

Topiary: A Tool for Prototyping

Location-Enhanced Applications

Yang Li1, Jason I. Hong1, James A. Landay2, 3
1Group for User Interface Research

Computer Science Division
University of California, Berkeley
Berkeley, CA 94720-1776 USA

{yangli, jasonh}@cs.berkeley.edu

2Intel Research Seattle
1100 NE 45th Street

Suite 600
Seattle, WA 98105

james.a.landay@intel.com

3DUB Group
Computer Science and Engineering

University of Washington
Seattle, WA 98105-4615 USA

landay@cs.washington.edu

ABSTRACT
Location-enhanced applications use the location of people,
places, and things to augment or streamline interaction.
Location-enhanced applications are just starting to emerge
in several different domains, and many people believe that
this type of application will experience tremendous growth
in the near future. However, it currently requires a high
level of technical expertise to build location-enhanced
applications, making it hard to iterate on designs. To
address this problem we introduce Topiary, a tool for
rapidly prototyping location-enhanced applications.
Topiary lets designers create a map that models the location
of people, places, and things; use this active map to
demonstrate scenarios depicting location contexts; use
these scenarios in creating storyboards that describe
interaction sequences; and then run these storyboards on
mobile devices, with a wizard updating the location of
people and things on a separate device. We performed an
informal evaluation with seven researchers and interface
designers and found that they reacted positively to the
concept.

Categories and Subject Descriptors: H.5.2 [User
Interfaces]: Prototyping, Evaluation / methodology; D.2.2
[Design Tools and Techniques]: User interfaces

Additional Keywords and Phrases: Ubiquitous
computing, prototyping, informal user interface, Wizard of
Oz, location-enhanced, context-aware

INTRODUCTION
Ubiquitous computing has been an active area of research
for over a decade, and has opened many new possibilities
for human-computer interaction [42]. One especially
promising branch of ubiquitous computing that has begun
to see commercialization is location-enhanced computing,

services and applications that can use one’s current location
as well as the location of other people, places, and things.
One example is AT&T’s Find Friends service, which lets
mobile phone users find the current location of a friend [3].
Another is E911, which transmits a mobile phone user’s
current location when making emergency calls.

However, while there is some support for building such
applications [14, 15, 20], it currently requires a high level
of technical expertise to do so, making it hard for designers
to prototype, evaluate, and iterate on designs. Furthermore,
developers must deal with relatively low-level sensing
technologies such as GPS, active badges [41], and Cricket
location beacons [33]. These obstacles make it difficult to
iterate on a design, as well as test designs with real users
until the actual application is fully completed, by which
time it is often too late to make major changes.

As one step towards addressing this problem, we have
developed Topiary 1 , a prototyping tool for location-
enhanced applications. Topiary is aimed at supporting
interaction designers in the early stage of design rather than
in creating full-fledged systems. Topiary allows designers
to demonstrate scenarios depicting location contexts, to
storyboard location-enhanced behaviors using these
scenarios, and then “run” the storyboards using Wizard of
Oz techniques to fake location information.

Why Prototyping Tools
User interface prototyping tools have been developed for
several other domains [2, 4, 22, 23, 25, 27]. Prototyping
tools offer three significant benefits. First, they lower
barriers to entry, making it easier for interaction designers
to take part in development. Second, they can help speed up
iterative design cycles by making it easier to design,
prototype, and evaluate ideas. Third, they make it easier to
get user feedback early in the design cycle, when it is still
cheap and relatively simple to make major changes.

There is, however, a question of timing here. Location-
enhanced applications are still emerging, and there are

1 Topiary can be downloaded at http://dub.washington.edu/topiary.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
UIST ’04, October 24–27, 2004, Santa Fe, New Mexico, USA.
Copyright © 2004 ACM 1-58113-957-8/04/0010. . . $5.00.

consequently few experts in their
design and few best practices that can
be embodied in a prototyping tool.
Despite this, we argue that now is the
right time to develop such a tool.
Many people believe location-based
computing will see tremendous
growth in the near future, especially
given the adoption of E911 in the
United States. Market research firm
Gartner has made the optimistic
prediction that there will be around 42
million American businesses and
consumers using location-enhanced
applications in 2005 [32]. There is a
remarkable opportunity to influence
how location-enhanced applications
are designed for the better, leading
practice rather than simply following
it. We believe that enabling
developers and designers to more
easily iterate while we are still in the
early stages of adoption will lead to
more high-quality applications in the
future.

The rest of this paper is organized as
follows. First, we provide an analysis
of requirements for such a prototyping tool. Next, we show
how Topiary can be used to prototype these applications.
Then, we describe our evaluation of Topiary, followed by
related work. Finally, we wrap up with a discussion of
results and our conclusions.

REQUIREMENTS FOR A PROTOTYPING TOOL
In this section, we describe how prototyping location-
enhanced applications is different from prototyping GUI
applications. We also examine several location-enhanced
applications and provide an analysis of what features need
to be supported in a prototyping tool.

How Prototyping Location-Enhanced Apps is Different
An important question to ask here is, why is prototyping a
location-enhanced application different from prototyping
traditional GUIs? Why can existing prototyping tools not
be used? In this section, we outline three key reasons.

Modeling Location Contexts. One way that location-
enhanced applications differ from GUIs is that they also use
contextual information implicitly perceived by sensors,
such as one’s location and one’s proximity to other people.
Contextual information enriches interactions with a much
wider input space than mouse or keyboard events. A
prototyping tool for location-enhanced applications needs
to make it easy for designers to model these location
contexts, letting them quickly explore this input space
without having to deal with low-level issues such as sensors
or programming logic.

Specifying Location-Enhanced Behaviors. Location-
enhanced applications also have more complicated

interaction sequences than traditional user interfaces. In
addition to explicit interactions, e.g., pressing a button, they
must also support implicit interactions based on sensed
input. One example of an implicit interaction is
automatically displaying a page describing the user’s
current location when they enter a new place. Another
example is tailoring manual input to the current situation,
such as having a “Show Map” button that shows a floor
plan when inside a building and a city map when outside. A
prototyping tool for location-enhanced applications needs
to make it easy for designers to specify interaction
sequences that integrate both implicit and explicit
interactions.

Testing and Analyzing a Design. It is important to evaluate
applications with real end-users to obtain feedback and
refine a design. However, location-enhanced applications
are more difficult to test than traditional graphical user
interfaces, because location-enhanced applications need to
incorporate the current location context and because end-
users of these applications are often mobile. A prototyping
tool needs to make it easy for designers to quickly test and
analyze their designs.

Common Features in Location-Enhanced Apps
The primary metric of success for any prototyping tool is if
it can be used to prototype a useful and non-trivial subset of
the full design space of applications. Ideally, we could
observe and interview designers of location-enhanced
applications to learn their processes and best practices and
design a tool around those practices. However, location-
based computing is still emerging, and there are
consequently few, if any, experienced designers out there.

Scenario
Repository

Radar
View

Toolbox

Canvas

Workspace Tabs

Figure 1. Topiary’s Active Map workspace allows designers to create models
of people, places and things and to demonstrate scenarios specifying location
contexts. The bold lines on the canvas indicate roads drawn using the Pencil
tool. This figure shows the Active Map design for a Campus Tour Guide.

As an alternative, we analyzed several different location-
enhanced applications and identified common location
functions. We used these common interaction techniques as
the basic feature set for Topiary. We also limited the scope
to applications that have display-based visual output. For
example, Topiary can be used to prototype applications like
Cyberguide [1] because the output is limited to a single
PDA. However, Topiary does not have explicit support for
prototyping a room that automatically turns on its lights
when a person walks into it. Topiary does not prohibit the
creation of the latter; it simply does not provide hooks for
non-display output or explicit wizard support for doing so.
Nonetheless, there is still a very large and useful subset of
applications that exclusively use visual output.

The genres we have identified include guides for
exploration and navigation [1, 9]; finders for finding
people, places, or things [3, 18]; group awareness displays
[14, 18]; augmented-reality games [17]; information
tagging and retrieval, including personal memory aids [7,
34] and notes associated with places [8, 16, 31]; message
routing [29, 30]; and safety [28]. We examined these
applications and found the following common functions:

• Location status, simply displaying someone’s or
something’s location

• Finders for a specific or nearest person, place, or thing
• Active Maps, dynamically updated maps that show the

location of people, places, and things
• Triggers, arbitrary functions that activate when

something is in or near something else
• Wayfinding, textual or visual descriptions of how to get

to a place or how far away something is
• Resource allocation, adapting infrastructure resources

as people move around (e.g., network packet routing)
• Tagging, associating location data to another arbitrary

piece of data (e.g., to a photograph)

Topiary currently supports all of the above features except
for resource allocation and tagging. We made this decision
because these features have been used in relatively few
applications and because tagging and resource allocation
are more about internal computation than user interaction,
which is the main goal of a UI prototyping tool.

THE TOPIARY SYSTEM
Based on this requirements analysis, we spent two months
iterating on paper prototypes, getting feedback from
researchers familiar with location-enhanced applications
and prototyping tools. Our early studies led us to split the
tool into three parts: the Active Map, the Storyboard, and
the Test workspaces. Each of these workspaces addresses a
separate challenge for a prototyping tool for location-
enhanced applications, as described in the previous section.

Here we give an overview of how Topiary is used (see
Figure 1). First, designers use the Active Map workspace to
create a model of the location of people, places, and things.
Then, they demonstrate scenarios describing location

contexts, such as “Alice is in the Gym” or “Bob is entering
Room 525”. It should be noted that Topiary can model
indoor or outside locations, as it is independent of any
specific sensing technology. Afterwards, designers can
sketch pages and links to create interface mockups in the
Storyboard workspace, using scenarios as conditions or
triggers on a link. For example, the designer can specify
that clicking a button goes to one page if “Alice is in the
Gym”, or automatically go to another if “Bob is entering
Room 525”. After a few mockups have been created, a
designer can let real users try out the design in the Test
workspace, by “running” the sketches on a mobile device
like a PDA. A user can interact with these sketches, while a
wizard follows the user and updates the location of people
and things on a separate device. Optionally, a sensor
infrastructure can be used to update location information, if
available. We describe each of these workspaces in more
detail using a running example of a Campus Tour Guide.

Active Map Workspace
The Active Map workspace lets designers model the spatial
relationships between people, places, and things. Designers
can either sketch a map or load a GIF or JPEG image of a
map into the Active Map workspace as a background image
to help with positioning of these entities. For example,
Figure 1 shows a map of a university campus. There are
currently no semantics associated with these images, they
are simply meant to help designers get a better
understanding of a geographical area and they can also be
displayed to the end-users in the resulting interface.

The designer can use the Pencil tool to draw paths, which
are used for the wayfinding feature. Topiary parses these
informal sketches into a road network (see Figure 1) that
can be dynamically searched for the shortest path. This
network consists of a graph where the vertices are stroke
intersections and the edges are segmented strokes.

Creating Entities. The Place tool is used to create places
(see Figure 2). To use it, the designer outlines the
boundaries of a place. Inspired by the selection techniques
of ScanScribe [36], we apply this technique to make it easy
to create rectangular places while not excluding arbitrarily-
shaped ones.

The Person tool is used to create a person. The designer
selects the Person tool and then clicks on where he wants

Figure 2. The Place Tool can recognize rectangles
and polygons based on the overall shape drawn.

the person to be. The Thing tool works in the same manner,
but is used for creating things such as cars and printers.

Each of these entities (place, person, or thing) is given a
unique default name such as “Place5”. This name can be
replaced with typed text. Places can also be created within
other places, creating hierarchies.

Capturing Location Contexts through Scenarios. In Topiary,
scenarios are a collection of location contexts that can be
used for specifying location-enhanced behaviors. Location
contexts in Topiary are binary spatial relations of the form
[entity] [relationship] [entity], for example “Alice is in the
Gym”, where “Alice” and “Gym” are the two entities and
“in” is the relationship.

Scenarios are captured with the Scenario Producer tool,
located on the far right side of the toolbox (see Figure 1).
The Scenario Producer is a simple form of programming by
demonstration [11, 24]. Like a screen capture tool, selecting
the Scenario Producer brings up a recording window that
can be positioned over entities of interest (see Figure 3a).
This window can be resized to include or exclude entities.

Once the recording window is dropped, Topiary will distill
location contexts from the spatial relations of the included
entities. A dialog box is then brought up that lets designers
select contexts of interest (see Figure 3b). The left side of
this dialog box contains a list of entities that can be used for
filtering contexts. Unchecking an entity removes all
contexts associated with that entity. Designers can also
demonstrate transitions by moving entities within the
recording window. For example, dragging Bob into the
Gym changes the event “Bob is out of Gym” into “Bob
enters Gym” (see Figure 3c). New scenarios are added to
the Scenario Repository (see left side of Figure 1).

The Scenario Producer as described so far only supports the
spatial relationships “in”, “out”, “enters”, and “exits”, but
not proximal ones such as “near” and “moves near”. To
specify these, designers can create a proximity region by
dragging the proximity handle of an entity to reflect various
application-specific definitions of “near” (see Figure 4).

Topiary represents these contexts internally via the spatial
relations of containment and intersection of graphical
objects (see Table 1).

 resizing the
proximity region

Figure 4. Proximity regions can be specified by
dragging the pink proximity handles around each
entity. This picture specifies that “Bob is near
Carol” and “Bob is far from Alice”.

Figure 3b. Once the recording window is dropped, a
dialog box is brought up which lets designers select
which contexts they are interested in. The list of
Entities on the left side lets designers filter out
Contexts on the right.

Figure 3a. The Scenario Producer tool uses a green
window for selecting entities of interest. Here, the
recording window is positioned over three entities,
Bob, Alice and the Gym.

Figure 3c. The Scenario Producer also supports
context transitions. The designer drags Bob into
the Gym, with the context changing from “Bob is
out of Gym” to “Bob enters Gym”. This figure also
shows an example of filtering. Entity Alice is
unchecked, and all related contexts are filtered out.

Contexts Spatial Relations

near / far P (place) contains person | thing
place intersects P (person | thing)

moves
near / away

P (place) contains* person | thing
place intersects* P (person | thing)

in / out place contains person | thing
enters /

exits place contains* person | thing

Table 1. Set of basic location contexts supported by
Topiary. Each of these contexts is represented by
spatial relations between graphical objects. P(X)
represents the proximity region of X. Spatial
relationships labeled with * indicate they carry temporal
information as well. The containment is calculated
based on whether the center of a graphical object is
contained by another object’s bounds.

Combined, these relations allow Topiary to support two
basic kinds of location contexts: presence and proximity. A
presence context describes whether a person or thing is in a
place, e.g., “Bob is in the meeting room”. A proximity
context describes whether two entities are near one another,
e.g., “Alice is near Bob”. Topiary also supports transitions
from one context state to another, e.g., “Alice enters her
office”. In this case, the location context carries temporal
information in addition to spatial information.

As defined at the beginning of this section, scenarios are a
collection of location contexts. Thus, scenarios can also be

used to model complex situations. For example, the
scenario “Bob and Alice are in the Meeting room” can be
represented using the two location contexts “Bob is in the
Meeting room” and “Alice is in the Meeting room”.

Generalizing Scenarios. Scenarios in Topiary can also be
generalized from concrete examples. Figure 5 shows how
the scenario “Bob and Alice are in the Meeting Room” can
be generalized to “Bob and Any Person are in the Meeting
Room”. The internal representation for this is below (where
B stands for Bob and M stands for Meeting Room.):

() () () ()pIsPersonBpIsMpInMBInp ∧¬∧∧∃ ,,,,

In Test mode (described below), Topiary checks whether
Bob and any other people are in the meeting room
simultaneously. A Back Tracking search with Minimum
Remaining Values and Degree heuristic [35] is used to
match wildcards to concrete entities. Besides matching
spatial relations, we also need to match temporal
information. For example, for the location context “Any
Person enters Any Place”, the algorithm keeps observing
whether there is a transition from Out to In between any
pairs of persons and places.

Storyboard Workspace
Designers can use the Storyboard workspace (see Figure 6)
to create interface mockups, creating pages that represent
screens and links that represent transitions between pages.
Conceptually, Topiary’s Storyboard workspace is similar to
the storyboard in tools such as SILK [23]. The key
innovations in Topiary’s storyboards are that scenarios
created in the Active Map workspace can be used as
conditions or triggers on links, and context components
specialized for location-enhanced applications can be
embedded into pages.

To create a page, the designer uses the Pencil and draws a
rectangle, which is recognized as a page. Pages allow
freeform ink, which are processed only for smoothing and
grouping. To minimize distractions for designers, there are
no other forms of recognition. To create a link, the designer
draws a line from one page to another. Topiary has two
kinds of links (see Figure 6). Explicit links, denoted in blue,
start on ink within a page. Explicit links represent GUI
elements that users have to click on, e.g., buttons or
hyperlinks. Implicit links, denoted in green, start on an
empty area in a page. Implicit links represent transitions
that automatically execute when scenarios associated with
that link occur. Explicit links model actions taken by end-
users, whereas implicit links model sensed data.

One or more scenarios can be added to a link by dragging
them from the Scenario Repository onto a link2. Multiple
scenarios represent the logical AND of the scenarios.

2 Two kinds of built-in scenarios, namely movement speed and
temporal conditions (times, time intervals and elapsed times), can
be directly inserted into a link by bringing up a Pie Menu on the
link via a right click.

Figure 5: Clicking a scenario’s Arrow button brings
up a detailed view which shows a textual and
graphical description of the scenario. Scenarios can
be modified by replacing a specific entity with
another, or generalized by replacing it with “any
person”, “any place”, or “any thing”.

Scenarios can be removed by dragging them out of the link
or by using the Eraser tool, and copied by holding the Ctrl
key when dragging. Again, these scenarios let designers
place conditions or triggers on links, letting different pages
be displayed depending on the state of the location contexts.

Detecting Conflicts in Links. A link cannot be activated if it
contains multiple scenarios that cannot be satisfied
simultaneously (e.g., “Bob is in the Gym”, “Alice is far
from the Gym”, and “Alice is close to Bob”). When
Topiary detects a conflict, it shows a dialog reporting the
problem and asks the designer to resolve it.

Detecting these conflicts is a Constraint Satisfaction
Problem (CSP) [35]. Each location context is a spatial
constraint (see Table 1) and Topiary simply detects whether
a link is over-constrained. However, since shapes in
Topiary can be freeform polygons, and since spatial
relationships are nonlinear, existing methods for solving
geometric constraints cannot be directly applied.

Instead, since we only need to know whether these spatial
constraints can be satisfied rather than finding geometric
solutions, we approximate by converting spatial constraints
to Boolean constraints and then solve the Boolean CSP.
Our algorithm converts each spatial constraint into a set of
propositions based on predefined knowledge of spatial
relations. For example, the location context “Bob is far
from the Kitchen” generates the following predicates:

()KBClose ,¬ : “Bob is far from the Kitchen”

()KBIn ,¬ : “Bob is out of the Kitchen”
() ()eBCloseKeIne ,,, ¬→∀ : “Bob is far from any entity in

the Kitchen”
() ()pBInKpInp ,,, ¬→∀ : “Bob is out of any place inside

the Kitchen”

Conflicts can also arise from ambiguity between links. If
two links with the same scenarios originate from the same
page element (for explicit links) or the same page (for
implicit links), it is ambiguous as to which link should be
activated. By simply comparing two groups of scenarios,
Topiary finds these ambiguities and marks these links in
red.

Built-in Context Components. Topiary provides five built-in
context components for displaying spatial and temporal
information. These context components make it easy to
prototype features common in many location-enhanced
applications that are hard to specify using storyboards
alone.

The Active Map component lets designers embed a view of
the Active Map workspace into a page (see top-left page of
Figure 6), letting end-users see either part of or the entire
map, the current location of people and things, as well as
the shortest path to a destination (if one is specified). A
dialog box lets the designer show a fixed region of the
Active Map workspace or a region around an entity, e.g., a
180 foot square around Bob. Topiary lets the designer set
up a mapping from pixels to physical measurements. The

designer can also choose to show
directional information, as well
as a path by specifying a starting
point and an end point, both of
which can be fixed points or an
entity. This path is dynamically
generated based on the road
network drawn in the Active Map
workspace.

The Nearest Entities component
displays a table of the nearest N
entities from a set of entities (see
the Nearest Friends page in
Figure 6). When this component
is used, a dialog is brought up
that lets the designer select the set
of entities to choose from. The
designer can also choose to show
the name, location, and distance
of these entities. Figure 6 shows
the names, locations and
distances of the three friends who
are nearest to Bob. Topiary will
show the most accurate location
information that it can get at test
time. For example, it can show
Alice’s location as “Café”, “near
Café” or “Northwest (to Bob)”.

Figure 6: Topiary’s Storyboard workspace lets people create mockups of
applications. Explicit links (the lower three links, in blue) represent things like
buttons and hyperlinks. Implicit links (the top link, in green) represent automatic
transitions. Here, the implicit link is: automatically go from the Map page to the
Nearest Friends page when “Anyone moves near Bob”. The three explicit links
originating from the OK button make the behavior of that button change depending
on which scenarios are true.

The Clock component is used to display either the current
time or the time when a scenario with context transitions
happened, e.g., the time when Bob entered the bookstore.
The Distance component shows the distance between two
entities. The Location component displays an entity’s
location by name.

The values for these components are automatically updated
based on the simulated locations of people, places, and
things in the Test workspace, described in the next section.

Test Workspace
After several pages have been created, designers can try out
their designs in the Test workspace. To enter the Test
workspace, the designer opens a pie menu by right clicking
on the desired start page and then selecting the Test option.

The Test workspace has two major parts: the Wizard UI
and the End-User UI (see Figure 7). The End-User UI is
what end users will see and interact with. The Wizard UI is
where the designer can simulate location contexts, while
observing and analyzing a test. These UIs can be run on the
same device (to let a designer try out a design) or on
separate devices (one for the Wizard, the other for the user).

The Wizard UI has four parts. The Wizard Map is a copy of
the Active Map workspace, with the key difference being
that it represents the current location of people and things.
The designer can simulate location contexts by moving
people and things around to dynamically update their
location. If moving a person or a thing causes an implicit
link to activate, then the End-User UI will automatically
transition to that page. On the bottom-left is the End-User
Screen, a copy of the End-User UI, which also updates in
response to end-user input on a PDA. The designer can
click on the same links that a user could as well for test

purposes. A Radar View of the map area is provided for
navigation. The Storyboard Analysis window shows a
simplified view of the storyboard workspace with the
current page and the last transition highlighted, which can
help designers to figure out interaction flows.

To connect the End-User UI to the Wizard UI, the designer
starts a special Topiary client on a separate device. This
client then searches for a network connection to the Wizard
UI. The End-User UI is active once it is connected. A user
can click on any explicit links, and any implicit links
activated by changes in location will also fire. The designer
only needs to update the location of people and things.

Topiary can also use real location data if it is available,
enabling more realistic testing at larger scales. A designer
can use sensor input by checking the Sensor checkbox (see
center top of Figure 7). Topiary currently acquires location
data through Place Lab [37], which allows a WiFi-enabled
device to passively listen for nearby access points to
determine its location in a privacy-sensitive manner.

To analyze a design, designers can record a test and replay
it later. Topiary can capture users’ actions, like mouse
movements and clicks, as well as physical paths traveled.

Implementation
Topiary is implemented in Java 2 SDK v1.4.2 on top of
SATIN [21], a toolkit for informal, pen-based applications.
Topiary currently has 398 Java classes with approximately
26,000 lines of source code. Communication between the
Wizard UI and the End-User UI is done through Java object
serialization and network sockets. The Topiary client has
only 18 Java classes and is compatible with JRE 1.1, so it
can run on a wide variety of PDAs and phones. All
processing of pages and links is done on the Wizard UI. We

Figure 7. The Test workspace consists of two major parts: the Wizard UI and the End-User UI. The left figure shows an
End-User UI running on a PDA and the right figure shows a Wizard UI. Here the Storyboard Analysis Window and the
Radar View are turned off. Designers can turn on the sensor input by checking the Sensor checkbox if any available.

have tested Topiary with the wireless connection
established over IEEE 802.11 with both access point and
peer-to-peer connection modes.

EVALUATION
We ran an informal evaluation on an early implementation
of Topiary with 7 participants. Two were researchers
familiar with location-enhanced applications and five were
interface designers (2 students and 3 professionals).
Participants were offered $50 plus $100 for the best design.
We used an IBM Thinkpad with a 700MHz CPU, 512MB
RAM, and 14.1 inch display, and a Wacom Graphire tablet.
Participants were shown a 15 minute demo of Topiary, and
were coached in completing three tasks during a 30 minute
tutorial that showed how to use all of the features. The
three tasks were designing an In/Out board, a Find Nearest
Printers application, and a Find Nearby Friends application.

The final task, on which participants were judged, was to
create a tour guide for either the Berkeley campus or San
Francisco, whichever they preferred. There were three
requirements: show an area map, display information about
interesting spots, and support finding friends. Participants
could add any other features they thought would be useful.

After finishing, we asked our participants to rate the
understandability, ease-of-use, and usefulness of various
aspects of Topiary on a seven-point scale (7 is the best).

Observations
For the most part, all of the participants could accomplish
all of the tasks. Our participants did not encounter any
serious problems with the Active Map workspace or the
Wizard UI. However, our participants did encounter two
common problems with the Storyboard workspace. First,
participants had some difficulties understanding the
interaction flow after a dozen or so pages, due to the large
number of crossing links, as well as to space management
in that pages were often packed tightly together.

Second, participants often had difficulties in ensuring that
all of the necessary scenarios were covered properly on a
page. The best way to describe this problem is to contrast
Topiary with other prototyping systems. Many prototyping
systems use a page metaphor. However, in these systems,
the only way to transition from one page to another is by
explicit user interaction. The number of transitions and
possible actions are limited by what makes sense for that
page. However, in Topiary, even if users are on one page,
the background state of location information can change
dramatically. The challenge for designers is that they need
to account for what explicit actions the user might take, as
well as what changes in spatial relationships might occur.

The storyboard analysis view and the test recording/replay
in the Test workspace have been built since our evaluation
to address these issues and to help designers debug their
designs. Our participants also requested a feature for
showing a region around an entity rather than only a fixed
region of the Active Map workspace. As mentioned earlier,
we have added this feature to the Active Map component.

Feedback
Participants generally liked the Topiary concept and the
design process it supports. Some participants familiar with
ubicomp thought Topiary was much easier to understand
and use than dealing with sensors and logic-based rules.
Overall, Topiary was rated 5.7 of 7 for understandability, 5
for ease-of-use, and 5.9 for usefulness. We believe the ease-
of-use rating was due more to bugs rather than the
interaction. One participant summarized it best: “although
there are some bugs, I think it’s very smart … it is really
fast to prototype.” Some participants enjoyed using the
tool, saying “this is fun” and “this is neat”. However, the
storyboard had the lowest ratings, with an understandability
of 4.9, ease-of-use 5.6, and usefulness 5.6.

Our Experience
We have also used Topiary to prototype other applications,
such as a context-aware reminder system and a car-based
navigation system. These examples can be found at
http://dub.washington.edu/topiary/examples, and embody
many features that can be found in existing research and
commercial location-enhanced systems.

To further validate Topiary, we iterated on the design of a
tour guide application and then implemented it. We focused
on the UI for finding the path to a specific place. It took us
three hours to make four prototypes using Topiary, each
using a different navigation technique. The first design
shows a map of the entire campus. The second design
shows an area centered on the user and lets the user
manually zoom in and out. The third design uses the user’s
current location to show different regions of the campus.
The last design is similar to the second, except it
automatically zooms in or out based on the user’s current
speed. All of these designs showed the users’ current
location, and distance and shortest path to the target.

We then had three people try all four designs on a PDA in
the field, with a wizard updating their location on a Tablet
PC. We were able to make some changes to the design
instantly in response to their suggestions. Interestingly, our
participants did not realize their location was being updated
by a wizard rather than by real sensors. We also used
sensor input in part of the test to see how sensor accuracy
affected users. One person suggested showing a region for
the possible location instead of just a point. Based on
participant feedback, we spent an hour creating a new
design combining designs 2 and 4, letting users switch
between automatic and manual zooming. In addition, we
added a feature to highlight the target when it was nearby.

We also tried several techniques for helping users go in the
right direction, including rotating the map, showing
orientation, and showing trajectory arrows. Our participants
gave us many useful comments. For example, two of them
suggested showing a movement trail.

After testing, we started to consider implementation issues.
For example, since Place Lab does not provide precise
orientation, we decided to show a movement trail instead of
showing potentially inaccurate directional arrows. Building

the application took about 2 weeks. Topiary provided us a
lightweight way of getting early feedback from users and to
quickly figure out the design issues in the early stages of
design, which is much cheaper and less risky than directly
building the real application and then testing with users.

RELATED WORK
There have been many prototyping tools for various
domains [4, 22, 23, 25]. Topiary is the first prototyping tool
for location-enhanced apps, representing a first step
towards prototyping tools for ubicomp. Topiary’s
storyboard is based on these previous systems, extending
the concept to location-enhanced interactions. DENIM [26]
uses the state of visual elements as conditions on explicit
links, e.g., if a checkbox is checked. Topiary, in contrast,
lets designers create custom scenarios based on spatial
relationships and use those scenarios in conditioning links.
Topiary also vastly expands the notion of implicit links, in
this case links activated from implicit location input.
Previously, the only kind of implicit link in DENIM was
for time.

UbiWise [5] is a desktop-based virtual environment for
simulating ubicomp devices, environments, and interactions.
In contrast, Topiary supports designers in rapidly
prototyping and testing out designs in the actual physical
environments that users live, work, and play in.

iCAP is a tool for prototyping context-aware applications
[39]. iCAP uses sensors as the key abstraction, letting
designers link input to output using Boolean logic and a
rule-based system. In contrast, Topiary uses a much higher
level of abstraction, letting designers think visually in terms
of people, places, things, maps, and scenarios.

The a CAPpella [13] system looks at end-user
configuration of a pre-deployed sensor environment via
machine learning. In contrast, Topiary allows interaction
designers to design, instead of customize existing, location-
enhanced applications. This occurs at the very early stages
of design without requiring any sensor infrastructures to be
deployed.

Topiary’s Scenario Producer is a simple domain-specific
version of end-user-triggered behaviors (e.g., [11, 24, 43]),
though it focuses less on the actual behavior and more on
capturing events. Topiary is the first informal prototyping
tool to use this approach for specifying events of interest.

The term “Active Map” is taken from Schilit and Theimer
[38]. The idea of using a map in location-enhanced
applications is a common one (e.g., [1, 10]). The idea of
overlaying places on top of images was inspired by HTML
image map tools (e.g., [6]). Topiary introduces the use of
maps as an aid for designers in informal prototyping.

The Wizard of Oz technique is often used for simulating
speech recognition systems [12, 22]. The idea of having a
Wizard follow a user around to update location information
was inspired by a prototype we built for helping users find
things [40]. Topiary can be used to make a rough version of

this same application, obviating the need for custom
software. Topiary also takes a step towards more involved
wizard interfaces for prototyping tools, having wizards fake
sensor information, in this case location information.

DISCUSSION AND FUTURE WORK
Topiary’s map representation of location contexts has
several benefits over other approaches, such as textual or
logical representations. First, it is easy to understand
because it has a direct mapping to spatial relationships in
the physical world. Second, it allows designers to quickly
understand the overall situation. Third, location contexts
can be simulated simply by moving entities on the map in
Test mode, rather than having to type anything.

Topiary currently does not have explicit features for
handling sensor ambiguity, primarily because Topiary is
intended for early-stage interaction design rather than
dealing with the vagaries of sensing technologies. Topiary
indirectly supports ambiguity in three ways. The sketched
location model is inherently ambiguous, the wizard can
deliberately generate noise in the positions of the icons
while testing, and turning on the sensor infrastructure tests
a design with the ambiguous input of real sensors.
However, since ambiguity is an essential aspect of sensors,
we are planning on adding basic support features in future
work. One idea is to include an error model which can
generate various sensing errors, similar to that used in
Suede [22].

Another direction for future work is to support a wider
range of contextual information. Currently, Topiary only
supports spatial and temporal contexts, but one could
imagine other kinds, such as activity.

We are also investigating approaches to make the
storyboard scale better. One possible solution is to organize
storyboards hierarchically as in StateCharts [19]. In our
case, a set of pages that represent an interaction sequence
can be grouped together as one composite page. We are
also looking at giving designers better awareness of which
scenarios have been covered on a page and which have not.

CONCLUSION
In this paper, we described Topiary, the first tool for
prototyping location-enhanced applications. Topiary
introduces active maps for prototyping, which lets
designers model the location of people, places, and things
and demonstrate scenarios depicting location contexts.
Topiary also introduces a richer visual language for
storyboarding, letting designers create links that are active
only when scenarios associated with that link are true.
Topiary supports explicit links, ones that end-users interact
with, and implicit links, ones that automatically take place
depending on the state of current spatial relationships.
Topiary’s Test workspace lets designers try out their
designs by “running” them with real users and analyze
them by capturing and replaying a test. Designers can
update the location of people and things on the Wizard UI,
which can be linked with an End-User UI running on a
separate device.

ACKNOWLEDGMENTS
We would like to thank Jimmy Lin, Richard Davis, Scott
Klemmer, Scott Lederer, Alan Borning, and Gaetano
Borriello for their feedback. This work was supported by
NSF under Grant No. IIS-0205644.

REFERENCES
1. Abowd, G.D., et al., Cyberguide: A Mobile Context-Aware

Tour Guide. Baltzer/ACM Wireless Networks, 1997. 3(5):
pp. 421-433.

2. Apple, HyperCard User's Guide. 1987: Apple Computer,
Inc.

3. AT&T, AT&T Wireless mMode - Find Friends.
http://www.attwireless.com/mmode/features/findit/FindFrien
ds/.

4. Bailey, B.P., Konstan, J.A., and Carlis, J.V. DEMAIS:
Designing Multimedia Applications with Interactive
Storyboards. in ACM Multimedia 2001. pp. 241-250.

5. Barton, J.J. and Vijayaraghavan, V. UBIWISE, A simulator
for Ubiquitous computing systems design. 2003, HP Labs.
Tech. Rep. HPL-2003-93.

6. Boutell, T., Mapedit. http://www.boutell.com/mapedit/.
7. Brown, P.J. and Jones, G.J.F., Context-aware Retrieval:

Exploring a New Environment for Information Retrieval and
Information Filtering. Personal and Ubiquitous Computing,
2001. 5(4): pp. 253-263.

8. Burrell, J., et al. Context-Aware Computing: A Test Case. in
Ubicomp 2002. Göteborg, Sweden. pp. 1-15.

9. Cheverst, K., et al., Developing a Context-aware Electronic
Tourist Guide: Some Issues and Experiences. CHI Letters,
2000. 2(1): pp. 17-24.

10. Cheverst, K., et al. Developing a Context-aware Electronic
Tourist Guide: Some Issues and Experiences. in Human
Factors in Computing Systems: CHI 2000. pp. 17-24.

11. Cypher, A., et al., Watch What I Do: Programming by
Demonstration. 1993, Cambridge, MA: MIT Press.

12. Dahlbäck, N., Jönsson, A., and Ahrenberg, L. Wizard of Oz
Studies - Why and How. in IUI 1993. pp. 193-200.

13. Dey, A.K., et al., a CAPpella: Programming by
Demonstration of Context-Aware Applications. CHI Letters,
2004. 6(1): pp. 33-40.

14. Dey, A.K., Salber, D., and Abowd, G.D., A Conceptual
Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications. Human-
Computer Interaction, 2001. 16(2-3): pp. 97-166.

15. Ericsson, Mobile Positioning SDK.
http://www.ericsson.com/mobilityworld/sub/open/technologi
es/mobile_positioning/tools.html.

16. Espinoza, F., et al. GeoNotes: Social and Navigational
Aspects of Location-Based Information Systems. in Ubicomp
2001. Atlanta, GA. pp. 2-17.

17. Falk, J., et al. Pirates: Proximity-Triggered Interaction in a
Multi-Player Game. in Human Factors in Computing
Systems: CHI 2001 (Extended Abstracts). pp. 119-120.

18. Griswold, W.G., et al. ActiveCampus - Experiments in
Community-Oriented Ubiquitous Computing. 2003,
Computer Science and Engineering, UCSD. CS2003-0765.

19. Harel, D., Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 1987. 8(3): pp.
231-274.

20. Hong, J.I. and Landay, J.A. An Architecture for Privacy-
Sensitive Ubiquitous Computing. in Mobisys'04. Boston, MA.
pp. 177-189.

21. Hong, J.I. and Landay, J.A., SATIN: A Toolkit for Informal
Ink-based Applications. CHI Letters, 2000. 2(2): pp. 63-72.

22. Klemmer, S.R., et al., SUEDE: A Wizard of Oz Prototyping
Tool for Speech User Interfaces. CHI Letters, 2000. 2(2): pp.
1-10.

23. Landay, J.A. and Myers, B.A., Sketching Interfaces: Toward
More Human Interface Design. IEEE Computer, 2001. 34(3):
pp. 56-64.

24. Lieberman, H., Your Wish Is My Command: Programming
by Example. 2001: Morgan Kaufmann.

25. Lin, J., et al., DENIM: Finding a tighter fit between tools and
practice for web site design. CHI Letters, 2000. 2(1): pp.
510-517.

26. Lin, J., Thomsen, M., and Landay, J.A., A Visual Language
for Sketching Large and Complex Interactive Designs. CHI
Letters, 2002. 4(1): pp. 307-314.

27. Macromedia, Director.
http://www.macromedia.com/software/director/.

28. Mayor, M., New Wireless Device Could Rescue Firefighters.
http://www.wirelessnewsfactor.com/perl/story/9134.html.

29. Nagel, K., et al. The Family Intercom: Developing a Context-
Aware Audio Communication System. in Ubicomp 2001.
Atlanta, GA. pp. 176-183.

30. Navas, J.C. and Imielinski, T. Geocast - geographic
addressing and routing. in MobiCom 1997. pp. 66-76.

31. Pascoe, J. The Stick-e Note Architecture: Extending the
Interface Beyond the User. in IUI 1997. pp. 261-264.

32. Pfeiffer, E.W., WhereWare. MIT Technology Review, 2003:
pp. 46-52.

33. Priyantha, N.B., Chakraborty, A., and Balakrishnan, H. The
Cricket Location-Support System. in MobiCom 2000: The
Sixth Annual International Conference on Mobile Computing
and Networking. Boston, Massachusetts. pp. 32-43.

34. Rhodes, B. and Starner, T. The Remembrance Agent: A
Continuously Running Automated Information Retrieval
System. in PAAM. London, UK. pp. 487-495.

35. Russell, S. and Norvig, P., Constraint Satisfaction Problems.
Second ed. Artificial Intelligence: A Modern Approach.
2003: Prentice Hall. 137-160.

36. Saund, E., et al., Perceptually-Supported Image Editing of
Text and Graphics. CHI Letters, 2003. 5(2): pp. 183-192.

37. Schilit, B., et al. Challenge: Ubiquitous Location-Aware
Computing and the Place Lab Initiative. in WMASH 2003.
San Diego, CA. pp. 29-35.

38. Schilit, B.N. and Theimer, M.M., Disseminating Active Map
Information to Mobile Hosts. IEEE Network, 1994. 8(5): pp.
22-32.

39. Sohn, T. and Dey, A.K. iCAP: An Informal Tool for
Interactive Prototyping of Context-Aware Applications. in
CHI 2003 (Extended Abstracts). pp. 974-975.

40. Takayama, L., et al. You’re Getting Warmer! How Proximity
Information Affects Search Behavior in Physical Spaces. in
CHI 2003 (Extended Abstracts). pp. 1028-1029.

41. Want, R., et al., The Active Badge Location System. ACM
Transactions on Information Systems, 1992. 10(1): pp. 91-
102.

42. Weiser, M., The Computer for the 21st Century. Scientific
American, 1991. 265(3): pp. 94-104.

43. Wolber, D., Pavlov: an interface builder for designing
animated interfaces. ACM Transactions on Computer-
Human Interaction (TOCHI), 1997. 4(4): pp. 347-386.

