the right side of Fig. 8, have
already been discussed (see above), or will be discussed
with DENIM and SketchySPICE (next section). The more
interesting part is the left portion of Fig. 8, which shows the
multi-interpreters. Multi-interpreters are collections of
interpreters combined with a policy that controls which
interpreters are used and when they are used.

The default multi-interpreter is the Default Multi
Interpreter, which simply calls all of the interpreters it
contains, stopping when one of the interpreters says that it
has successfully handled the stroke. The Multiplexed Multi
Interpreter lets the developer specify one interpreter as
active, which can be changed at runtime. The Semantic
Zoom Multi Interpreter enables and disables interpreters
depending on the current zoom level.

Runtime Handling of Strokes
Strokes are dispatched to graphical objects in a top-down
manner: strokes are sent first to the parent before being re-
dispatched to any of the parent’s children. A stroke is re-
dispatched to a child only if the child contains the stroke
entirely (within a certain tolerance). By default, graphical
objects handle strokes in a four-step process, as follows:

• Process the stroke with the gesture interpreters
• Re-dispatch the stroke to the appropriate children
• Process the stroke with the ink interpreters
• Handle the stroke in the graphical object

At any point in this process, an interpreter or a graphical
object can mark the stroke as being handled, which
immediately stops the dispatching process. We give some
examples of how strokes are handled in the DENIM and
SketchySPICE sections below.
We chose this four-step approach as the default in order to
separate handling of gestures from handling of ink.
Processing gestures first lets gestures be global on the
Sheet, or within a patch. This default approach can also be
overridden in user code.

APPLICATIONS BUILT WITH SATIN
In this section, we describe two applications built using the
SATIN toolkit, their high-level architectures, as well as
how strokes are processed and interpreted in each.

First Application – DENIM
DENIM [26] is a web site design tool aimed at the early
stages of information, navigation, and interaction design
(See Figs. 1 and 9). An informal pen-based system [15], it
allows designers to quickly sketch web pages, create links
among them, and interact with them in a run mode.
Zooming is used to integrate the different ways of viewing a
web site, from site map to storyboard to individual page.

Although there are many gesture and ink interpreters in
DENIM, from a user perspective, DENIM seems to use a
minimal amount of recognition. Gestures are differentiated
from ink by using the “right” pen button, while ink is
created using the “left” button. This is the behavior we
selected in DENIM, but can be modified in SATIN.

The scenegraph is comprised of five objects: the sheet,
labels, panels, ink strokes, phrases, and arrows. The sheet is
the root of the scenegraph. Labels are titles of web pages,
for example “Lodging” and “Cabernet Lodge.” Labels are

sticky, meaning that they are always displayed the same
size, to ensure that they can always be read at the same size
they were created. Panels are located beneath labels, and
represent the content in a web page. Ink strokes are what
are drawn in a panel. Phrases are collections of nearby
strokes automatically aggregated together. Arrows connect
ink and phrases from one page to another page.

Currently, DENIM only uses single stroke interpreters. All
strokes are first passed through the Sheet’s gesture
interpreters, and then, if rejected by all of the gesture
interpreters, are passed to the ink interpreters6. The gesture
interpreters used in DENIM are all provided by SATIN,
and include (in the order called):

• hold select, which processes a tap and hold to select
shallowly if zoomed out (i.e. selects top-level
scenegraph objects such as panels), or deeply if
zoomed in (i.e. deeper level scenegraph objects,
such as individual ink and phrases)

• circle select, which processes a circle-like gesture
to select everything contained in the gesture (again
shallowly or deeply depending on zoom level)

• move, in which all selected objects are moved the
same distance the pen is moved

• standard gesture, which uses Rubine’s recognizer
[39] to recognize simple gestures like cut, copy,
paste, undo, redo, and pan. Some gestures work
shallowly if zoomed out, deeply if zoomed in.

6 This is where the right and left button distinction is made. All

gesture interpreters in DENIM only accept “right” button, and
all ink interpreters only accept “left” button.

Figure 8 – Class diagram for Interpreters and Recognizers. Arrows point up towards parent classes. Rounded rectangles

are interfaces; dashed square rectangles are abstract classes, and solid square rectangles are concrete classes.

If a stroke is not a gesture, then we check if the stroke
should be re-dispatched to any of the Sheet’s children,
which in this case are labels and panels. A stroke is re-
dispatched only if the label or panel bounds contain the
stroke. If the stroke is re-dispatched to the label, then it is
added to the label. If the stroke is re-dispatched to a panel,
it is first processed by a phrase interpreter, which tries to
group nearby ink strokes together in a single phrase object.
Otherwise, it is just added to the panel as ink.

If the stroke is not re-dispatched, then the stroke is
processed by the Sheet’s ink interpreters. The ink
interpreters are part of DENIM’s code base, and include (in
the order they are called):

• arrow, which processes lines drawn from one page
to another, replacing the line by an arrow

• label, which processes ink that might be
handwritten text, creating a new label & web page

• panel, which processes ink that resembles large
rectangles, creating a new label and web page

If the stroke is not handled by any of the Sheet’s ink
interpreters, then it is just added as ink to the Sheet.

The pie menu is attached to the Sheet, and is activated by
clicking the right button and not moving too far. We
assigned this behavior so as not to interfere with gestures.

Second Application – SketchySPICE
SketchySPICE7 is a simple circuit CAD tool intended as a
demonstration of some features in SATIN (Figs. 10 and
11). Users can sketch AND, OR, and NOT gates, as well as
wires connecting these gates. As proof-of-concept, AND
and OR gates can be drawn in two separate strokes instead
of just one, but this feature uses specific domain knowledge

7 SPICE is a circuit CAD tool developed at UC Berkeley.

and is not part of SATIN. Once an object is recognized,
SketchySPICE will take one of two actions, depending on
the current mode. In immediate mode, recognized sketches
are replaced immediately by a cleaned up version. In
deferred mode, recognized objects are left sketchy, but
feedback is provided to let users know that the object was
recognized. This feedback consists of drawing the
recognized object translucently behind the sketched object.

Individual gates can be selected and “cleaned up” to be
displayed as formal looking gates, or can be “sketchified”
and returned to their roughly drawn origins. In addition, the
entire diagram can be cleaned up or sketchified.

The only new interpreter is the Gate interpreter. When a
new stroke is added, the Gate interpreter looks at that stroke
and the last stroke that was added. The two strokes are
classified by Rubine’s recognizer [39]. If the two separate
classifications combined have a high probability of being a
gate, then an AND Gate or an OR Gate object is added.

EVALUATION OF SATIN
SATIN has been in development for about two years, and is
currently in its second iteration. There are about 20,000
source lines of code, and 13,000 comment lines of code,
distributed in 2192 methods in 180 source code files.
SATIN also uses debugging, collection, and string
manipulation libraries developed by our research group,
consisting of about 8000 source lines of code.

Figure 9 – A screenshot from DENIM, an application built
on top of SATIN. This picture shows some ink, as well as
the pie menu provided by SATIN. The Swing slider on the
left is used to zoom in and out, and was modified by the
PenPLAF to have a larger elevator, as well as the ability to
have its value changed by taps anywhere on the slider.

Figure 10 – A screenshot from SketchySPICE.

Figure 11 – SketchySPICE gives feedback by rendering
the formal representation of the object translucently
(top). An object can be displayed either in its original
sketchy format, or in a cleaned-up format (bottom).

In contrast, DENIM, a fairly mature and large app, is only
about 9000 source lines of code in 642 methods. The four
interpreters in DENIM (arrow, label, panel and phrase) are
only 1000 lines of code. Overall, it took three people three
months to implement DENIM as described in [26].

SketchySPICE, a small proof-of-concept application, took
about three days to implement. It is only 1000 lines of code
in 32 methods. Half of the code is devoted to the pie menu,
and 350 lines to the Gate interpreter.

 SATIN DENIM SketchySPICE
#source files 180 76 7
size of source
files (kbytes)

1900 865 63

#methods 2192 642 63
#comments
lines of code

13000 4500 400

#source lines
of code

20000 9000 1000

#class files 220 131 32
Table 2 – Code size of SATIN and applications

Performance
We have used performance regression tests throughout the
development of SATIN. The regression test suite is a
repeated battery of operations, comprised of adding
randomly generated graphical objects (always using the
same seed value), zooming both in and out, and rotating.
The regression tests were all run on the same computer, a
Pentium II 300MHz running Windows NT 4.0 with a
Matrox Millennium II AGP video card.

The overall performance speedup, from when the first
regression test was run to when this paper was written, is
1.87. Approximately 54% of the speedup is due to code
optimizations in SATIN, with the rest due to performance
enhancements in the Java Virtual Machine. The two most
significant gains came from polygon simplification and
reduction of temporary objects generated.

FUTURE WORK
We are currently implementing a more extensive PenPLAF,
which would make existing Java Swing applications more
usable with pens. Besides eliminating the need for double-
taps and making some widgets larger, we are also looking at
integrating handwriting recognition and other interpreters
with the existing Swing widgets.

Furthermore, we are working on making interpreters more
sophisticated. For example, we are looking at mechanisms
for adding in notions of time, to make it easy for developers
to specify operations in which the pen must be held down
for a period of time. We are also examining techniques to
make it easier for developers to manage ambiguity. This
ranges from implementing reusable, generic probabilistic
data structures and algorithms, to interaction techniques,
such as the mediators suggested by Mankoff [28].

SUMMARY
We introduced SATIN, a Java-based toolkit for developing
informal pen-based user interfaces. By informal interfaces,
we mean user interfaces that step away from the rigidity of
traditional user interfaces, supporting instead the flexibility
and ambiguity inherent in natural modes of communication.
As a reusable toolkit, SATIN provides features common to
many informal pen-based prototypes, including scenegraph
support, zooming, multiple views, and stroke manipulation.

We have also described a generalized software architecture
for informal pen-based applications that can handle
sketching and gesturing in an extensible manner. This
architecture consists of separating recognizers, which are
components that classify strokes, from interpreters, which
are components that process and manipulate strokes.
Furthermore, multi-interpreters allow developers to specify
policies of which interpreters are used and when they are
used. Combined together, these features in the SATIN
toolkit simplify application implementation.

With respect to input and output for pens, we are at a stage
similar to that of windowing toolkits in the early 1980s.
There are many bits and pieces here and there, but no
cohesive frameworks to support the creation of effective
informal pen-based applications. We hope that SATIN will
be a significant step towards creating such a framework.

SATIN has been publicly released and can be found at:
http://guir.berkeley.edu/projects/satin

ACKNOWLEDGEMENTS
We would like to thank Raecine Sapien, Ben Schleimer
Mark Newman, James Lin, Will Lee, Benson Limketkai,
Carol Hu, and Juan Valencia for their feedback and for
improving the system. Lastly, we would like to thank Ben
Bederson for giving us ideas and directions to explore early
in the development of SATIN.

REFERENCES
1. Abowd, G., et al. Investigating the Capture, Integration and

Access Problem of Ubiquitous Computing in an Educational
Setting. In Proceedings of CHI ’98. Los Angeles, CA. pp. 440-
447, April 18-23 1998.

2. Apple, Newton Toolkit User’s Guide. 1996.
3. Bederson, B.B. and J.D. Hollan. Pad++: A Zooming

Graphical Interface for Exploring Alternative Interface
Physics. In Proceedings of the ACM Symposium on User
Interface Software and Technology: UIST ’94. Marina del
Rey, CA. pp. 17-26, November 2–4 1994.

4. Bederson, B.B. and B. McAlister, Jazz: An Extensible
2D+Zooming Graphics Toolkit in Java. Tech Report HCIL-
99-07, CS-TR-4015, UMIACS-TR-99-24, University of
Maryland, Computer Science Dept, College Park, MD 1999.

5. Callahan, J., et al. An Empirical Comparison of Pie vs. Linear
Menus. In Proceedings of Human Factors in Computing
Systems. pp. 95-100 1988.

6. Carr, R. and D. Shafer, The Power of PenPoint: Addison-
Wesley, 1991.

7. Chang, B. and D. Ungar. Animation: From Cartoons to the
User Interface. In Proceedings of UIST’93. Atlanta, GA: ACM
Press. pp. 45-55 1993.

8. Palm Computing., Developing Palm OS 2.0 Applications.
9. Damm, C.H., K.M. Hansen, and M. Thomsen. Tool Support for

Cooperative Object-Oriented Design: Gesture Based Modeling
on an Electronic Whiteboard. CHI Letters: Human Factors in
Computing Systems, CHI ’2000, 2000. 2(1): p. 518-525.

10. Davis, R.C. and J.A. Landay, Making sharing pervasive:
Ubiquitous computing for shared note taking. IBM Systems
Journal, 1999. 38(4): p. 531-550.

11. Davis, R.C., et al. NotePals: Lightweight Note Sharing by the
Group, for the Group. In Proceedings of CHI ’99. Pittsburgh,
PA. pp. 338-345, May 15-20 1999.

12. Forsberg, A., M. Dieterich, and R. Zeleznik. The Music
Notepad. In Proceedings of UIST98. San Francisco: ACM
Press 1998.

13. Gamma, E., et al, Design Patterns: Elements of Reusable
Object-Oriented Software. Reading, MA: Addison-Wesley,
1995.

14. Gross, M.D. and E.Y. Do. Ambiguous Intentions: A Paper-
like Interface for Creative Design. In Proceedings of ACM
Symposium on User Interface Software and Technology.
Seattle, WA. pp. 183-192, November 6–8 1996.

15. Hearst, M.A., M.D. Gross, J.A. Landay, and T.E. Stahovich.
Sketching Intelligent Systems. IEEE Intelligent Systems,
1998. 13(3): p. 10-19.

16. Henry, T.R., S.E. Hudson, and G.L. Newell. Integrating
Gesture and Snapping into a User Interface Toolkit. In
Proceedings of UIST90: ACM Press 1990.

17. Hudson, S.E. and I. Smith. Ultra-Lightweight Constraints. In
Proceedings of UIST96: ACM Press 1996.

18. Igarashi, T., et al. An Architecture for Pen-based Interaction
on Electronic Whiteboards. To Appear In Proceedings of
Advanced Visual Interfaces. Palermo, Italy May 2000.

19. Igarashi, T., S. Matsuoka, S. Kawachiya, and H. Tanaka.
Pegasus: A Drawing System for Rapid Geometric Design. In
Proceedings of CHI98. Los Angeles: ACM Press. 1998.

20. Igarashi, T., S. Matsuoka, and H. Tanaka. Teddy: A Sketching
Interface for 3D Freeform Design. In Proceedings of ACM
SIGGRAPH99. Los Angeles: ACM Press. pp. 409-416 1999.

21. Kramer, A. Dynamic Interpretations in Translucent Patches. In
Proceedings of Advanced Visual Interfaces. Gubbio, Italy,
1996.

22. Kramer, A. Translucent Patches – Dissolving Windows. In
Proceedings of ACM Symposium on User Interface Software
and Technology. Marina del Rey, CA. November 2–4 1994.

23. Landay, J.A. and B.A. Myers. Extending an Existing User
Interface Toolkit to Support Gesture Recognition. In
Proceedings of INTERCHI ’93. Amsterdam, The Netherlands.
pp. 91-92, April 24–29 1993.

24. Landay, J.A. and B.A. Myers. Interactive Sketching for the
Early Stages of User Interface Design. In Proceedings of CHI
’95. Denver, CO. pp. 43-50, May 7–11 1995.

25. Lassiter, J. Principles of Traditional Animation Applied to 3D
Computer Animation. In Proceedings of ACM SIGGRAPH
’87: ACM Press. pp. 35-44 1987.

26. Lin, J., M. Newman, J. Hong, and J. Landay. DENIM:
Finding a Tighter Fit Between Tools and Practice for Web
Site Design. CHI Letters: Human Factors in Computing
Systems, CHI '2000, 2000. 2(1): p. 510-517.

27. Long, A.C., J.A. Landay, and L.A. Rowe. Implications For a
Gesture Design Tool. Proceedings of CHI ’99. Pittsburgh, PA.
pp. 40-47, May 15-20 1999.

28. Mankoff, J., S.E. Hudson, and G.D. Abowd. Providing
Integrated Toolkit-Level Support for Ambiguity in

Recognition-Based Interfaces. CHI Letters: Human Factors in
Computing Systems, CHI ’2000, 2000. 2(1): p. 368-375.

29. Microsoft, Microsoft Windows for Pen Computing -
Programmer's Reference Version 1: Microsoft Press, 1992.

30. Microsoft, MSDN Library: Windows CE Documentation.
http://msdn.microsoft.com/library/default.asp

31. Sun Microsystems. Java Foundation Classes.
http://java.sun.com/products/jfc

32. Moran, T.P., P. Chiu, and W. van Melle. Pen-Based
Interaction Techniques For Organizing Material on an
Electronic Whiteboard. In Proceedings of UIST ’97. Banff,
Alberta, Canada. pp. 45-54, October 14-17 1997.

33. Moran, T.P., P. Chiu, W. van Melle, and G. Kurtenbach.
Implicit Structures for Pen-Based Systems Within a Freeform
Interaction Paradigm. In Proceedings of CHI'95. Denver, CO.
May 7–11 1995.

34. Myers, B. et. al., Garnet: Comprehensive Support for
Graphical, Highly-Interactive User Interfaces. IEEE
Computer, 1990. 23(11): p. 289-320.

35. Myers, B. and D. Kosbie. Reusable Hierarchical Command
Objects. In Proceedings of CHI’96. Vancouver, BC, Canada:
ACM Press 1006.

36. Myers, B., et al., The Amulet Environment: New Models for
Effective User Interface Software Development. IEEE
Transactions on Software Engineering, 1996. 23(6): p. 347-365.

37. Mynatt, E.D., T. Igarashi, W.K. Edwards, and A. LaMarca.
Flatland: New Dimensions in Office Whiteboards. In
Proceedings of CHI99. Pittsburgh, PA: ACM Press 1999.

38. Rubine, D., The Automatic Recognition of Gestures,
Unpublished Ph.D. Carnegie Mellon, Pittsburgh, PA, 1991.

39. Rubine, D., Specifying Gestures by Example. Computer
Graphics, 1991. 25(3): p. 329-337.

40. Saund, E. and T.P. Moran. A Perceptually-Supported Sketch
Editor. In Proceedings of the ACM Symposium on User
Interface Software and Technology: UIST ’94. Marina del
Rey, CA. pp. 175-184, November 2–4 1994.

41. Schilit, B.N., G. Golovchinksy, and M.N. Price. Beyond
Paper: Supporting Active Reading with Free Form Digital Ink
Annotations. In Proceedings of CHI ’98. Los Angeles, CA.
April 18-23 1998.

42. Truong, K.N., G.D. Abowd, and J.A. Brotherton.
Personalizing the Capture of Public Experiences. In
Proceedings of UIST'99. Asheville, NC 1999.

43. van de Kant, M., et al. PatchWork: A Software Tool for Early
Design. In Extended Abstracts of CHI ’98. Los Angeles, CA.
pp. 221-222, April 18-23 1998.

44. Weber, K. and A. Poon. Marquee: A Tool for Real-Time
Video Logging. In Proceedings of CHI ’94. Boston, MA. pp.
58-64, April 24-28 1994.

45. Whittaker, S., P. Hyland, and M. Wiley. Filochat:
Handwritten Notes Provide Access to Recorded
Conversations. In Proceedings of CHI ’94. Boston, MA. April
24-28 1994.

46. Wilcox, L.D., B.N. Schilit, and N.N. Sawhney. Dynomite: A
Dynamically Organized Ink and Audio Notebook. In
Proceedings of CHI'97. Atlanta, GA. pp. 186-193, March 22-
27 1997.

47. Zeleznik, R.C., K.P. Herndon, and J.F. Hughes, SKETCH: An
Interface for Sketching 3D Scenes. Computer Graphics
(Proceedings of SIGGRAPH '96), 1996.

