
1

Smartening the Crowds: Computational Techniques for
Improving Human Verification to Fight Phishing Scams

Gang Liu1,2, Guang Xiang2, Bryan A. Pendleton2, Jason I. Hong2,3, Wenyin Liu1

1Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
2School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213

3Wombat Security Technologies, 4620 Henry Street, Pittsburgh, PA 15213

gangliu@student.cityu.edu.hk, {guangx, jasonh}@cs.cmu.edu, csliuwy@cityu.edu.hk

ABSTRACT
Phishing is an ongoing kind of semantic attack that tricks victims
into inadvertently sharing sensitive information. In this paper, we
explore novel techniques for combating the phishing problem
using computational techniques to improve human effort. Using
tasks posted to the Amazon Mechanical Turk human effort market,
we measure the accuracy of minimally trained humans in
identifying potential phish, and consider methods for best taking
advantage of individual contributions. Furthermore, we present
our experiments using clustering techniques and vote weighting to
improve the results of human effort in fighting phishing. We
found that these techniques could increase coverage over and were
significantly faster than existing blacklists used today.

Categories and Subject Descriptors
D.4.6 [Security and Protection]; K.4.4 [Electronic Commerce];
H.5.2 [User Interfaces]

General Terms
Algorithms, Security, Human Factors

Keywords
Phishing, wisdom of crowds, crowdsourcing, clustering, voting

1. INTRODUCTION
Many problems still require human intelligence to solve. Some
require human intelligence as an intrinsic part of the process, such
as in a democratic election. Others have no known technical
solutions which match human performance, such as image
labeling [1]. In the case of certain kinds of computer security tasks,
it has been suggested that it is too risky to take the human entirely
out of the loop [7]. No matter what the problem, it is important to
consider how, when, and how much human effort is necessary to
determine an appropriate and sufficient solution.

One particularly difficult to automate problem that currently
requires human intelligence is identifying phishing scams (though
primarily for reasons of liability, as we discuss below). The most
common form of phishing is where attackers build convincing
imitations of legitimate websites and lure unsuspecting victims to
divulge sensitive personal information. Phishing attacks are
expensive to society. Moore and Clayton estimated that the
minimum loss to consumers was $320 million annually [25]. Note

that this number does not include loss of productivity, cost of
maintaining a helpdesk to field calls, recovery costs, or damage to
an organization’s reputation.

Many feature-based algorithms have been developed to
automatically detect phishing sites, for example [9][21][42]. The
advantage of heuristics and machine learning approaches is that
they can rapidly identify attacks with no human involvement.
However, these methods are prone to false positives (incorrectly
labeling legitimate sites as phish) as well as false negatives
(incorrectly labeling phishing sites as safe). False positives are
particularly of concern. Sheng et al have observed that industry
has been slow to adopt heuristics primarily from concerns over
liability due to false positives [30].

An alternative that has been widely adopted by industry is human-
verified blacklists. These blacklists contain URLs of sites that
have been manually verified as phish. Three well-known phishing
blacklists are operated by Microsoft, Google, and PhishTank. The
main advantage of blacklists is that there are very few, if any,
false positives, thus reducing the liability risk of incorrectly
labeling a legitimate site as a phishing attack. Another advantage
is the ability to detect new kinds of phishing attacks without
explicit retraining. However, human verification is inherently
more labor intensive and can be much slower in detecting attacks.
Finally, human verification can also be overwhelmed by simply
generating more phishing sites and/or URLs for phishing sites, as
has been done with automated phishing attack toolkits and “fast
flux” techniques that hide a phishing site behind a large number of
compromised hosts to make detection more difficult [35].

 January 2010 January 2011
Submissions 18,836 16,019
Total Votes 54,847 69,648
Valid Phish 5,751 12,789
Invalid Phish 518 549
Median Time 12hrs 10min 2hrs 23min
Table 1. PhishTank self-reported statistics. Submissions
require a minimum of 4 votes before labeling, with at least
70% agreement (some votes weighted differently). Median
time has improved significantly.

Of particular interest to us here is the blacklist maintained by
PhishTank, which uses a wisdom of crowds approach. Volunteers
submit potential phish and also vote on submitted URLs,
identifying them as phish or legitimate. According to PhishTank’s
own statistics [33], out of 1.1M URL submissions from volunteers,
there were 4.3M votes, resulting in about 646k identified phish
between October 2006 and February 2011.

Copyright is held by the author/owner. Permission to make digital or
hard copies of all or part of this work for personal or classroom use is
granted without fee.

Symposium On Usable Privacy and Security (SOUPS) 2011, July 20-22,
2011, Pittsburgh, PA, USA.

2

PhishTank has improved in performance as shown in Table 1.
From Jan 2010 to Jan 2011, the median time to identify a phish
has dropped from 12 hours to about 2.4 hours. The percentage of
valid phish identified has also increased, going from 5,751 out of
18,836 (30.5%) in January 2010 to 12,789 out of 16,019 (79.8%).

We have two observations. First, for January 2011, there are still
2,681 URLs not identified as phish or legitimate. Most of these
URLs represent “wasted” votes which did not reach the required
number of votes for verification. Optimally, with 4 votes required
to identify a phish, 69,648 votes could have identified a maximum
of 17,412 labels rather than the 12,789 phish and 549 legitimate
sites actually identified. Second, a median delay of 2.4 hours still
represents a significant gap in protection, as most victims of a
phishing scam fall for it within 8 hours of the start of the attack
[19]. Furthermore, 2.4 hours only represents the delay from when
the URL was first submitted to PhishTank, meaning that the phish
was in the wild longer. Lastly, 2.4 hours represents the median,
with past work suggesting that there is a power-law distribution in
identifying and taking down phish [26].

We believe a promising solution is to improve the wisdom of
crowds by combining manually verified blacklists with
computational techniques, to keep false positives extremely low
while also reducing the time to verify attacks. Such an approach
would benefit not only sites like PhishTank, but also other
manually-verified blacklists such as Google and Microsoft. A
hybrid approach could also help with forensic analysis (such as
identifying trends in phishing attacks and attacked brands), as well
as help reduce the labor in maintaining the many databases that
store data about current and past phishing attacks.

In this paper, we present the results of a study that we conducted
with Aquarium, an experimental system we developed on top of
Amazon’s Mechanical Turk system for gathering human-verified
labels on potential phishing sites. From a broad perspective, this
paper looks at how to apply crowdsourcing techniques to a
security task, and how to use computational techniques to improve
the performance of a crowd. More specifically, this paper makes
the following research contributions:

1. We present the design of Aquarium, a novel phish detection
approach that makes use of two points in this design space,
namely (a) clustering similar phish together and having
minimally trained participants vote on clusters rather than
individual phish, and (b) developing a vote weighting
mechanism based on a participant’s historical performance.

2. We present an evaluation of our two approaches, examining
time to label a URL, accuracy, coverage, and monetary cost.
Through a two-week study of verification of suspicious URLs,
we show that our approach achieves a TP of 95.4% with a FP of
0%, with a median time to label of 0.7 hours.

3. We present our voteweight formula and the results of our
parameter tuning, which can reduce the median time to label a
URLs down to 0.5 hours.

2. RELATED WORK
Work on combating phishing can be categorized into four major
approaches: making the problem invisible to end users, improving
the design of user interfaces to help end-users make better
decisions, improving end-user training, and leveraging wisdom of
crowds.

2.1 Making it Invisible to End-Users
2.1.1 Algorithms for Detecting Phish
The main goal of this anti-phishing strategy is to keep users from
ever seeing potential phishing attacks. Example past work in this
category includes phishing email filters and phishing web page
detection (which is complemented by taking down the offending
web site). Here, we will focus the related work on algorithms for
automatically detecting phishing web pages.

One class of algorithms uses URL features to detect phishing web
pages. For example, Garera et al [9] categorized phishing URLs
into four groups, each capturing a common phishing pattern, and
used a set of fine-grained features from the phishing URLs
together with other features to detect phish.

Another complementary class of algorithms makes use of features
based on the HTML content to detect phish. For example, in [21],
Ludl et al applied a J48 decision tree algorithm on 18 features
solely based on the HTML and URL. Another feature-based work
exploring the HTML content is CANTINA [42], in which Zhang
et al proposed a content-based method using a simple linear
classifier on top of eight features.

A similar area of work examines the visual and image elements to
protect users from phishing attacks. To exploit visual similarity
between web pages, Liu et al [20] proposed a method using three
similarity metrics, i.e., block level similarity, layout similarity and
overall style similarity, based upon web page segmentation. A
page is reported as phishing if any metric has a value higher than a
threshold. SpoofGuard [4] used image check as one feature,
examining the domain name and the existence of popular target
site logos on a given web page. Medvet et al [23] computed a
signature using the visible text, visible images, and overall visual
look-and-feel to compare the suspected pages with their legitimate
counterparts. Recently, Chen et al [3] took a holistic view of the
visual similarity between web pages, and applied compression
algorithms on the pages as indivisible entities to detect phish.

Other techniques have been proposed that detect phish by
inferring the target brand being phished. For example, Pan et al
[27] proposed a method that extracts the web page identity from
key parts of the HTML via the x2 test, and compiled a list of
features based on the extracted identity. Xiang et al [37] proposed
a hybrid detection model that recognizes phish by discovering the
inconsistency between a web page’s true identity and its claimed
identity via search engine and information extraction techniques.

Our work with Aquarium uses minimal algorithms to detect phish.
Instead, it relies on optimizing human verification by weighting
more effective participants more highly, and by clustering similar
web pages together. Perhaps the closest work to Aquarium is our
past work in augmenting existing human-verified blacklists by
using shingling (a popular near-duplicate detection algorithm used
by search engines) to compare a given page to known phish [39].
In contrast, Aquarium looks at techniques for improving the
verification of blacklists in the first place.

2.1.2 Algorithms for Managing Information Flow
Researchers have also proposed approaches to guard users against
phishing attacks by monitoring the flow of information such as
passwords. For example, AntiPhish [17] watches the password
field of HTML forms and searches the domain of the site being
visited among a list of previous logins when an identical password

3

was used, warning users of potential attacks if a domain match is
not found. Rosiello et al proposed an algorithm to address
weaknesses in AntiPhish [28]. When the user enters in a password,
their system checks the similarity of the HTML between the web
page currently being visited and one previously visited before that
used the same password. PwdHash [29] uses a hash value
computed from the user's password and the website domain when
authenticating, rather than the plain text password. This approach
makes password stealing through phishing much harder. Yue et al
[40] designed a client-side tool called BogusBiter, which sends a
large number of bogus credentials to suspected phishing sites,
hiding the real credential among the bogus ones.

2.1.3 PhishTank and Manually-Verified Blacklists
There are a number of phishing blacklists available. Perhaps the
most popular are offered by Microsoft, Google, and PhishTank.
Zhang et al presented an evaluation of these and other automated
detection tools [41], showing that there was still many phish not
detected by any tools even after 24 hours.

We will focus our description on PhishTank. PhishTank [33] is an
open anti-phishing site launched in October 2006 to provide
parent company OpenDNS with a reliable phishing dataset.
Anyone who creates an account can submit potential phish and
vote on submitted phish. Phish with enough verification votes are
added to a blacklist. Submitted phish that do not gather a
sufficient number of votes may never get a final label, and
PhishTank does not publish this list of unknown results.
Submissions that either do not have enough votes to verify as
phish or are labeled as legitimate are still findable on the site but
are not included in any further processing.

PhishTank automatically removes sites that are down or not
responding from the verification queue. PhishTank attempts to
generate a thumbnail for each submitted site, as well as collecting
other technical details about the hosting company and hosting
network, to help users determine the nature of a submitted site.

There have been studies in the past examining PhishTank. The
closest work to ours is by Moore and Clayton, who found that
PhishTank’s participation follows the common power-law pattern
seen in many online sites, and discovered that users who only
periodically participate are more prone to making errors in
labeling [26]. Moore and Clayton offer three lessons for
improving PhishTank: (1) addressing power-law issues of
participation, (2) having crowd-source decisions be hard to guess,
and (3) not having users work harder than necessary. Our work
somewhat addresses the first issue, and tackles the third issue
directly. Our work explores individual accuracy in a similar
setting, while also considering approaches to further improve the
performance and reliability of a wisdom of crowds approach. We
examine ways of managing the second issue in our discussion.

2.2 Improving the User Interface
Another primary strategy for anti-phishing is to improve user
interfaces and help users make better decisions. Examples of past
work here include Dhamija et al’s work in dynamic security skins
[5], Wu et al’s Web Wallet [36], and Egelman et al’s study on
browser anti-phishing warnings. Given that our work focuses on
combining human verification with computational techniques, we
will not discuss these past projects in detail.

2.3 Training End-Users
The third primary strategy for anti-phishing is to train end-users.
Examples of past work here include Anti-Phishing Phil, a game
designed to engage the participant while progressively exposing
them to more sophisticated phish-identification training [31], and
PhishGuru, which uses simulated phishing attacks to train end-
users [19]. Our work with Aquarium made use of Anti-Phishing
Phil to train participants, and focuses on using minimally trained
participants to help identify phishing web sites.

2.4 Leveraging Wisdom of Crowds
There has been a substantial amount of work looking at how to
organize people online in an effective manner. In particular, in
recent years, there has been rapid growth in research investigating
how to build systems that leverage human effort for tasks that are
too difficult for computers to do today.

Some research has examined specific domains, for example using
games for image labeling tasks [1] or tagging shared documents
[11][24]. Other research has investigated how to improve people’s
contribution to a group, for example by assigning work to users in
a way that makes the user believe their work is uniquely matched
to his or her capabilities [16]. SuggestBot generated suggestions
for articles to edit in Wikipedia based on machine learning
techniques, to increase participation [2].

Our work with Aquarium does not examine motivation. Instead,
our work looks at how to improve the wisdom of crowds for a
computer security task, to improve the results of human effort by
applying computational techniques. Our work focuses on effective
use of participants rather than increasing participation, by
applying computational techniques such as clustering and vote
weight.

There have also been several papers that have either used or have
examined the use of Mechanical Turk for user studies. For
example, Heer and Bostock [12] showed that MTurk was effective
for crowdsourcing evaluations of visualizations. Kittur et al [18]
used MTurk to collect ratings on the quality of Wikipedia articles,
and offered guidelines for improving worker performance. Mason
and Watts [22] investigated the effects of compensation for simple
tasks, finding that increasing compensation increased the quantity
of responses but not quality. Ipeirotis [15] examined the
distribution of compensation for tasks, completion rates of tasks
on different days, and the distribution of time to complete tasks.
Relevant to our work here, Ipeirotis found that the distribution of
completion times follows a power-law, where most tasks are
finished quickly but a few tasks take very long. Partly for this
reason, in our experiment we posted new tasks every day. Our
work in this paper looks at how to apply crowdsourcing
techniques to a security task, in this case, phishing.

3. IMPROVING HUMAN EFFORT WITH
COMPUTATIONAL TECHNIQUES
3.1 Improving Human Effort
Here, we outline a design space for improving human effort in
phish identification. This design space is not comprehensive, but
rather sketches out some of the opportunities at hand.

One area for improvement is modifying the order in which
suspicious URLs are shown to participants. For example, one
could show a submission that is closest to completion, newest

4

submissions, oldest submissions, or even random. One could also
tailor what phish a participants sees based on their presumed
knowledge of that brand or past votes. PhishTank’s ordering has
not been formally published; however, it does not seem to be by
recency only. With Aquarium, we order submissions first by
closest to completion and then by newest.

Another area for improvement is modifying how submissions are
shown, for example showing them one-by-one or showing similar
submissions together. In Aquarium, we compare the effectiveness
of both of these approaches. We believe showing groups of
suspicious URLs should help in two ways. First, one can apply a
vote to multiple suspicious URLs simultaneously rather than
going through them individually, mitigating the effect of attackers
trying to overwhelm the people verifying these phishing sites.
Second, for unfamiliar brands, seeing multiple copies of the same
page, each of which have unusual URLs, can help participants in
inferring whether or not the cluster is a phish.

A third possible intervention is to adjust the threshold for when a
submission is labeled. PhishTank’s threshold has not been
formally published, but appears to require at least 4 votes
minimum and at least 70% agreement between voters (with some
votes weighted more than others). One could imagine many
variants of this, including for example changing the minimum
number of votes, changing the level of agreement needed (e.g.
from 70% to 80%), changing how votes are weighted, and even
having an automated algorithm provide a vote. Changing this
threshold could affect accuracy, the time it takes to successfully
label a submission, and breadth of coverage. In this paper, we
experimented with changing how participants’ votes are weighted.

A fourth kind of intervention is to find better ways of motivating
people to submit more votes or more accurate votes. As we noted
in the related work section, there have been several papers looking
at how to motivate people to contribute more work and higher-
quality work. In the domain of phishing, some possibilities
include showing specific brands to people who either care a lot or
know a lot about that brand, having competitions, organizing
people into teams of voters with specific goals, and virtual
rewards such as achievements or leaderboards. We do not
investigate these issues in this current paper, and instead use
MTurk’s payment system.

3.2 Aquarium System Architecture
Our system architecture is shown in Figure 1. We first crawl the
web pages of URLs submitted to PhishTank that have not yet been
verified as phish. These URLs may or may not have any votes on
them. PhishTank’s API and web page do not show how many
people have voted on unverified URLs. We submit these URLs as
tasks to Amazon’s Mechanical Turk, where qualified participants
are paid to label them as phish or legitimate. Aquarium then
clusters web pages by similarity before they are presented to users.
We currently use DBSCAN and shingling, a common algorithm
often used by search engines for detecting duplicate pages. To be
qualified on Mechanical Turk, we required participants to achieve
a certain score on the Anti-Phishing Phil micro game [31]. As
participants cast votes, we weight those votes based on their
history of votes.

In the first step, we collect URLs submitted to PhishTank as our
test dataset. We use a small whitelist to filter legitimate web pages,
to reduce effort by users. In February 2011, we collected 2,784

domains to whitelist from Google safe browsing [13] and 424
from millersmiles [14]. In our past research, we found that this
combination of whitelist works reasonably well with minimal
false positives [37][39].

Next, our system clusters similar phish together. We set the
shingling similarity threshold to 0.65, a figure that worked well in
our past work [39]. To demonstrate the potential of clustering,
using all of the data crawled from PhishTank, we found 3,180 out
of 3,973 web pages could be grouped into 392 clusters, with
cluster size ranging from 2 to 153 URLs. Note that these clusters
do not take into account time. For Aquarium, we cluster similar
URLs currently available at that time. We also made the
maximum size of clusters 25, high enough that clusters would be
useful but low enough so that mistakes (or malicious votes) would
have limited damage. The distribution of clusters after capping at
25 is shown in Figure 2.

Submissions are then submitted to Amazon’s Mechanical Turk
(MTurk) system as Human Intelligence Tasks (HITs) for
verification. We submit two kinds of HITs. The first lets
participants verify submissions one-by-one. The second one lets
participants verify clusters of phish (see Figure 3). Participants
saw a given URL at most once regardless of HIT condition.

Ideally, as participants vote on submissions, we can apply our
voteweight model to modify the impact of a user’s vote. Currently,
we do not do this, and in this paper only examined the effects of
voteweight after the fact. In the voteweight model, we consider
two factors, namely a user’s performance on verification and the
time when a user casts a vote. Briefly, people who vote early and
have a high accuracy in voting correctly are weighted more. We
factor in time because an old vote does not tell us as much about a
user’s current performance as a more recent vote. The exact
formula used is described in Section 6.1.

Figure 1. System architecture for Aquarium. We first crawl
unverified URLs from PhishTank and check them against a
whitelist. We download the web pages of URLs not on the
whitelist. We use DBSCAN and shingling to cluster similar
pages. We submit these clusters to Amazon’s Mechanical Turk
for verification by participants. Finally, each participant’s
vote weight is adjusted based on past performance.

5

(a)

(b)
Figure 2. The distribution of clusters in our time-based
approach to grouping. The top figure (a) shows that there are
many small clusters of size 2 which quickly tail off. The
bottom (b) shows the total number of URLs in different size of
clusters. For example, we have 28 clusters of size 25, meaning
that these clusters represent 28 x 25 = 700 URLs.

Figure 3. A sample task on Aquarium. Users can see the URL
and screenshot of a suspicious web page and then label it as
phish, not phish, or don’t know. Users in the Cluster Condition
(as shown above) could see up to 25 similar sites all at once.
Participants in the Cluster Condition could “mark all as
phish” or “mark all as not phish.”

Like PhishTank, Aquarium requires a minimum of 4 votes. If the
majority of votes for that URL identify it as phish, then we label
that URL as phish (this mimics PhishTank’s threshold of 70%
with 4 votes). The same is true with legitimate URLs. However, if
a URL has equal votes both for phish and legitimate, we label it as
unidentified. In the Control Condition, there were 153 URLs
(3.9%) not labeled due to tie votes. In the Cluster Condition, there
were 127 (3.2%). Unlike PhishTank, we do not continue to gather
more votes from people. This is primarily due to limitations with
MTurk, which make it very difficult to have a variable number of
workers per HIT. Although this does place caveats on our results,
we argue that our results are very strong and should still
generalize despite this weakness.

3.3 Measuring Page Similarity with Shingling
To cluster effectively, we need a way of measuring similarity. We
could easily do exact page comparisons or use hash functions.
Given that many phishing web pages are created using toolkits,
this simple approach should work reasonably well today. In fact,
in our early evaluations, we found that hash codes worked
reasonably well for clustering. However, exact matching is very
brittle, in that changing a single byte would lead to a non-match.

As such, we opted to use an approximate matching algorithm.
Shingling is a popular page duplication algorithm invented for
search engines. The core idea behind shingling is to break up web
pages into n-grams and then compare how many n-grams two
pages have in common. Here, n-grams are a term from natural
language processing, and are subsequences of n contiguous tokens
from the text. For example, sample text “shop without exposing
your financial information” has the following 3-grams: {shop
without exposing, without exposing your, exposing your financial,
your financial information}.

Shingling employs a metric called resemblance to calculate the
percent of common n-grams between two web pages. Let S (p)
denote the set of unique n-grams in page p and the similarity
metric resemblance r(q, d) for pages q and d is then defined as:

     
   dSqS

dSqS
dqr




, (1)

This approximate matching approach first breaks each page into a
set of unique n-grams, and saves them in memory to speedup
runtime performance. After excluding good pages whose domains
appear in the whitelist, we compute resemblance r(q, d) for a
query page q, and fire an alarm whenever r(q, d) exceeds a
threshold t. We used the same threshold as in our past work [39],
namely 0.65. The average time cost of calculating similarity of
two web pages on a laptop with 2GHz dual core CPU with 1 GB
of RAM is 0.063 microseconds (SD=0.05).

3.4 Clustering Algorithm
Shingling is only a page similarity algorithm, so we still need a
way of clustering similar pages together. In Aquarium, we used
the well-known density-based DBSCAN algorithm. We chose this
clustering method for two reasons. First, it can select any data
point as the start point for clustering. Second, the algorithm only
needs one scan of the database to finish clustering. The concepts
used in our approach are described as follows:

6

Eps: Minimum similarity of the neighborhood of the cluster.

MinPts: Minimum number of points in an Eps-neighborhood of
that point.

core point (CO): Point is in the interior of a density-based cluster.

border point: A border point is not a core point, but falls within
the neighborhood of a core point.

directly-density-reachable (DDR): If point x is CO, point y is in
x’s Eps-neighborhood.

density-reachable: There exists a chain of DDR objects from
point x to point y.

Based on the above, we present the clustering method as follows:
1) Given a submission P, quantify the similarity from P to each
submission in the set through shingling.

2) Select P as the start point and retrieve all points density-
reachable from P with respect to Eps and MinPts.

3) If P is a core point, a cluster is formed.

4) If P is a border point, no points are density-reachable from P
and DBSCAN visits the next submission.

5) Continue until all of submissions have been processed.

We tested on our data with different values of Eps from 0.6 to 1
by steps of 0.5 and MinPts of 2. With Eps at 0.60, the accuracy is
98.8% (we visually scanned all of the generated clusters).
However, accuracy was 100% with Eps from 0.65 to 1. Hence, for
our clustering, we chose Eps=0.65 and MinPts=2. The time cost of
clustering over all 3,973 pages collected was about 1 second.

3.5 Incremental Update of the Data
Since there is a stream of suspicious URLs, the clusters discovered
by our method need to be periodically updated. Clustering can be
expensive in terms of time. However, it is not necessary to re-
cluster the whole database each time. We use following method to
assign a new URL to a cluster. We first compare the content
similarity of each new submission with those of the dataset.

 If there is no similar web page, we create a new cluster for
the new submission.

 If the similarity is above the given threshold and all similar
web pages are in the same cluster, we assign the new
submission to this cluster (unless the cluster is at its
maximum size).

 If there are many similar webpapes in different clusters, we
choose the largest cluster that is not at its maximum size.

When a new submission is grouped in a cluster, it has zero votes
and does not inherit the votes of any other submissions in the
same cluster. It is simply presented with other available similar
submissions of the cluster for verification.

4. ONLINE PHISH-LABELING
EXPERIMENT
We conducted an experiment to evaluate the effectiveness of our
ideas. More specifically, we wanted to (a) assess how well
clustering worked versus labeling each submission individually, (b)
determine the effectiveness of various approaches for weighting
votes, and (c) compare the effectiveness of Aquarium to existing
blacklists in terms of time, accuracy, and coverage.

In an early pilot test of this work before clustering was
implemented, we found that people often did not know certain
brands and had a hard time labeling a site as phish or legitimate
the first time they saw that brand. However, we also saw that
people realized a site was phish after seeing the same site for the
third or fourth time. Furthermore, we saw a large number of
visually duplicate sites in our pool of URLs. This insight led us to
add clustering as a possible way of improving accuracy as well as
reducing time and overall effort.

4.1 Gathering Data with Mechanical Turk
Since PhishTank does not make its raw voting data easily
available, and since we could not directly modify the PhishTank
site, we created Aquarium to mimic the functionality of
PhishTank. We used PhishTank’s API to sample live data from
the stream of sites being submitted. We then submitted both
individual submissions as well as clusters of submissions as
Human Intelligence Tasks (HITs) to Amazon’s Mechanical Turk
(MTurk), an online service designed to allow work requesters to
quickly hire web-based workers by posting tasks for a set price.
Workers were paid $0.01 for each HIT.

Normally, having MTurkers simply label data does not require an
IRB at our university. However, since we had designed an
intervention which was the subject of an experiment, we
submitted an IRB, which was approved as a minimal risk study.

To compare Aquarium with PhishTank, we first collected
unverified URLs submitted to PhishTank from Jan. 1, 2011 to Jan.
14, 2011. Unverified URLs are those that do not have enough
votes to be verified as legitimate or phish. We also captured a
screenshot of each submission when they were alive. We replayed
this data as HITs over a different period of 14 days from Feb. 11
to Feb. 24 and mapped them to the submissions we downloaded
from PhishTank from Jan. 1 to Jan. 14. Tasks were presented to
users for verification only after the same time corresponding to
when they were previously submitted to PhishTank. For example,
suppose a suspicious URL was submitted to PhishTank at 2:51 am,
Jan. 3, 2011. In our study, the task of such URL could be viewed
by our participants only after 2:51 am, Feb. 13, 2011.

The Control Condition and the Cluster Condition were listed as
separate HITs. Both conditions had the same exact data.
Participants could move back and forth between the conditions.
However, a participant only saw a given URL at most once. We
chose this experimental design primarily because Mechanical
Turk offers no facilities for enforcing between-subjects designs.
Furthermore, we felt that there would be minimal learning effects
if people switched between conditions.

To avoid having few votes at the beginning of the HIT and too
many rushed votes at the end (which we saw in an earlier iteration
of the experiment), we added a new HIT each day rather than
having a single HIT last two weeks.

Since our task is one of identifying intentionally misleading
websites, sites which criminals have deliberately built to deceive,
we required our participants to complete a short training task
using the first two rounds of Anti-Phishing Phil, which has been
shown to increase phishing recognition in those who play it [31].

Though our model site, PhishTank, does not explicitly train users,
we assume that users who participate there are more likely to be
familiar with how to identify phish than our users recruited
through MTurk, because of the selection bias of a volunteer opting

7

to donate time to participate. We also chose to train users to
decrease the likelihood of low identification performance that
lower participation users exhibit on PhishTank [26]. Once users
completed both rounds of Anti-Phishing Phil, they were then
eligible to complete our HITs. Participants who completed the
game spent an average of 5.2 minutes (SD=6.5 minutes).

4.2 Task Design for Mechanical Turk
Figure 3 shows the Aquarium user interface that was presented to
MTurk users. Our interface was modeled to be functionally
similar to PhishTank’s site, with the primary difference being that
our interface did not display any voting progress indicators, unlike
PhishTank which displays a breakdown of the voting percentages
after a user has voted.

To complete a HIT, a participant only has to click “Phish”, “Not
Phish”, or “Don’t Know”. In the Cluster Condition, participants
can also select “Mark All as Phish” and “Mark All as Not Phish.”

We sampled data from the PhishTank site on an ongoing basis,
extracting newly-submitted potential phish, typically within
minutes of being submitted to PhishTank. We crawled new
submissions using an automated tool that we created that collects
a screenshot as well as the raw content used in an actual browser
rendering the suspicious site. This process was run in a virtual
machine to protect against any content or malware attacks, and
virtual machines were reset to a clean state approximately every
10 minutes. This data collection process allowed us to protect our
participants from any possible malware, as well as provide a more
uniform experience robust to some kinds of fast flux where
phishing sites temporarily shut themselves down to interfere with
detection (which we attempt to overcome by regularly re-checking
sites which were previously down), network problems, or
differences between participants’ browsers and security settings.

The raw content extracted from each site by our tools represents
all of the data that is required by a web browser to render the web
page, including the final internal document representation that is
used to render the web page on a normal user’s screen, and is the
content upon which we cluster submissions.

Once we had all the information for a submitted site, we added it
to our live study site, where users were given tasks based on (a)
closest to 4 minimum votes, and then (b) newest submission.

5. RESULTS OF EXPERIMENT
In this section we present the results of our study.

5.1 Summary of Participation Data
During the 2 weeks of this study, we had 267 users visit Aquarium,
with 239 users participating. Of these 239, 174 cast votes in both
conditions (as stated earlier, participants only saw a given URL at
most once), 26 in the Control Condition only, and 39 users in the
Cluster Condition only.

A total of 33,781 votes were placed, with 16,308 in the Control
Condition, and 11,463 votes on clusters (yielding an equivalent of
17,473 votes on URLs without clustering) in the Cluster Condition.
We paid $ 277.71 for the users for completed and approved HITs,
and $198.96 to Amazon for approved HITs and bonus rewards,
yielding a total cost of $476.67.

Because we only presented tasks to our participants if we were
able to generate a thumbnail and download the site’s content, our
feed of submitted phish was not as large as PhishTank’s, having

3,973 of the 5,686 submissions available from PhishTank. There
were 1,713 submissions not used in the experiment since we could
not obtain their screenshots.

We compared our results to four different resources. The first is
the label from PhishTank identifying it as phish or not phish. We
periodically checked the status of a given URL on PhishTank. If
PhishTank updated their information, we would update our
database accordingly. The second is the Google Safe Browsing
API, which checks a given URL against their blacklist. We
periodically checked the status of given URL using this API. The
third is the SmartScreen Filter used by Microsoft Internet Explorer.
We created a program that instantiated the MSIE browser in a
virtual machine, visited the suspicious URL, and then analyzed
the response of the IE browser to verify whether it is phishing or
not. Fourth, when we could not obtain the status of a suspicious
URL from above methods, we manually checked it. We use a
queue to store the unverified URLs and repeatedly checked them
following FCFS (First Come First Served) service discipline until
they are verified. At worst, these URLs are checked every 10
minutes. We manually checked those URLs unverified by the first
three methods during a given time (i.e. two weeks). In our study,
we only manually checked 137 URLs, the majority of which were
checking sites labeled as not phish. We also did not see any
disagreement in the blacklists during the study period.

Using the above methods, we identified 3,877 as phishing URLs
and 96 as not phish. Table 2 shows the comparison of PhishTank,
Google Safe Browsing, and Microsoft’s SmartScreen Filter during
the study period. There are large differences between the average
time and median time phish were reported, due to a power law
distribution, which has also been reported in past work [26].

Also note that our reported coverage rates are different than from
those in our past work [32]. This is primarily due to our source of
phish, which is drawn from PhishTank rather than the UAB feed
which is more comprehensive and has fresher phish. These
previous results should still be considered more representative of
blacklist behavior. Our results here should be viewed as a relative
comparison of anti-phishing techniques on a sample of phishing
attacks, rather than an absolute comparison.

Tables 3 and 4 show the results of our two conditions. In Table 3,
the first row “All Votes in Control Condition” shows the TP and
FP of all 16,308 votes cast in that condition. Note that we saw a
FP rate of 2.6%, which is fairly high. The second row “All
Labeled URLs in Control Condition” shows the results of our
labels when compared to our four resources (i.e. PhishTank,
Google Safe Browsing, Microsoft’s SmartScreen Filter, and
manual checks). Note that the labels for URLs have a reasonably
good TP rate (94.8%), which is higher than individual votes
(83.0%). Aggregating people’s votes also led to 0% FP in our
experiment. We saw no systematic errors in false positive votes.

The third row of Table 3, “All Votes on Clusters in the Cluster
Condition”, shows the TP and FP of all 11,463 votes on clusters.
The fourth row, “All Labeled URLs in Cluster Condition”, shows
a comparable TP and FP rate to the Control Condition.

Table 4 shows Aquarium’s performance with respect to coverage
and time. Here, Aquarium does quite well compared to PhishTank,
Google, and Microsoft. The coverage rate of our Control and
Cluster Conditions (96.1% and 96.8% respectively) is higher than
the other blacklists (89.2%, 65.7%, and 40.4%). However, it
should be noted that our recorded coverage rates for PhishTank,

8

Google, and Microsoft do not take into account phishing pages
that are taken down, since these blacklists may not bother labeling
a phish that no longer exists.

To a large extent, this problem of not labeling a page that no
longer exists would be less of a problem if blacklists could label
pages faster, which would also provide better protection for
people in the first few hours of an attack when people are most
vulnerable [19]. Table 4 shows the average and median time to
label a page in our two conditions. In particular, the clustered
condition offers the best average time (1.8 hours, SD=2.6 hours)
as well as median time (0.7 hours), outperforming all other
blacklists by a wide margin.

5.2 Individual Human Accuracy
Earlier, we had hypothesized that clustering could help people
identify phish better. For example, a given participant might not
recognize a single instance of phish on an unknown brand (for
example, a single instance of the Tibia phish shown in Figure 4),
but seeing four instances of the same site but with different URLs
would suggest that it is suspicious.

We calculated each individual’s accuracy (true positives plus true
negatives over all votes) based on votes in both conditions.
Individual performance varied, with a mean accuracy of 82.7%
(SD=23.3) in the Control Condition, and a mean accuracy of
86.7% (SD=18.5) in the Cluster Condition. In our experiment, 174
of these 239 users cast votes in both conditions. We compared
their performance between two conditions using a paired t-test
with one-tailed distribution. There was a statistically significant
effect for clustering, t(173)=2.78, p<0.05 (p=0.006), with users’
performance in the Cluster Condition obtaining higher accuracy
than that in Control Condition. As such, our results support our
hypothesis that clustering helps people identify phish better. We
also examined if the size of a cluster helped with accuracy. There
was marginal improvement, but not statistically significant.

Figure 5 shows the overall performance of all participants sorted
by performance and organized into deciles. The top 50% of
participants performed very well in both conditions. However,
there is a large dropoff in performance in the Control Condition,
with the bottom 10% of MTurkers in the Control Condition
performing under 30%. We suspect this is due to lazy workers.

5.3 Reducing Effort Using Task Clustering
To determine if the Cluster Condition is more effective in
determining if a submission is a phishing attack, we looked for a
difference in the performance of users in evaluating submissions.
Time to label is an important metric here, as it measures both how
quickly a user was able to identify an attack, and is a coarse
representation of the effort required to complete the task.

Participants in the Control Condition took 11.8 (SD=22.6) hours
on average to label a site, whereas participants in the Cluster
Condition took 1.8 (SD=2.6) hours. By comparing two conditions
with one-tailed paired t-Test, there was a significant main effect
on clustering, t=23.63, p<0.001, with much less time used in
identifying a URL in Cluster Condition than that in Control
Condition. Comparing median times (3.8 hours to 0.7 hours)
yields a similar result.

Figure 4. Four phishing examples from a cluster collected
during our study. In this case, all 42 submissions in the cluster
were nearly or completely visually identical. In this case, it

 Coverage
Rate

Avg Time
(hours)

Median Time
(hours)

PhishTank
89.2%

16.4
(SD=25.3)

 3.98

Google
Safe Browsing

65.7%
10.1

(SD=10.1)
 8.47

SmartScreen
Filter of MSIE

40.4%
24.5

(SD=24.0)
 15.01

Table 2. Comparison of the coverage and time of 3973
URLs among PhishTank, Google Safe Browsing, and
Microsoft’s SmartScreen Filter. Given past work in this
area, we assume that the false positive rate of Google and
Microsoft are 0%.

 TP FP

All Votes in
Control Condition

83.0% 2.6%

All Labeled URLs in
Control Condition

94.8% 0.0%

All Votes on Clusters in
Cluster Condition

89.4% 0.05%

All Labeled URLs in
Cluster Condition

95.4% 0.0%

Table 3. Comparison of True Positives and False
Positives of all votes in the two conditions, as well as all
labeled URLs based on those votes. The TP of votes from
the Control Condition to the Cluster Condition improved by
6.4%, which was statistically significant (p=0.026). There
were no other differences, however.

 Coverage
Rate

Avg Time
(hours)

Median Time
(hours)

All Labeled URLs
in Control Condition

96.1%
11.8

(SD= 22.6)
3.8

All Labeled URLs
in Cluster Condition

96.8%
1.8

(SD=2.6)
0.7

Table 4. Comparison of URLs labeled in the two
conditions. Due to tie votes, there are 96.1% URLs
labeled in the Control Condition and 96.8% URLs in the
Cluster Condition. FP was reduced to zero in both
conditions.

9

should not be hard to identify the phishing attack, as the sites
are identical, but do not share the same primary domain name.

Figure 5. Average accuracy for each decile of users, sorted by
accuracy. For example, the average accuracy of the top 10%
of users in both conditions was 100%, whereas the average
accuracy of the bottom 10% was under 30% for the Control
Condition and under 50% in the Cluster Condition.

6. INVESTIGATING VOTE WEIGHT
In this section, we present our analysis and tuning of vote weight.

6.1 Voteweight
The core idea behind voteweight is that participants who are more
helpful in terms of time and accuracy are weighted more than
other participants. Weighting votes more accurately should also
help reduce the time it takes to label a submission. Our notion of
voteweight is similar to the concept of mavens in the Acumen
system [10], though we examine a different domain (phishing vs
cookies) and leverage time in our model. Our voteweights are also
continuous, whereas mavens were chosen to be the top 20% of
users in Acumen.

Intuitively, a correct vote should be rewarded and a wrong one
should be penalized. In addition, recent behavior should be
weighted more than past behavior, as it gives us a better sense as
to a participant’s current abilities (or level of malice).

Towards this end, we propose a metric called voteweight in Eq.(2)
that combines these factors in one summary statistic. In our model,
we use y∈{t,+∞}∪ y∈{-t,-∞} to label the status of a URL,
where y is the sum of voteweight of a given URL, t is the
threshold of voteweight, and y≥ t means a URL has been voted as
a phishing URL and y≤-t means voted as legitimate.

 

 M

k k

i
i

v

v
v

1

'
 (2)

Here, v’
i is the normalized voteweight of user i, with a value

between [0, 1]. This value will be the voteweight that we use for
the user. vi is the raw voteweight, and M is the number of users.
Note that because our normalized value is less than 1 we also have
to adjust our threshold accordingly.



 


otherwise

RVifRV
v ii

i 0

0
 (3)

iii PRRV   (4)

Equations 2 and 3 show the formulas for raw voteweight (RV).
Conceptually, raw voteweight for a user i is the sum of the
rewards for correct votes Ri, minus a weighting parameter  times
the penalization for incorrect votes Pi. Adjusting the parameter 
allows us to weight the penalty relative to the reward. For example,
an  value greater than 1 means that participants are penalized
more heavily for wrong votes than they are rewarded for correct
votes.










N

j
LC

j
i jI

TT

TT
R

jij
1 0

0)(
1

 (5)










N

j
LC

j
i jI

TT

TT
P

jij
1 0

0)(
1

 (6)

Equations 5 and 6 show our reward and penalty formulas. The
first part of both equations 5 and 6 show the weight we give to
time. Here, T0 is the timestamp of user i’s first vote ever; Tj is the
timestamp of user i’s vote on phish candidate j; and T is the
current time when computing user i’s voteweight based on the
historical vote information. Thus, if Tj is recent and close to
current time T, then this first part is close to 1. If Tj is very old,
then the first part becomes smaller, meaning that older votes have
less weight. In our study, we calculated the interval of time in
hours.

There are alternative variations for weighting time that also could
have worked, for example, having a sliding window of the last N
days of votes, taking only the last N votes, and so on. We wanted
to explore how well any voteweight feature worked first before
trying the many alternatives. As such, we chose one that worked
well with the two weeks of data we had.

The right half of equations 5 and 6 are an indicator function with a
value of 0 or 1. Essentially, for the reward formula, we want the
indicator to be 1 if they voted correctly and 0 otherwise. For the
penalty formula, the opposite is true. More formally, Cij is the
label that user i assigns to phish candidate j; Lj is the ground truth
label for phish candidate j; N is the number of phish candidates
that user i has voted on; IA(x) is an indicator function in
mathematics which is defined as:

 








Axif

Axif
xI A 0

1
 (7)

With our voteweight, we can determine the label for a candidate
phish based on users’ vote by





K

i
itit Cvl

1

'
 (8)

where the label of phish candidate t is a weighted average of the
votes by K users and the value of a vote is defined as







otherwise

phishasvotedif
Cit 1

1
 (9)

6.2 Tuning the Voteweight Parameters
In this experiment, we tuned the parameter required in Eq. (4) to
optimize the accuracy rate and time cost in labeling URLs.

10

We tested on 16,308 votes from the Control Condition on 3,973
URLs, and 11,463 votes on clusters from the Cluster Condition on
3,973 URLs using different values of  ranging from 0.5 to 9 in
increments of 0.5. Again, a higher  here means that incorrect
votes incur a higher penalty relative to the reward. We calculated
the accuracy and time cost when a URL was identified based on
different values of voteweight.

We also tested the threshold of voteweight from 0.01 to 1 by steps
of 0.01. Figure 6 only shows the results under the threshold from
0.01 to 0.20, since there was no improvement above 0.20. Again,
our label for a URL was determined based on the voteweight it
obtained beyond the threshold. For this tuning, we recalculated
voteweight after each hour.

Figure 6 shows our results for both the Control Condition and
Cluster Condition. Figure 6a shows how accuracy varies as the
value of  increases. Accuracy increases incrementally for a while
and then plummets dramatically when  approaches 4.5 regardless
of the threshold. This finding suggests that an appropriate penalty
can offer a small benefit in terms of distinguishing between skilled
and unskilled participants. However, excessive punishment on
occasional errors of users dramatically decreases performance.
Figure 6b shows that as the threshold t is increased, the time cost
of identifying a URL also increases, as one might expect.

Overall, in the Control Condition, voteweight obtained its highest
accuracy (true positives and true negatives over all votes) of
95.6% when the threshold of t is 0.08 and  is 2.5. At these values,
the average time cost was 11.0 hours and median time cost 2.3

hours.

Given this tuning, how much improvement does voteweight offer
over not having it? In the Control Condition (without voteweight),
Table 3 shows that the true positive rate was 94.8% and false
positive rate was 0%, with an average time cost of 11.8 hours
(SD= 22.6) and a median of 3.8 hours. By using voteweight, we
can achieve a comparable accuracy, and reduce the average time
by 0.8 hours and reduce the median time by 1.5 hours.

In the Cluster Condition, we obtain the highest accuracy rate at
97.2% when threshold t is 0.06 and  is 1. With this accuracy rate,
the average time is 0.8 hours and median time is 0.5 hours. In the
Cluster Condition without voteweight, the true positive rate is
95.4%, with an average time of 1.8 hours (SD=2.6) and median
time of 0.7 hours. By using voteweight, we can reduce the average
time cost by about 1 hour and reduce the median time cost by
about 0.2 hours, while achieving comparable accuracy.

7. DISCUSSION
Overall, our results with Aquarium are quite positive. Clustering
alone achieves a true positive rate of 95.4%, with an average time
of 1.8 (SD=2.6) hours and a median time of 0.7 hours. Applying
voteweight without clustering also yielded stronger results,
reducing the average time by 0.8 hours and the median time by
1.5 hours. Combining these two techniques yielded the best results.
Our total cost for both conditions was under $500 to compensate
239 participants.

As noted earlier, one limitation of this study is that 153 URLs
(3.9%) in the Control Condition and 127 (3.2%) in the Cluster

(a) Control: Accuracy under various t thresholds

(b) Control: Average time cost under various t thresholds

(c) Cluster: Accuracy Rate under various t thresholds

(d) Cluster: Average time cost under various t thresholds

Figure 6. Voteweight parameter tuning in the Control and Cluster Conditions. t is the threshold of votepower,  is the weight of
penalty for wrong verification of URLs. As  increases, the accuracy first increases a little and then drops down quickly while the
average time cost increases in a small range. When t increases, the average time cost increases accordingly. Voteweight achieves its
best accuracy with t=0.08 and =2.5 in the Control Condition and t=0.06 and =1 in the Cluster Condition.

11

Condition were not identified due to tie votes. It is possible that
these were the most difficult URLs to verify and could lead to
longer tails for time or lower accuracy rates. However, we would
also argue that the results that we do have are quite strong and still
represent an advance over current manual verification as well as
many published algorithms.

Another limitation of this study was imposed by Mechanical Turk
itself. We have discussed two of these in the paper already,
including the challenges in running a strict between-subjects study
on MTurk, and dynamically adding more participants to URLs if
there is not strong agreement.

A third limitation of this study is that there are possible learning
effects, since both conditions were run simultaneously and that
some people were in both conditions. Given the limitations of our
collected data, it will be difficult to tease out whether there were
learning effects involved. What we can say, though, is that
Aquarium does not offer feedback as to whether a vote is correct
or not, minimizing one potential angle for learning. Furthermore,
all participants had to train on Anti-Phishing Phil, helping to level
the playing field. Lastly, we do not prioritize one condition over
another, so neither condition should have any substantial benefits
if there are learning effects.

Based on their study on PhishTank [26], Moore and Clayton
offered three lessons for improving crowdsourcing for security: (1)
addressing power-law issues of participation, (2) having
crowdsourced decisions be hard to guess, and (3) not having users
work harder than necessary. We addressed the third issue in this
paper, and so only discuss the first two issues below.

For the first issue, we do not address power-law issues of
participation directly. Ipeirotis also showed that task completion
times follow power-law distributions on MTurk [15]. What we
have demonstrated, however, is that recruiting workers on MTurk
can be a reasonably good approximation of PhishTank, as
evidenced by Aquarium’s coverage rates and median times in the
Control Condition, which are comparable to PhishTank’s. Here,
Aquarium does slightly better than PhishTank, possibly due to a
combination of training with Anti-Phishing Phil and the number of
workers available on MTurk and their timeliness.

For the second issue, having crowdsourced decisions be hard to
guess, there is a lot of room for improvement in Aquarium. We
did not encounter workers actively trying to manipulate our
system, unlike PhishTank. As such, we can consider this paper to
be a study under optimistic conditions without active adversaries.
However, previous studies have encountered the problem of lazy
workers doing the minimum amount of work needed to be paid.
We had a few participants that underperformed, though we believe
that using Anti-Phishing Phil as a qualification task helped filter
out many other workers who would have underperformed.

A system with active adversaries would have several challenges,
as the risk is increased with clustering and voteweight, especially
since the prior probability of phish is quite high. There are several
ways to counter this problem of lazy workers and active
adversaries. One is increased randomization of what URLs are
presented, helping to minimize the impact of a lazy worker and
making it harder for attackers to label their own phishing site or to
coordinate attacks. Given the large pool of workers on MTurk and
the relatively short time it takes to identify a phish on Aquarium,
this approach would also give attackers only a small time window
to try to manipulate the system.

Another countermeasure would be to calculate baseline
performance based on known results. For example, in an earlier
iteration of our experiment, we calculated a baseline performance
to see if people were improving over time (they were, but
marginally) and to verify that users were not merely always
clicking “Phish”. We introduced a controlled stream of previously
resolved tasks to periodically measure participant performance.
The first 20 tasks completed by each user were selected from the
previously-resolved cases, as well as at least 1 of every 10
subsequent tasks, with a fixed 20% of these test cases selected
from the “not-phish” resolution to provide a minimum of not-
phish cases a participant would experience. This periodic testing
would allow us to estimate user performance and detect low
performing or malicious workers. One could also tie MTurk
bonuses to baseline performance, reducing the incentives of lazy
workers. Such an approach could be used in a deployed system, at
the cost of more time, money, participants, and votes.

Other countermeasures include ones we previously identified in
the design space, such as increasing the number of votes required
or using existing automated phish-detection algorithms as a
backup check or additional vote.

8. CONCLUSION
Purely computational approaches to detecting phish are popular in
the research community, but have not seen adoption primarily due
to concerns about false positives. In contrast, manual verification
is the norm today, but has potentially long lag times and do not
scale well.

In this paper, we presented the design and evaluation of Aquarium,
a system that uses computational techniques to improve
crowdsourcing in identifying phish. Specifically, we outlined the
design space of techniques for improving the wisdom of crowds,
investigated the use of clustering and weighting of votes, and
presented the results of our evaluation. Through a two-week study
replaying submissions on PhishTank, and using minimally trained
participants from Amazon’s Mechanical Turk, we demonstrated
that clustering and weighting of votes can be very effective in
terms of accuracy, time, and monetary cost.

Our work in this paper represents two points in the design space
for improving the wisdom of crowds for phishing. Our ideas can
be easily adopted by existing manually-verified blacklists such as
those operated by Google, Microsoft, and PhishTank. Other
applications include forensic analysis of phishing trends and
maintaining databases of phishing attacks. Our work also
represents one way of using crowdsourcing techniques for
computer security, which may be a useful approach for other
kinds of computer security problems that require a human in the
loop.

9. ACKNOWLEDGMENTS
This research was supported by CyLab at Carnegie Mellon under
grants DAAD19-02-1-0389 and W911NF-09-1-0273 from the
Army Research Office. It was also supported by a grant from the
Research Grants Council of the Hong Kong Special
Administrative Region, China [Project No. CityU 117907].

12

10. REFERENCES
[1] Ahn, L. and Dabbish, L. 2004. Labeling images with a

computer game. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI’04), 319-326.

[2] Cosley, D., Frankowski, D., Terveen, L., and Riedl, J. 2007.
Suggestbot: Using intelligent task routing to help people find
work in wikipedia. In Proceedings of the 12th International
Conference on Intelligent User Interfaces (IUI’07), 32-41.

[3] Chen, T, Dick, S. and Miller, J. 2010. Detecting visually
similar Web pages: Application to phishing detection. In
ACM Transactions on Internet Technology (TOIT), Vol.
10(2).

[4] Chou, N., Ledesma, R., Teraguchi, Y. and Mitchell, J. 2004.
Client-side defense against web-based identity theft. In
Proceedings of the 11th Annual Network and Distributed
System Security Symposium (NDSS'04).

[5] Dhamija, R. and J. D. Tygar. 2005. The battle against
phishing: dynamic security skins. In Proceedings of the 2005
Symposium on Usable Privacy and Security (SOUPS’05),
77-88.

[6] Dhamija, R., J. D. Tygar, and Hearst, M. 2006. Why phishing
works. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI’06), 581-590.

[7] Edwards, W., Poole, E., and Stoll, J. 2007. Security
automation considered harmful. In Proceedings of the IEEE
New Security Paradigms Workshop (NSPW’07), 33-42.

[8] Egelman, S., Cranor, L., and Hong, J. 2008. You've been
warned: An empirical study of the effectiveness of web
browser phishing warnings. In Proceeding of the 26th Annual
SIGCHI Conference on Human Factors in Computing
Systems (CHI’08), 1065-1074.

[9] Garera, S., Provos, N., Chew, M., and Rubin, A. D. 2007. A
framework for detection and measurement of phishing
attacks. In Proceedings of the 2007 ACM Workshop on
Recurring Malcode (WORM’07), 1-8.

[10] Goecks, J. and Mynatt, E. D. 2005. Supporting privacy
panagement via pommunity experience and expertise. In
Proceedings of the 2nd Communities and Technologies
Conference, 397-418.

[11] Golder, S. A. and Huberman, B. A. 2006. Usage patterns of
collaborative tagging systems. Journal of Information
Science, Vol. 32(2), Apr. 2006, 198-208.

[12] Heer, J. and Bostock, M. 2010. Crowdsourcing graphical
perception: using mechanical turk to assess visualization
design. In Proceedings of the 28th international conference
on Human factors in computing systems (CHI’10), 203-212.

[13] http://sb.google.com/safebrowsing/update?version=goog-
white-domain:1:1.

[14] http://www.millersmiles.co.uk/scams.php.

[15] Ipeirotis, P. 2010. Analyzing the amazon mechanical turk
marketplace, NYU Working Paper No. CEDER-10-04.

[16] Karau, S. and Willianms, K. 1993. Social loafing: A meta-
analytic review and theoretical integration. Journal of
Personality and Social Psychology. Vol 65(4), Oct. 1993,
681-706.

[17] Kirda, E. and Kruegel, C. 2005. Protecting users against
phishing attacks with antiPhish. In Proceedings of the 29th

Annual International Computer Software and Applications
Conference (COMPSAC'05), 517-524.

[18] Kittur, A., Chi, E. H., Suh B. 2008. Crowdsourcing user
studies with mechanical turk. In Proceedings of the 26th
annual SIGCHI conference on Human factors in computing
systems (CHI’08), 453-456.

[19] Kumaraguru, P., Cranshaw, J., Acquisti, A., Cranor, L., Hong,
J., Blair, M., and Pham, T. 2009. School of phish: A real-
word evaluation of anti-phishing training. In Proceedings of
the 5th Symposium on Usable Privacy and Security
(SOUPS’09)

[20] Liu, W., Huang, G., Liu, X., Zhang, M. and Deng, X. 2005.
Detection of phishing webpages based on visual similarity. In
Proceedings of the special interest tracks and posters of the
14th international conference on World Wide Web
(WWW'05), 1060-1061.

[21] Ludl, C., McAllister, S., Kirda, E., Kruegel, C. 2007. On the
effectiveness of techniques to detect phishing sites. Lecture
Notes in Computer Science (LNCS). Vol. 4579/2007, 20-39.

[22] Mason, W. and Watts, D. J. 2009. Financial incentives and
the "performance of crowds". In Proceedings of the ACM
SIGKDD Workshop on Human Computation (HCOMP’09),
77-85.

[23] Medvet, E., Eurecom, E., and Kruegel. C. 2008. Visual-
similarity-based phishing detection. In Proceedings of the 4th
international conference on Security and privacy in
communication networks (SecureComm'08), 30-36.

[24] Millen, D., Yang, M., Whittaker, S., and Feinberg, J. 2007.
Social bookmarking and exploratory search. In Proceedings
of the 2007 Tenth European Conference on Computer-
Supported Cooperative Work (ECSCW’07), 21-40.

[25] Moore, T. and Clayton, R. 2007. Examining the impact of
website take-down on phishing. In Proceedings of the Anti-
Phishing Working Groups 2nd Annual Ecrime Researchers
Summit (eCrime’07), 1-13.

[26] Moore, T. and Clayton, R. 2008. Evaluating the wisdom of
crowds in assessing phishing websites. Lecture Notes in
Computer Science (LNCS). Vol 5143/2008, 16-30.

[27] Pan, Y. and Ding, X. 2006. Anomaly Based Web Phishing
Page Detection. In Proceedings of the 22nd Annual
Computer Security Applications Conference (ACSAC'06),
381-392.

[28] Rosiello, A., Kirda, E., Kruegel, C. and Ferrandi, F. 2007. A
layout-similarity-based approach for detecting phishing
pages. In Proceedings of the 3rd International Conference on
Security and Privacy in Communication Networks
(SecureComm'07), 454-463.

[29] Ross, B., Jackson, C., Miyake, N., Boneh, D. and Mitchell, J.
2005. Stronger password authentication using browser
extensions. In Proceedings of the 14th conference on
USENIX Security Symposium, 17-32.

[30] Sheng, S., Kumaraguru, P., Acquisti, A., Cranor, L., Hong, J.
2009. Improving phishing countermeasures: an analysis of
expert interviews. In Proceedings of the Anti-Phishing
Working Groups 4th Annual Ecrime Researchers Summit
(eCrime’09), 1 – 15.

[31] Sheng, S., Magnien, B., Kumaraguru, P., Acquisti, A.,
Cranor, L., Hong, J., and Nunge, E. 2007. Anti-Phishing phil:

13

The design and evaluation of a game that teaches people not
to fall for phish. In Proceedings of the 3rd Symposium on
Usable Privacy and Security (SOUPS’07), 88-89.

[32] Sheng, S., Wardman, B., Warner, G., Cranor, L., Hong, J.,
and Zhang, C. 2009. An empirical analysis of phishing
blacklists. In Proceedings of the 6th Conference on Email
and Anti-Spam (CEAS’09).

[33] Statistics about Phishing Activity and Phishtank Usage.
(2011). Retrieved January, 2011, from
http://www.phishtank.com/stats/.

[34] Surowiecki, J. 2004. The wisdom of crowds: Why the many
are smarter than the few and how collective wisdom shapes
business, economies, societies and nations. Doubleday.

[35] Weaver, R. and Collins, M. P. 2007. Fishing for phishes:
Applying capture-recapture methods to estimate phishing
populations. In Proceedings of the Anti-Phishing Working
Groups 2nd Annual Ecrime Researchers Summit (eCrime’07),
14-25.

[36] Wu, M., Miller, R. C., and Little, G. 2006. Web wallet:
Preventing phishing attacks by revealing user intentions. In
Proceedings of the 2nd Symposium on Usable Privacy and
Security (SOUPS’06), 102-113.

[37] Xiang, G. and Hong, J. 2009. A hybrid phish detection
approach by identity discovery and keywords retrieval. In

Proceedings of the 18th International Conference on World
Wide Web (WWW’09), 571-580.

[38] Xiang, G., Pendleton, B. A., Hong, J. 2009. Modeling
content from human-verified blacklists for accurate zero-hour
phish detection. Technical report, CMU-LTI-09-005.

[39] Xiang, G., Pendleton, B. A., Hong, J., and Rose, C. P. 2010.
A hierarchical adaptive probabilistic approach for zero hour
phish detection. In Proceedings of the 15th European
Symposium on Research in Computer Security
(ESORICS’10), 268-285.

[40] Yue, C. and Wang, H. 2010. BogusBiter: A transparent
protection against phishing attacks. In ACM Transactions on
Internet Technology (TOIT), Vol. 10(2).

[41] Zhang, Y., Egelman, S., Cranor, L., and Hong, J. 2007.
Phinding phish: An evaluation of anti-phishing toolbars. In
Proceedings of the 14th Annual Network & Distributed
System Security Symposium (NDSS 2007).

[42] Zhang, Y., Hong, J., and Cranor, L. 2007. Cantina: A
content-based approach to detecting phishing web sites. In
Proceedings of the 16th International Conference on World
Wide Web (WWW’07), 639-648.

