
TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43

Understanding the Purpose of Permission Use in Mobile Apps 1

HAOYU WANG, Beijing University of Posts and Telecommunications 2
YUANCHUN LI and YAO GUO, Peking University 3
YUVRAJ AGARWAL and JASON I. HONG, Carnegie Mellon University 4

Mobile apps frequently request access to sensitive data, such as location and contacts. Understanding the 5
purpose of why sensitive data is accessed could help improve privacy as well as enable new kinds of access 6
control. In this article, we propose a text mining based method to infer the purpose of sensitive data access 7
by Android apps. The key idea we propose is to extract multiple features from app code and then use those 8
features to train a machine learning classifier for purpose inference. We present the design, implementation, 9
and evaluation of two complementary approaches to infer the purpose of permission use, first using purely 10
static analysis, and then using primarily dynamic analysis. We also discuss the pros and cons of both 11
approaches and the trade-offs involved. 12

CCS Concepts: � Security and privacy → Mobile platform security; Privacy protections; Usability 13
in security and privacy; � Information systems → Retrieval on mobile devices; � Human-centered 14
computing → Mobile phones; 15

Additional Key Words and Phrases: Permission, purpose, mobile applications, Android, privacy, access control 16

ACM Reference Format: 17
Haoyu Wang, Yuanchun Li, Yao Guo, Yuvraj Agarwal, and Jason I. Hong. 2017. Understanding the purpose 18
of permission use in mobile apps. ACM Trans. Inf. Syst. 35, 4, Article 43 (May 2017), 40 pages. 19
DOI: http://dx.doi.org/10.1145/3086677 20

1. INTRODUCTION 21

Mobile apps have seen widespread adoption, with over 2 million apps in both Google 22
Play and the Apple App Store, and billions of downloads [AppStore 2016; GooglePlay 23
2016]. Mobile apps can make use of the numerous capabilities of a smartphone, which 24
include a myriad of sensors (e.g., GPS, camera, and microphone) and a wealth of 25
personal information (e.g., contact lists, emails, photos, and call logs).

Q1

26

This work was partly supported by the Funds for Creative Research Groups of China under Grant
No. 61421061, the Beijing Training Project for the Leading Talents in S&T under Grant No. ljrc 201502, the
National Natural Science Foundation of China under Grant No. 61421091, and the National High Technology
Research and Development Program of China (863 Program) under Grant No. 2015AA017202. Jason Hong’s
work was supported in part by the Air Force Research Laboratory under agreement number FA8750-15-2-
0281. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of Air Force Research Laboratory or the U.S. Government.
Authors’ addresses: H. Wang, Beijing Key Laboratory of Intelligent Telecommunication Software and Mul-
timedia, School of Computer Science, Beijing University of Posts and Telecommunications; Y. Li and Y. Guo
(Corresponding author), Key Laboratory on High-Confidence Software Technologies (MOE), School of Elec-
tronics Engineering and Computer Science, Peking University; email: yaoguo@pku.edu.cn; Y. Agarwal and
J. I. Hong, School of Computer Science, Human Computer Interaction Institute, Carnegie Mellon University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1046-8188/2017/05-ART43 $15.00

DOI: http://dx.doi.org/10.1145/3086677

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

http://dx.doi.org/10.1145/3086677
http://dx.doi.org/10.1145/3086677

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:2 H. Wang et al.

Mobile apps frequently request access to sensitive information, such as unique device27
ID, location data, and contact lists. Android currently requires developers to declare28
what permissions an app uses, but offers no formal mechanisms to specify the purpose of29
how the sensitive data will be used. While the latest Android releases have introduced30
permission strings to address this limitation, they are rarely used and only suggest a31
single purpose if they are used. Complicating this further, an app could use a permission32
for multiple purposes, such as using location permission for advertising, geotagging,33
and nearby searching. Mobile users have no way to know how and why a certain34
sensitive data item is used within an app, let alone controlling how the data should be35
used.36

Knowing the purpose of a permission request can help with respect to privacy, for37
example, offering end-users more insights as to why an app is using a specific sensitive38
data. Prior work [Lin et al. 2012] showed that purpose information is important to39
assess people’s privacy concerns. Properly informing users of the purpose of a resource40
access can ease users’ privacy concerns to some extent. Besides, knowing a clear purpose41
of a request could also offer fine-grained access control, for example, disallowing the42
use of location data for geotagging while still allowing map searches.43

Our specific focus is on developing better methods to infer the purpose of permission44
use. Prior work has investigated ways to bridge the semantic gap between users’ ex-45
pectations and app functionality. For example, WHYPER [Pandita et al. 2013] and46
AutoCog [Qu et al. 2014] apply natural language processing techniques to an app’s47
description to infer permission use. CHABADA [Gorla et al. 2014] clusters apps by48
their descriptions to identify outliers in each cluster with respect to the Application49
Programming Interface (API) usage. RiskMon [Jing et al. 2014] builds a risk assess-50
ment baseline for each user according to the user’s expectations and runtime behaviors51
of trusted applications, which can be used to assess the risks of sensitive information52
use and rank apps. Amini et al. introduced Gort [Amini et al. 2013], a tool that com-53
bines crowdsourcing and dynamic analysis, which could help users understand and54
flag unusual behaviors of apps.55

Our research thrust is closest to Lin et al. [2012, 2014], which introduced the idea of56
inferring the purpose of a permission by analyzing what third-party libraries an app57
uses. For example, if location data is only used by an advertising library, then it can be58
inferred that it is used for advertising. Lin et al. [2014] manually labeled the purposes59
of several hundred third-party libraries (advertising, analytics, social network, etc.),60
used crowdsourcing to ascertain people’s level of concern for data use (e.g., location for61
advertising versus location for social networking), and clustered and analyzed apps62
based on their similarity. Their approach, however, is unable to detect purposes for63
sensitive data access within the app, particularly when there are multiple purposes64
(e.g., advertising, geotagging, etc.) for a single permission.65

In this article, we propose a text mining based method to infer the purpose of a66
permission use for Android apps. A key insight underlying our work is that, unless an67
app has been completely obfuscated,1 compiled Java class files still retain the text of68
many identifiers, such as class names, method names, and field names. These strings69
offer a hint as to what the code is doing. As a simple example, if we find custom code70
that uses the location permission and possesses method or variable names such as71
“photo,” “exif,” or “tag,” it is very likely that it uses location data for the purpose of72
“geotagging.” We present two complementary approaches to determine the purpose of73

1Note that if an app is fully obfuscated, we may not be able to infer the purpose of permission use. We
detailedly analyzed the obfuscation rate in Android apps, the impact to our approach, and feasible approaches
to deal with obfuscation in Section 6.1.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

Understanding the Purpose of Permission Use in Mobile Apps 43:3

permission use based on text analysis: one using purely static analysis, the other using 74
primarily dynamic analysis. 75

For static analysis we build upon our earlier work [Wang et al. 2015c], where we 76
first decompile apps and search the decompiled code to determine where sensitive 77
permissions are used. We have analyzed a large set of Android apps and from that data 78
created a taxonomy of 10 purposes for location data and 10 purposes for contact list. 79
The reason we chose contacts and location data is that past work has shown that users 80
are particularly concerned about these two data items. Then we extract multiple kinds 81
of features from the decompiled code, including both app-specific features (e.g., API 82
calls, the use of Intent and Content Provider) and text-based features (TF-IDF results 83
of meaningful words extracted from package names, class names, interface names, 84
method names, and field names). We use these features to train a classifier to infer the 85
purpose of permission uses. 86

However, relying on static analysis has some limitations. First, some apps 87
use sensitive data through a level of indirection rather than directly accessing 88
it. For example, the social networking app “Skout” has a helper package called 89
“com.skout.android.service,” containing services such as “LocationService.java” 90
and “ChatService.java.” In this design pattern, these helper services access sensi- 91
tive data, with other parts of the app accessing these services instead. In this case, 92
there is very little meaningful text information in the directory where these services 93
are located, and static approach would simply fail to find enough context for purpose 94
inference. Second, in many apps, third-party libraries request sensitive data by invok- 95
ing methods in the app logic that provides access to resources, rather than accessing 96
resources directly [Liu et al. 2015]. Furthermore, static analysis based approaches [Lin 97
et al. 2012; Wang et al. 2015c] typically need to split apps into different components 98
(e.g., libraries or packages) and label the purpose for each component. But specifying 99
purpose at a component granularity is too coarse-grained as there may be multiple 100
purposes of data use within each component. 101

To overcome the limitations of static analysis, we further introduce a dynamic ap- 102
proach to infer purpose at runtime. We use dynamic taint analysis at runtime to 103
monitor privacy sensitive information flows, and infer the purpose of sensitive behav- 104
ior based on dynamic call stack traces, which contain useful information on how (and 105
why) the sensitive data is accessed and used. We extract meaningful key words from 106
the methods and classes related to the call stack, and then use machine learning to 107
infer the purpose of permission use. To infer the purposes accurately and address the 108
multithreading programming patterns in Android, we propose a novel thread-pairing 109
method to find the full stack trace at runtime. 110

We present the design, implementation, and evaluation of our static and dynamic 111
approaches for inferring purposes in Android apps. We first evaluate the effectiveness of 112
text analysis techniques on decompiled code statically. Our static analysis is focused on 113
analyzing purposes for the custom code components of an app, excluding any included 114
third-party libraries. We created a taxonomy for purposes on how apps use two sen- 115
sitive permissions in custom code, namely, ACCESS_FINE_LOCATION (location for short) 116
and READ_CONTACTS (contacts for short). We chose these two permissions as a proof of 117
concept for our technique, in large part because past work has shown that users are 118
particularly concerned about these two data items. For the static approach, we used this 119
taxonomy to manually examine and label the behavior of 460 instances2 using location 120
(extracted from 305 apps), and 560 instances using contacts (extracted from 317 apps). 121
We used this data to train a machine-learning classifier. Using 10-fold cross-validation, 122

2Here, an instance is defined as a directory of source code, thus a single app may yield more than one
instance.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:4 H. Wang et al.

our experiments show that we can achieve about 85% accuracy in inferring the purpose123
of location use, and 94% for contact list use. Then we introduce a dynamic analysis tech-124
nique to overcome the limitations of static analysis. For the dynamic approach, we try125
to infer the purpose of permission use in the entire app, including third-party libraries126
and custom code. We have implemented a prototype system that combined dynamic127
analysis and static analysis on Android, and we have evaluated the effectiveness of our128
system by testing it on 830 popular Android apps. Our experimental results show that129
we are able to successfully infer the purpose of over 90% of the sensitive data uses.130

This article makes the following research contributions:131

—We introduce the idea of using text analysis and machine-learning techniques on132
decompiled code to infer the purpose of permission uses. To the best of our knowledge,133
our work is the first attempt to infer the purposes for custom-written code (as opposed134
to third-party libraries or app descriptions).135

—We present the design, implementation, and evaluation of two complementary ap-136
proaches to infer the purpose of permission use, one using purely static analysis, the137
other using primarily dynamic analysis. We also created a taxonomy for purposes138
regarding how apps use location and contacts permissions. We show that both ap-139
proaches are able to identify the purposes for 90% of the sensitive data uses on140
average.141

—We discuss the pros and cons of both the static approach and the dynamic approach, as142
well as the trade-offs involved. Since the static approach has good code coverage and143
scalability, it is feasible to deploy it on the app market to identify sensitive behaviors144
of mobile apps a priori, and help improve user awareness about which permissions145
are used by an app and why. Our dynamic analysis is finer-grained and improves146
accuracy for purpose inference. It is therefore more suitable to deploy the dynamic147
approach on real users’ phones and help them enforce privacy.148

2. BACKGROUND AND RELATED WORK149

2.1. Background150

2.1.1. The Android Permission Mechanism. Android uses a permission model to govern an151
app’s access to resources. Prior to Android Marshmallow (version 6.0), all permissions152
were declared by developers in a manifest file, and end-users were required to accept all153
of them at install time. Android Marshmallow introduced runtime permission control154
for several “dangerous” permissions such as location or contact list, allowing users to155
allow (or deny) access on first use. Furthermore, these permissions can be modified later156
if the user feels uncomfortable on granting the app access to a certain resource all the157
time. However, despite this additional control over permissions granted to individual158
apps, Android still lacks the capability to let users both understand and choose the159
purpose for which each permission is granted to an app. Once a user grants the access160
to an app, the requested data can be used for any purpose.161

2.1.2. The Purpose of Permission Use. In this article, the purpose of a permission refers162
to the reason for accessing a sensitive data item, that is, why an app needs access to163
a specific sensitive data. For example, for an app that uses location data for turn-by-164
turn navigation and for advertising, one might say that this app uses location data for165
“navigation” and for “ads.”166

Prior work has shown that static analysis of apps can help identify libraries that use167
sensitive permissions and infer its purpose. Lin et al. [2012, 2014] manually categorized168
around 400 popular third-party libraries based on their functionality, and then used169
these categories to label the purposes of permissions used in each library. The libraries170
are categorized into nine different purposes, as shown in Table I. Note that we added171

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

Understanding the Purpose of Permission Use in Mobile Apps 43:5

Table I. A Taxonomy of the Purposes of Permission Uses. Third-Party Libraries are Categorized into 10 Different
Purposes [Lin et al. 2012]. We Manually Analyzed a Large Set of Android Apps and Created a Taxonomy of the

Purposes of Location Permission Uses and the Purposes of Contacts Permission Uses in Custom Code

Type Permission Purpose

The purpose of
permission use
in third-party libs
[Lin et al. 2012]

all
permissions

advertising, analytics, social networking,
utilities, development aid, social games,
secondary market, payment, game engine, maps

The purpose of
permission use
in custom code

location

search nearby places, location-based customization,
transportation information, recording, map and navigation,
geosocial networking, geotagging, location spoofing,
alert and remind, and location-based game

contacts
backup and synchronization, contact management,
blacklist, call and SMS, contact-based customization,
email, find friends, record, fake calls and SMS, remind

Table II. Our Set of Purposes for Location Permission in Custom Code, and the Number of Unique Packages
in Our Dataset that have that Purpose

Purpose Description #Instances

Search Nearby Places
Find nearby hotels, restaurants, bus stations,
bars, pharmacies, hospitals, etc.

50

Location-based Customization
Provide news, weather, time, activities
information based on current location

50

Transportation Information
Taxi ordering, real-time bus and metro
information, user-reported bus/metro location

50

Recording
Real-time walk/run tracking, location logging
and location history recording, children tracking

50

Map and Navigation Driving route planning and navigation 50

Geosocial Networking
Find nearby people/friends,
social networking check-in

50

Geotagging
Add geographical identification metadata to
various media such as photos and videos

30

Location Spoofing Sets up fake GPS location 30

Alert and Remind
Remind location-based tasks,
disaster alert such as earthquake

50

Location-based game
Games in which the gameplay evolves
and progresses based on a player’s location

50

a new category called “map library,”3 which includes Software Development Tookits 172
(SDKs) such as osmdroid. 173

For the purpose of permission use in custom code, we manually analyzed a large set 174
of Android apps and created a taxonomy of the purposes of location permission use and 175
the purposes of contacts permission use, as shown in Table I. The description of each 176
purpose is detailedly explained in Tables II and III. 177

2.2. Related Work 178

2.2.1. The Gap Between User Expectations and App Behaviors. Past studies [Felt et al. 2012; 179
Chin et al. 2012; Egelman et al. 2012] have shown that mobile users have a poor 180

3Note that purpose “maps” refers to the purpose of location data used in third-party map libraries, while the
purpose “map and navigation” refers to the purpose of location data used in custom code for driving route
planning and navigation.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:6 H. Wang et al.

Table III. Our Set of Purposes for Contacts Permission in Custom Code, and the Number of Unique Packages
in Our Dataset that has that Purpose

Purpose Description #Instances

Backup and
Synchronization

Backup contacts to the server, restore and sync contacts 61

Contact Management Remove invalid contacts, delete/merge duplicate contacts 30
Blacklist Block unwanted calls and SMS 52
Call and SMS Make VoIP/Wifi calls using Internet, send text message 54
Contact-based
Customization

Add contacts to a custom dictionary for input methods,
change ringtone and background based on contacts

51

Email Send email to contacts 78

Find friends
Add friends from contacts,
find friends who use the app in contact list

46

Record Call Recorder, call log and history 93

Fake Calls and SMS
Select a caller from contact list and give yourself a fake
call or SMS to get out of awkward situations

49

Remind Missed call notification, remind you to call someone 46

understanding of permissions. They cannot correctly understand the permissions they181
grant, while current permission warnings are not effective in helping users make182
security decisions. Meanwhile, users are usually unaware of the data collected by183
mobile apps [Felt et al. 2012; Shklovski et al. 2014]. Several approaches [Almuhimedi184
et al. 2015; Harbach et al. 2014; Kelley et al. 2013] have been proposed to focus on185
raising users’ awareness of the data collected by apps, informing them of potential186
risks and help them make decisions.187

Furthermore, previous studies [Balebako et al. 2013; Jung et al. 2012] suggested188
that there is a semantic gap between users’ expectations and app behaviors. Recent189
research has looked at ways to incorporate users’ expectations to assess the use of190
sensitive information, proposing new techniques to bridge the semantic gap between191
users’ expectations and app functionalities. For example, WHYPER [Pandita et al.192
2013], AutoCog [Qu et al. 2014], and ACODE [Watanabe et al. 2015] propose to use193
Natural Language Processing (NLP) techniques to infer permission use from app194
descriptions. They build a permission semantic model to determine which sentencesQ2195
in the description indicate the use of permissions. By comparing the result with196
the requested permissions, they can detect inconsistencies between the description197
and requested permissions. However, the results suggest that, for more than 90%198
of apps, it is impossible to understand why permissions are used based solely on199
app descriptions. ASPG [Wang and Chen 2014] has proposed generating semantic200
permissions using NLP techniques on app descriptions. It then tailored the requested201
permissions that are not listed in the semantic permissions to get the minimum set202
of permissions an app needs. CHABADA [Gorla et al. 2014] uses Latent Dirichlet203
Allocation (LDA) on app descriptions to identify the main topics of each app, and then204
clusters apps based on related topics. By extracting sensitive APIs used for each app,205
it can identify outliers that use APIs that are uncommon for that cluster. All of these206
approaches have attempted to infer permission use or semantic information from app207
descriptions, and bridge the gap between app descriptions and functionalities.208

Ismail et al. [2015] leveraged crowdsourcing to find the minimal set of permissions209
to preserve the usability of an app for diverse users. RiskMon [Jing et al. 2014] builds a210
risk assessment baseline for each user according to the user’s expectations and runtime211
behaviors of trusted applications, which can be used to assess the risks of sensitive212
information use and rank apps. Amini et al. introduced Gort [Amini et al. 2013], a213
tool that combines crowdsourcing and dynamic analysis to help users understand and214

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

Understanding the Purpose of Permission Use in Mobile Apps 43:7

flag unusual behaviors of apps. AppIntent [Yang et al. 2013] uses symbolic execution to 215
infer whether a transmission of sensitive data is by user intention or not. Past research 216
[Shih et al. 2015; Mancini et al. 2009; Toch et al. 2010] has also attempted to measure 217
users’ privacy preferences in different contexts. For example, Shih et al. [2015] found 218
that the purpose of data access is the main factor affecting users’ choices. 219

Our work contributes to this body of knowledge, looking primarily at using text 220
mining technique on decompiled code to infer the purpose of permission uses. 221

2.2.2. Fine-Grained Privacy Enforcement. Mobile privacy is a growing concern, while many 222
research works have proposed to enforce privacy protection. One line of work is fine- 223
grained controls to prevent access to sensitive information, including OS-level protec- 224
tion such as Kirin [Enck et al. 2009], Saint [Ongtang et al. 2009], APEX [Nauman et al. 225
2010], ProtectMyPrivacy [Agarwal and Hall 2013], FlaskDroid [Bugiel et al. 2013], ASF 226
[Backes et al. 2014] and ASM [Heuser et al. 2014], and app-level protection through 227
instrumentation such as Aurasium [Xu et al. 2012], AppGuard [Backes et al. 2013], I- 228
arm-droid [Davis et al. 2012], RetroSkeleton [Davis and Chen 2013]. These approaches 229
only prevent information from being accessed, while they typically do not consider how 230
the sensitive information is used in the app. 231

Another line of work has extended the system to track information flows. TISSA 232
[Zhou et al. 2011], MockDroid [Beresford et al. 2011], and AppFence [Hornyack et al. 233
2011] replace sensitive information with fake data. CleanOS [Tang et al. 2012] modifies 234
TaintDroid to enable secure deletion of information from application memory. Kynoid 235
[Schreckling et al. 2013] extends TaintDroid with user-defined security policies such 236
as restrictions on destinations IP address to which data is released. BayesDroid [Tripp 237
and Rubin 2014] is proposed for quantitative information flow analysis, which is to 238
measure the amount of privacy information that can be inferred from the leaked data. 239
FlowDroid [Arzt et al. 2014], DroidSafe [Gordon et al. 2015], and DroidInfer [Huang 240
et al. 2015] use static information flow analysis to detect privacy leakage. 241

Another area of related work is focused on privilege separation of apps and ad 242
libraries. Ad libraries share the same permissions with the host app, which can poten- 243
tially lead to privacy issues. AdSplit [Shekhar et al. 2012] extends Android to allow 244
an app and its Ad libraries to run as separated processes with different user IDs. 245
AdDroid [Pearce et al. 2012] introduces new APIs and permissions for Ad libraries, 246
which enables it to separate privileged advertising functionality from the host app. 247
Roesner and Kohno [2013] propose to allow Android to permit ad libraries to embed 248
User Interface (UI) elements in the main logic without exposing data or privileges of 249
the main app. PEDAL [Liu et al. 2015] uses a machine-learning approach to identify 250
Ad libraries first, then rewrites the resource access and resource sharing functions to 251
enforce access control for Ad libraries. 252

These past works could detect privacy leaks or help enforce privacy, but do not 253
investigate why an app is using sensitive data. 254

2.2.3. Determining the Purpose of Permission Uses. Understanding the purpose of why 255
sensitive data is used could help improve privacy as well as enable new kinds of 256
access control. Lin et al. [2012, 2014] first introduced the idea of inferring the purpose 257
of a permission request by analyzing what third-party libraries an app uses. They 258
categorized the purposes of 400 third-party libraries (advertising, analytics, social 259
network, etc.), and used crowdsourcing to ascertain people’s level of concern for data 260
use (e.g., location for advertising versus location for social networking). Then they 261
clustered and analyzed apps by similarity. Their results suggest that both users’ 262
expectations and the purpose of permission use have a strong impact on users’ 263
subjective feelings and their mental models of mobile privacy. 264

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:8 H. Wang et al.

Fig. 1. The overall architecture of the static analysis approach. We first decompile each app and filter out
third-party libraries using a list of the most popular libraries. We then use static analysis to identify where
permission-related code is located. We extract several kinds of features from this code and then train the
classifier. The classifier outputs 10 different purposes for location and for contacts.

However, a major gap in this existing work is how to infer the purpose of a per-265
mission request in custom-written code, which turns out to be a much more difficult266
problem. According to the results of a recent work [PrivacyGrade 2015; Wang et al.267
2017] that analyzed 1.2 million apps from Google Play, most permission requests occur268
in custom code. Specifically, for apps that use the location permission, more than 55.7%269
of them use the location permission in their custom code. For apps that use the con-270
tacts permission, more than 71.2% of them use the contacts permission in their custom271
code.272

Our work focuses on addressing this gap to infer the purpose of permission uses in273
custom code, relying primarily on text mining and machine-learning techniques. We274
focus on inferring the purpose for two sensitive permissions: location and contacts.275
We chose these two permissions as a proof of concept for our technique, and believe that276
our approach should generalize to other permissions. Based on our analysis of more277
than 7,000 apps, we created a taxonomy of the purpose of location permission use and278
the purpose of contacts permission use, as shown earlier in Table I.279

We present the design, implementation, and evaluation of two complementary ap-280
proaches to infer the purpose of permission use, one using purely static analysis, the281
other using primarily dynamic analysis combined with static analysis.282

3. INFERRING THE PURPOSE USING STATIC ANALYSIS283

3.1. Overview284

As shown in Figure 1, we first use static analysis to identify the corresponding custom285
code that uses the location or contacts permission. Then, we extract various kinds of286
features from the custom code using text mining (e.g., splitting identifier names and287
extracting meaningful text features) and static analysis (identifying important APIs,288
Intents, and Content Providers). In the training phase, we manually label instances289
to train a classifier. The classifier outputs the purpose of an instance as one of the 10290
different purposes for location or one of the 10 different purposes for contacts. Note291
that we opted not to examine third-party libraries here, partly because there was no292
previous work for custom code, and partly because we found that many third-party293
libraries were obfuscated, which makes static analysis and text mining more difficult.294

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

Understanding the Purpose of Permission Use in Mobile Apps 43:9

3.2. Decompiling Apps 295

For each app, we first decompile it from DEX (Dalvik Executable) into intermediate 296
Smali code using Apktool [2016]. Smali is a kind of register-based language, and one 297
Smali file corresponds to exactly one corresponding Java file. We use Smali because we 298
found that it is easier to identify permission-related code based on this format. 299

We then decompile each app to Java using dex2jar [Dex2jar 2016] and JD-Core- 300
Java [JD-Core-Java 2016]. We use the decompiled Java source code to extract features. 301
Previous research [Enck et al. 2011] found that more than 94% of classes could be 302
successfully decompiled. One potential issue, though, is that DEX can be obfuscated. 303
In practice, we found that roughly 10% of the apps are obfuscated during our static 304
analysis experiments. In Section 6.1, we will measure the code obfuscation rate in 305
current Android apps, measure the effectiveness of our approach, and explore feasible 306
ways to deal with code obfuscation. 307

Because our work focuses on custom code, we first filter third-party libraries before 308
we identify the permission-related code and extract features. We use a list of several 309
hundred third-party libraries built by past work [Lin et al. 2012] to remove libraries; 310
we found that it works reasonably well in practice, in large part due to a long tail 311
distribution of the libraries used in Android apps. 312

3.3. Identifying Permission-Related Code 313

For Android apps, three types of operations are permission related: (1) explicit calls 314
to standard Android APIs that lead to the checkPermission method, (2) methods in- 315
volving sending/receiving Intents, and (3) methods involving management of Content 316
Providers. 317

We leverage the permission mapping [PermissionMappings 2015] provided by PScout 318
[Au et al. 2012] to determine which permissions are actually used in the code and 319
where they are used. More specifically, we created a lightweight analyzer for search- 320
ing sensitive API invocations, Intents, and Content Providers in the Smali code. For 321
example, if we find the Android API string “Landroid/location/LocationManager;-> 322
getLastKnownLocation” in the code, we know it uses the location permission. Since 323
the Smali code preserves the original Java package structure and has a one-to-one 324
mapping with Java code, we can pinpoint which decompiled source file uses a given 325
permission. 326

Code Granularity for Inferring Purposes. An important question here is: what is 327
the granularity of code that should be analyzed? One option is to simply analyze the 328
entire app; however, this is not feasible since an app might use the same permission for 329
several purposes in different places. For example, the same app might use location for 330
geotagging, nearby searching, and advertisement, but a coarse-grained approach might 331
not find all of these purposes. Another option is applying a fine-grained approach, such 332
as at the method level or class level. However, in our early experiments, we found that 333
there was often not enough meaningful text information contained in a single method 334
or class, making it hard to infer the purpose. 335

In our static approach, we decided to use all of the classes in the same directory 336
as the level of granularity. In Java, a directory (or file folder) very often maps directly 337
to a single package, although for simplicity we chose to use directories rather than 338
packages. Conceptually, a directory should contain a set of classes that are functionally 339
cohesive, in terms of having a similar goal. Here we assume that a directory will also 340
only have a single purpose for a given permission, which we believe is a reasonable 341
starting point. Thus, we use static analysis to identify all the directories that use a given 342
sensitive permission, and then analyze each of those directories separately. Note that 343
we only consider the classes in a directory, without considering code in subdirectories. 344

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:10 H. Wang et al.

Table IV. The Features Used in the Classification Model

Type Feature Feature Description Representation Method

App-
Specific
Features

Android API
Call frequency of each
permission-related API

A 680 dimension vector;
each value represents the
number of occurrences of
corresponding API.

Static
Analysis

Android
Intent

Call frequency of each
permission-related Intent

A 97 dimension vector;
each value represents the
number of occurrences of
corresponding Intent

Content
Provider

Call frequency of each
permission-related Content
Provider Uri

A 78 dimension vector;
each value represents the
number of occurrences of
corresponding Content
Provider

Text-based
Features

Package-
level

Features

Key words extracted from
current package names

Calculate TF-IDF for
all the key words,
with each instance
represented as a
TF-IDF vector

Text
Mining

Class-level
Features

Key words extracted from
class and interface names

Method-
level

Features

Key words extracted from
defined and used method
and parameter names

Variable-
level

Features

Key words extracted from
defined and used variable
names

3.4. Feature Extraction345

A number of features are used for inferring different kinds of purposes. We group the346
features into two categories: app-specific features and text-based features, as shown347
in Table IV. App-specific features are based on app behaviors and code functionality,348
while text-based features rely on meaningful identifier names as given by developers.349

3.4.1. App-Specific Features. App-specific features include permission-related APIs, In-350
tents, and Content Providers. We use these features since they should, intuitively, be351
highly related to app behaviors. For example, for the contacts permission, we find that352
API “sendTextMessage()” is often used for the “Call and SMS” purpose, but very rarely353
so for other purposes.354

We use static analysis to extract these features. For each kind of API, Intent, and355
Content Provider, the feature is represented by the number of calls (rather than a356
binary value of whether the API was used at all), allowing us to consider weights357
for different features. We normalize these features to [0, 1] before feeding them to358
the classifier. Features with higher values mean they are used more in the code than359
features with lower values.360

Due to the large number of APIs in Android (more than 300,000 APIs according to361
previous research [Au et al. 2012]), it is not feasible to take all of them as features, thus362
we choose to use documented permission-related APIs. Besides, we also use permission-363
related Intents and permission-related Content Providers as features. For Android 4.1.1,364
there are a total of 680 kinds of documented permission-related APIs [PScout API 2015],365
97 kinds of Intents associated with permissions [PScout Intent 2015], and 78 kinds of366
Content Provider URI Strings associated with permissions [PScout ContentProvider367
2015]. In total, we use 855 kinds of app-specific features. We represent each instance368
as a feature vector, with each item in the vector recording the number of occurrences369
of the corresponding API, Intent or Content Provider.370

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

Understanding the Purpose of Permission Use in Mobile Apps 43:11

(1) Permission-Related APIs. This set of features are related to APIs that require 371
an Android permission. During our experiment, we found that some distinctive APIs 372
could be used to differentiate purposes. For example, some Android APIs in the package 373
“com.android.email.activity” are related to contacts permission, and they are often 374
used for “email” purposes. Thus, for instances that use such APIs, it is quite possible 375
that it uses contacts for “email” purposes. 376

We use a list of 680 documented APIs that correlate to 51 permissions provided 377
by Pscout [PScout API 2015], and search for API strings such as “requestLocation- 378
Updates” in the decompiled code. Each instance corresponds to a 680 dimension vector, 379
while each item in the vector represents the number of occurrences of the corresponding 380
API. 381

(2) Intent and Content Providers. We also extract features related to permission- 382
related Intent and Content Provider invocations. Intents can launch other activities, 383
communicate with background services, and interact with smartphone hardware. Con- 384
tent Providers manage access to a structured set of data. For example, Intents such 385
as “SMS_RECEIVED” and Content Providers such as “content://sms” mostly appear in 386
instances with the “Call and SMS” purpose. 387

We use a list of 97 Intent [PScout Intent 2015] and 78 Content Provider URI strings 388
[PScout ContentProvider 2015]. We search for Android Intent strings such as “an- 389
droid.provider.Telephony.SMS_RECEIVED” and Content Provider URI strings such as 390
“content://com.android.contacts” in the decompiled code. Each instance corresponds 391
to a 97 dimension Intent feature vector and a 78 dimension Content Provider feature 392
vector, respectively. Each item in the vector represents the number of occurrences of 393
the corresponding Intent or Content Provider. 394

3.4.2. Text-Based Features. We extract text-based features from various identifiers in 395
decompiled Java code. Package names, class names, method names, and field names 396
(instance variables, class variables, and constants) are preserved when compiling, al- 397
though local variables and parameter names are not. Our goal here is to extract mean- 398
ingful key words from these names as features. 399

However, there are several challenges in extracting these features. First, naming 400
conventions may vary widely across developers. Second, identifiers in decompiled Java 401
code are not always words. For example, the method name “findRestaurant” cannot be 402
used as a feature directly. Rather, we want the embedded words “find” and “restaurant.” 403
Thus, we need to split identifiers appropriately to extract relevant words. Third, not 404
all words are equally useful, and so we need to consider weights for different words. 405

We extract text-based features as follows. First, we apply heuristics to split identifiers 406
into separate words. Then we filter out stop-words to eliminate words that likely offer 407
little meaning. Next, the remaining words are stemmed into their respective common 408
roots. Finally, we calculate the TF-IDF vector of words for each instance. 409

(1) Splitting Identifiers. We use two heuristics to split identifiers, namely, explicit 410
patterns and a directory-based approach. By convention, identifiers in Java are often 411
written in camelcase, although underscores are sometimes used. For identifiers with 412
explicit delimiters, we use their construction patterns to split them into subwords. The 413
identifier patterns we used are as listed as follows: 414

camelcase(1) : AbcDef → Abc, Def 415
camelcase(2) : AbcDEF → Abc, DEF 416
camelcase(3) : abcDef → abc, Def 417
camelcase(4) : abcDEF → abc, DEF 418
camelcase(5) : ABCDef → ABC, Def 419
underscore : ABC def → ABC, def 420

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:12 H. Wang et al.

ALGORITHM 1: Dictionary-Based Identifier Splitting Algorithm
Input: identi f ierI and wordlist
Output: a list of splitted keywords

1: initial keywords = NULL
2: subword ← FindLongestWord(I, wordlist)
3: while subword �= NULL and len(I) > 0 do
4: keywords.add(subword)
5: if len(I) = len(subword) then
6: break
7: end if
8: I ← identi f ier.substring(len(subword), len(I))
9: subword ← FindLongestWord(I, wordlist)

10: end while

However, some identifiers do not have clear construction patterns. In these cases,421
we use a dictionary-based approach to split identifiers. We also use this dictionary to422
split subwords extracted in the previous step. We use the English wordlist provided by423
Lawler [WordList 2015]. We also add some domain-related and representative words424
into the list, such as Wifi, jpeg, exif, facebook, SMS, etc. For each identifier, we find the425
longest subword from the beginning of the identifier that can be found in the wordlist.426
Details of the algorithm are shown in Algorithm 1.427

(2) Filtering. We then build a list to filter out stop-words. In addition to common428
English words, we also filter out words common in Java such as “set” and “get,” as well429
as special Java keywords and types, such as “public,” “string,” and “float.”430

(3) Stemming. Stemming is a common Natural Language Processing technique to431
identify the “root” of a word. For example, we want both singular forms and plural forms,432
such as “hotel” and “hotels,” to be combined. We use the Porter stemming algorithm433
[Porter 2015] to stem all words into a common root.434

(4) TF-IDF. After words are extracted and stemmed, we use TF-IDF to score the435
importance of each word for each instance. TF-IDF is good for identifying important436
words in an instance, thus providing great support for the classification algorithm.437
Common words that appear in many instances would be scaled down, while words that438
appear frequently in a single instance are scaled up. To calculate TF, we count the439
number of times each word occurs in a given instance. IDF is calculated based on a440
total of 7,923 decompiled apps.441

3.5. Classification Model442

Since the ranges of feature values vary widely, we normalize them by scaling them to [0,443
1]. Then we apply machine-learning techniques to train a classifier. We have evaluated444
three different algorithms for the classification: SVM [2016], Maximum Entropy [2016],445
and C4.5 Decision Tree [C4.5 2016]. The implementation of SVM is based on the python446
scikit-learn [SciKit 2016] package. We use a Support Vector Machine (SVM) with linear447
kernel, and the parameter C is set as 1 based on our practice. Maximum entropy and448
C4.5 algorithms are based on Mallet [2016]. We then compare different classifiers using449
various metrics.450

3.6. Evaluation451

3.6.1. Dataset. We downloaded 7,923 apps from Google Play, all of which were top-452
ranked apps across 27 different categories. For text-based features, we calculate IDF453
based on a corpus of these apps.454

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

Understanding the Purpose of Permission Use in Mobile Apps 43:13

To train the classifier, we use a supervised learning approach, which requires labeled 455
instances. We focus on apps that use location or contacts permissions. After decompil- 456
ing the apps and filtering out third-party libraries, we use static analysis to identify 457
permission-related custom code. Each directory of code that uses location or contacts 458
permission is an instance. 459

To facilitate accurate classifications, we tried to manually label at least 50 instances 460
for each purpose. For the location permission, we had more than 3,000 instances in 461
our dataset, so we stopped once we got more than 50 examples for a given purpose. 462
As shown in Table I, we have 50 labeled instances for most of the purposes, except for 463
some purposes that have fewer instances in our dataset (we labeled 30 instances for 464
“geotagging” and “location spoofing” purposes). In contrast, for the contacts permission, 465
we found fewer than 800 instances in our dataset, so we manually checked and labeled 466
the purposes for all these instances (which is why the number of instances in Table II 467
are not as uniform as those in Table I). 468

Purpose Labeling Process. To label the purpose of an instance, we manually inspect 469
the decompiled code, especially the methods and classes that use location or contacts 470
permission. We examine the method and variable names, as well as the parameters and 471
sensitive APIs used in methods to label purposes. It is true that for several instances, 472
due to code obfuscation4 or indirect permission use, we cannot spell its purpose in our 473
previous static analysis and we omit these instances when we label the ground truth. 474
But for many instances, we could infer its purpose accurately. For example, in one case, 475
we found custom code using location data, including method and variable names con- 476
taining words such as “temperature” and “wind,” which we labeled as “location-based 477
customization.” As another example, we found an instance using photo files and loca- 478
tion information (longitude and latitude) by calling the API “getLastKnownLocation(),” 479
which we labeled as “geotagging.” As a third example, we saw an instance invoked API 480
“sendTextMessage()” after getting contacts, which we labeled as “Call and SMS” pur- 481
pose. These examples convey the intuition behind how we label instances and why we 482
identify these features for the machine-learning algorithms. 483

We also looked at the app descriptions from Google Play to help us label purposes. 484
However, for most of the apps we examined, we could not find any indication of the 485
purpose of permission use. This observation matches previously reported results [Qu 486
et al. 2014], which found that for more than 90% of apps, users could not understand 487
why permissions are used based solely on descriptions. This indicates the importance 488
of inferring the purpose of permission uses, which could offer end-users more insight 489
as to why an app is using sensitive data. 490

In total, we manually labeled the purposes of 1,020 instances that belong to 622 491
different apps, with 460 instances for location and 560 instances for contacts. Each 492
purpose has 30 to 90 instances, which is shown in Tables II and III. 493

Note that our dataset is not comprehensive. For a few apps, we could not understand 494
how permissions are used, thus we did not include them. Our dataset also does not 495
include some apps that have unusual design patterns for using sensitive data. We feel 496
that our dataset is good enough as an initial demonstration of our idea. We will offer 497
more details on this issue in Sections 4 and 5. 498

3.6.2. Evaluation Method. We used 10-fold cross-validation [Cross-Validation 2016] to 499
evaluate the performance of different classifiers. That is, we split our dataset 10 times 500
into 10 different sets for training (90% of the dataset) and testing (10% of the dataset). 501
We manually split our dataset into 10 different sets to ensure that instances of each 502
purpose are equally divided, and that there was no overlap between training and test 503

4We will detailedly analyze the impact of code obfuscation in Section 6.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:14 H. Wang et al.

Table V. The Results of Inferring the Purpose of Location Uses

Classification Algorithm Accuracy Macroaverage Precision Macroaverage Recall
SVM 81.74% 85.51% 83.20%
Maximum Entropy 85.00% 87.07% 85.88%
C4.5 79.57% 83.26% 81.77%

sets across cross-validation runs. To evaluate the performance of different classifiers,504
we present metrics for each classification label and metrics for the overall classifier.505

Evaluation Metrics. For each class, we measure the number of True Positives (TPs),506
False Positives (FPs), True Negatives (TNs), and False Negatives (FNs). We also present507
our results in terms of precision, recall, and f-measure. Precision is defined as the ratio508
of the number of TPs to the total number of items reported to be true. Recall is the ratio509
of the number of true positives to the total number of items that are true. F-measure510
is the harmonic mean of precision and recall.511

To measure the overall correctness of the classifier, we use the standard metric of512
accuracy as well as microaveraged and macroaveraged metrics to measure the preci-513
sion and recall. For microaveraged metrics, we first sum up the TPs, FPs, and FNs514
for all the classes, and then calculate precision and recall using these sums. In con-515
trast, macroaveraged scores are calculated by first calculating precision and recall for516
each class and then taking the average of them. Microaveraging is an average over517
instances, and so classes that have many instances are given more importance. In con-518
trast, macroaveraging gives equal weight to every class. We calculate microaveraged519
precision, microaveraged recall, macroaveraged precision, and macroaveraged recall520
as follows, where c is the number of different classes.521

MicroAvgPrecision =
∑c

i=1 TPi
∑c

i=1 TPi + ∑c
i=1 FPi

, (1)

522

MicroAvgRecall =
∑c

i=1 TPi
∑c

i=1 TPi + ∑c
i=1 FNi

, (2)

523

MacroAvgPrecision =
∑c

i=1 Precisioni

c
, (3)

524

MacroAvgRecall =
∑c

i=1 Recalli
c

. (4)

525
Note that both microaveraged precision and microaveraged recall are equal to the ac-526

curacy of the classifier in our experiment. Thus, we only list the accuracy and macroav-527
eraged metrics in Tables V and VIII.528

3.6.3. Results of Inferring Location Purposes. Table V shows our results in classifying529
the purpose of location. The Maximum Entropy algorithm performs the best, with530
an overall accuracy of 85%. The results of SVM and C4.5 algorithms also perform531
reasonably well.532

Table VI presents more detailed results for each specific purpose. The results across533
different categories vary greatly. The category “location-based customization” achieves534
the best result, with precision and recall both higher than 96%. The categories “search535
nearby places” and “location spoofing” have the lowest precision, both under 80%. The536
purposes “geotagging” and “alert and remind” have 100% precision, but recall un-537
der 80%. Table VII shows more details about misclassifications. The category “search538

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

Understanding the Purpose of Permission Use in Mobile Apps 43:15

Table VI. The Results of Inferring the Purpose of Location Permission Uses
for Each Category (Maximum Entropy)

Purpose Precision* Recall* F-measure*

L1 Search Nearby Places 76.85% 84.58% 78.99%
L2 Location-based Customization 96.67% 96.33% 95.98%
L3 Transportation Information 100% 86.81% 92.02%
L4 Recording 80.33% 79.19% 77.04%
L5 Map and Navigation 80.54% 93.85% 84.15%
L6 Geosocial Networking 82.57% 87.31% 83.66%
L7 Geotagging 100% 77.67% 84.39%
L8 Location Spoofing 75.48% 90.00% 80.42%
L9 Alert and Remind 100% 76.63% 85.40%
L10 Location-based Game 80.50% 86.38% 81.48%

∗The results of precision, recall, and f-measure are mean values of 10-fold
cross-validation.

Table VII. The Confusion Matrix of Inferring the Purpose of Location Permission Use (Maximum Entropy). The
Purpose Number (e.g., L1, L2, etc) Corresponds to that Listed in Table VI. Each Value is the Sum of 10-fold
Cross-Validation. Each Column Represents the Instances in a Predicted Class, While Each Row Represents

the Instances in an Actual Class

Label L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Total

L1 42 - - - 2 1 - 3 - 2 50
L2 1 48 - - - - - 1 - - 50
L3 2 - 44 - 1 1 - 1 - 1 50
L4 3 - - 38 2 3 - 3 - 1 50
L5 - 1 - 1 46 - - - - 2 50
L6 4 - - 2 - 43 - - - 1 50
L7 - - - 4 3 - 21 2 - - 30
L8 - - - - 2 - - 28 - - 30
L9 1 - - 2 1 2 - 2 39 3 50
L10 3 - - 2 1 2 - - - 42 50

Total 56 49 44 49 58 52 21 40 39 52 460

Table VIII. The Results of Inferring the Purpose of Contacts Permission Uses

Classification Algorithm Accuracy Macroaverage Precision Macroaverage Recall
SVM 93.94% 94.38% 92.94%
Maximum Entropy 94.64% 94.42% 93.96%
C4.5 92.86% 91.36% 89.59%

nearby places” has the most false positives (see column L1, 14 of 56 classified instances), 539
and four misclassified instances belong to the “geosocial networking” category. The cat- 540
egory “recording” has the most false negatives (see row L4, 12 of 50 labeled instances), 541
and most of them are misclassified as “search nearby places,” “geosocial networking,” 542
and “location spoofing.” 543

3.6.4. Results of Inferring Contacts Purposes. Table VIII shows our results for inferring 544
the purpose of contacts. All three classification algorithms have achieved better than 545
90% accuracy, with the Maximum Entropy classifier still performing the best at 94.64%. 546

Table IX presents the details on each category. Our results show that we can achieve 547
high precision and recall for most categories, especially “contact-based customization,” 548
“record,” and “fake calls and SMS,” which have both the precision and recall higher 549
than 95%. However, the “contact management” category is not as good, with both 550

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:16 H. Wang et al.

Table IX. The Results of Inferring the Purpose of Contacts Permission Use
for Each Category (Maximum Entropy)

Purpose Precision* Recall* F-measure*
C1 Backup and Synchronization 98.75% 94.92% 96.52%
C2 Contact Management 84.33% 84.17% 81.83%
C3 Blacklist 94.17% 93.14% 92.81%
C4 Call and SMS 84.58% 97.08% 89.56%
C5 Contact-based Customization 98.75% 98.33% 98.42%
C6 Email 94.87% 97.09% 95.77%
C7 Find Friends 93.50% 84.17% 87.06%
C8 Record 96.87% 100% 98.35%
C9 Fake Calls and SMS 98.33% 96.67% 97.42%
C10 Remind 100% 94.07% 96.69%

∗The results of precision, recall, and f-measure are mean values of 10-fold
cross-validation.

Table X. The Confusion Matrix of Inferring the Purpose of Contacts Permission Use (Maximum Entropy). The
Purpose Number (e.g., C1, C2, etc.) Corresponds to that Listed in Table IX. Each Value is the Sum of 10-Fold

Cross-Validation. Each Column Represents the Instances in a Predicted Class, While Each Row Represents the
Instances in an Actual Class

Label C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Total

C1 57 1 - 1 - 1 1 - - - 61
C2 1 25 - 1 - - 2 1 - - 30
C3 - - 48 1 - 2 1 - - - 50
C4 - 1 1 52 - - - - - - 54
C5 - - - - 50 - - 1 - - 51
C6 - 2 - 1 - 75 - - - - 78
C7 - - 1 3 1 1 40 - - - 46
C8 - - - - - - - 93 - - 93
C9 - 1 - - - - - 1 47 - 49
C10 - - - 2 - - - - 1 43 46
Total 58 30 50 61 51 79 44 96 48 43 560

precision and recall under 85%. Table X shows the confusion matrix. The category “call551
and SMS” has the most false positives (see column C4, 9 of 61 classified instances),552
and “find friends” has the most false negatives (see row C7, 6 of 46 labeled instances).553
Three instances that belong to “find friends” category are misclassified as “call and554
SMS” purpose.555

3.6.5. Qualitative Analysis of Classification Results. Here, we examine why some categories556
performed well, while others did not. We inspected several instances and found two fac-557
tors that play important roles in the classification: distinctive features and the number558
of features.559

Categories with high precision and recall tend to have distinctive features. For ex-560
ample, instances in “location-based customization” have words like “weather,” “tem-561
perature,” and “wind,” which are very rare in other categories. In contrast, mis-562
classified instances have more generic words. For example, the labeled instance563
“com.etech.placesnearme” uses location information to search nearby places, and its564
top key words were “local,” “search,” “place,” “find,” etc., which also frequently appeared565
in other categories. In our experiment, it was misclassified as the “geosocial network-566
ing” purpose.567

On the other hand, most misclassified instances have fewer features, meaning568
that there is less meaningful text information that we could extract. For example,569

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

Understanding the Purpose of Permission Use in Mobile Apps 43:17

Table XI. Using Text-Based Features vs. Using All Features. Text-Based Features Achieve Very Good
Accuracy Alone, with App-Specific Features Offering Marginal Improvements

Permission Algorithm Accuracy (words) Accuracy (total) Difference

Location
SVM 80.00% 81.74% 1.74%
Maximum Entropy 81.97% 85.00% 3.03%
C4.5 75.38% 79.57% 4.19%

Contacts
SVM 92.32% 93.94% 1.62%
Maximum Entropy 93.57% 94.64% 1.07%
C4.5 91.79% 92.86% 1.07%

Fig. 2. The distribution of the number of nonempty (a) app-specific features and (b) text-based features per
instance.

“com.flashlight.lite.gps.passive” uses location information for “recording.” How- 570
ever, it only has 19 kinds of word features and six kinds of API features, which is far 571
less than other instances that have hundreds of features. This instance was misclassi- 572
fied as “map and navigation” category in our experiment. 573

3.6.6. Feature Comparison. We are also curious how well text-based features alone are 574
able to perform in the process, since that is one of the key novel aspects of our work. 575
We train our classifiers using text-based features only and compare the results against 576
classifiers trained by both text-based and app-specific features. The results are shown 577
in Table XI. 578

We can see that text-based features alone can achieve an accuracy of 81.97% and 579
93.57% for location and contacts permissions, respectively. Incorporating all the fea- 580
tures, the performance has only 1.07% to 4.22% improvement. This result suggests 581
that text-based features alone perform very well, while app-specific features play a 582
supporting role. 583

Figure 2 offers one possible explanation. It shows the number of nonempty app- 584
specific features and nonempty text-based features for each instance. We can see that 585
instances almost always have more text-based features than app-specific features, 586
which may be the main reason why text-based features are more dominant in the 587
classifier. The number of text-based features for each instance is about four times 588
higher than the number of app-specific features on average (270 and 62, respectively). 589
More than 90% of the instances have fewer than 256 kinds of app-specific features, 590
and in particular, 3% of them have only fewer than 16 kinds of app-specific features. 591
In contrast, more than 74% of the instances have over 256 text-based features, and 592
roughly 10% have over 1,024. 593

One possible implication, and an area of future work, is to develop more app-specific 594
features that can help capture the essence of how sensitive data is used. 595

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:18 H. Wang et al.

Fig. 3. Overall architecture of our dynamic analysis approach for inferring the purpose of a permission. At
runtime, our system uses dynamic taint analysis to track sensitive data propagation. Once an app is about to
leak the sensitive data, our system will construct the call stack and analyze its purpose using a library-based
method in combination with text-based techniques with the aid of the app profile. We use offline learning
(static analysis) to improve the accuracy of purpose inference by statically analyzing each app beforehand to
build its profile.

4. INFERRING PURPOSES AT RUNTIME596

Relying on static analysis to infer the purpose has several limitations. First, in many597
cases, the sensitive data invocation is indirect. For example, many apps use a particular598
design pattern where one part of the app periodically accesses and caches the sensitive599
data, while other parts of the app accesses that data asynchronously. Second, in many600
apps, third-party libraries request sensitive data by invoking methods in the app logic601
that provides access to resources, rather than accessing resources directly [Liu et al.602
2015]. Furthermore, specifying purpose at a package granularity is too coarse-grained603
as there may be multiple purposes of data use in each package.604

To overcome these limitations of static analysis, we introduce a call stack based605
method to infer the purpose of sensitive permission uses at runtime. By analyzing the606
call stack, we can learn which classes and methods access the sensitive data and how607
that data is used. In combination, these techniques offer a hint as to why sensitive data608
is being used. The overall architecture of our dynamic analysis approach for inferring609
the purpose of a permission is shown in Figure 3. We use dynamic taint analysis to track610
the flow of sensitive data. Here, we take advantage of a modified version of TaintDroid611
[Enck et al. 2010]. We analyze the call stack at taint sink points (e.g., network interface)612
to infer the purpose of privacy leakage. We choose to infer purpose at the sink point613
because using sensitive data at the source and intermediate points does not always614
lead to privacy leakage (used within the app client). Besides, because we build the full615
call stack traces, we could capture the information of acquired resources and how the616
information is used at sink point. On one hand, the call stack directly reflects how the617
resource is used (the sink); on the other hand, we are able to know which resource is618
accessed (the source) using dynamic taint tracking. For example, at the sink point, we619
can check the taint tag of sinked data to know where the data come from, and how the620
sensitive data is used within the app and what the data is used for using the call stack621
traces.622

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

Understanding the Purpose of Permission Use in Mobile Apps 43:19

Fig. 4. An example call stack from the Yahoo Weather app showing the challenge of stack traces with
multithreading. The app tried to send location data (tag 0x11) to a remote server. However, due to a common
design pattern, when we get the call stack at a taint sink, we only get it from the current child thread. As a
result, a great deal of potentially useful information has been lost.

More specifically, we examine the call stack for well-known libraries and use machine- 623
learning techniques on key words in the call stack to infer the purpose. Because the call 624
stack often does not contain enough information by itself, and since package names are 625
sometimes obfuscated, we also introduce an offline learning step to statically analyze 626
each app beforehand to build the app profile. This profile includes the third-party 627
libraries used in the app and key words extracted from each class. The purpose can then 628
be inferred based on all this information dynamically. Thus, our approach combines 629
both dynamic analysis and static analysis. 630

4.1. Constructing the Call Stack 631

Several Java APIs (e.g., printCallStack()) can be used to get stack traces of the current 632
thread in Android. However, Android apps are often programmed as multithreaded, 633
making it difficult to infer the purpose using just the call stack of the current thread. 634
For example, one common design pattern in Android apps is to request sensitive data 635
(such as getting location) in the parent thread, and then spawn another thread to send 636
sensitive data to a remote server. One such instance is the Yahoo Weather5 app. When 637
we get to the sink point (see Figure 4), we can only get the call stack of the child thread, 638
which only shows rather ordinary network behaviors using the volley HTTP library. 639

Thus, to improve dynamic runtime analysis, we need to retrieve not only the call 640
stack trace of the current thread, but also other threads related to the current thread. 641
There are three common design patterns for how developers use threads in Android 642
[MultipleThreads 2016]: 643

—Pattern 1: Using Java thread APIs. Java provides a set of low-level APIs to allow a 644
program to create threads and start them immediately. More specifically, the parent 645
thread first creates a new Thread instance, implementing a callback function such 646
as run(). It can then start the child thread by invoking method start(). 647

—Pattern 2: Android platform-specific APIs based on ThreadPool. Android man- 648
ages threads with a thread pool, which is implemented in the class ThreadPool- 649
Executor. Most high-level Android thread APIs such as AsyncTask and Sched- 650
uledThreadPoolExecutor are implemented based on ThreadPool. ThreadPool man- 651
ages a set of threads and a queue of tasks, and dispatches tasks one by one when 652
there are available threads. These APIs are good encapsulations of the Java Thread 653
class. 654

5com.yahoo.mobile.client.android.weather.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:20 H. Wang et al.

Fig. 5. Usage example of AsyncTask. Two methods (execute and doInBackground) work together to accom-
plish asynchronous tasks.

—Pattern 3: Looper-based multithread APIs in Android. Looper [2016] is a Java655
class within Android that, together with the Handler class, can be used to process656
UI events such as button clicks. In Android, the main thread (the UI thread) keeps657
looping in the background and waits for messages from other threads. Once a message658
is received, the main thread starts to process the message. The Handler class and659
Message class, which are typically used in updating UI from non-UI threads, are660
based on Android Looper.661

4.1.1. Identifying the Full Call Stack Trace. There are often some shared objects between662
the current thread and its related threads, which can be used to identify connections663
between threads and uncover related stack traces. To identify the thread bridges, we664
use a heuristic thread-pairing approach at runtime.665

For example, as shown in Figure 5, consider the class AsyncTask with two methods666
(execute and doInBackground) that work together to accomplish asynchronous tasks,667
while they share the same AsyncTask instance object. To use the AsyncTask API, the668
developer should implement the doInBackground callback and call execute to start an669
asynchronous task. The execute method is called in the parent (caller) thread, which670
will create a child (callee) thread and pass arguments to it while doInBackground is671
then called from the callee thread.672

When we tried to get the call stack trace at the taint sink (in method doInBackground),673
we can only get the call stack trace of the child thread, which missed potentially useful674
information in the parent thread.675

However, the AsyncTask instance shared between the two threads can help us find the676
connection between them. The child thread knows the task it is executing (by referring677
to this object in doInBackground), which is the same task object used by the parent678
thread to start the child thread. By comparing the objects shared between threads, we679
are able to find the corresponding parent thread.680

The other kinds of multithread programming patterns are similar to this AsyncTask681
example. Thus, we introduce a thread-pairing approach to identify the thread bridges682
(shared objects) between threads:683

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

Understanding the Purpose of Permission Use in Mobile Apps 43:21

Fig. 6. A bridge-building example in the AsyncTaskAPI. The two threads share the same AsyncTask instance
object, which can be used to find the connection between them.

—For threads using Java thread APIs, the caller and callee threads share the same 684
child Thread instance. 685

—The threads using the ThreadPool share the same task instance with their children 686
threads. 687

—The caller threads using Handler share the identical Message instance with the main 688
thread. 689

To implement multithread stack trace tracking in Android, we modified Dalvik to 690
maintain a bridge-thread mapping during runtime. First, we located the key APIs of 691
the three multithread programming patterns in Android source code and identified 692
the shared instances (bridges). Then we instrumented these APIs to connect related 693
threads. For example, in the AsyncTask shown in Figure 6, we built a caller-to-instance 694
bridge after the execute method and an instance-to-callee bridge before the doIn- 695
Background method. 696

Note that our system takes a snapshot of the caller stack when the caller thread 697
invokes a method to start a new thread. When getting the full call stack, we first get 698
the call stack of the current thread with the getStackTrace() API, look up the bridges 699
to find the parent threads, then we read the call stack snapshots of the parent threads 700
from memory, and finally we concatenate the stacks together to form a full call stack. 701
Because the caller stack we used is a snapshot of when the caller thread tries to start 702
the callee thread, we are fully convinced that the caller stack is deterministic in our 703
implementation. We discuss the implementation details in Section 4.3. 704

4.2. Inferring Purpose Based on Call Stack 705

Based on the call stack, we use two heuristics to infer the purpose. We first analyze 706
the call stack traces to see whether the sensitive data is used by well-known third- 707
party libraries (e.g., advertising libraries) based on a previously labeled list of popular 708
libraries [Lin et al. 2012]. If a well-known library is not found, then we use a text-based 709
machine-learning method, which demonstrated to be effective in our static approach. 710

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:22 H. Wang et al.

We extract meaningful key words from the methods and classes that related to the call711
stack, and calculate the TF-IDF as features, and then feed it to a machine-learning712
classifier to learn the purpose.713

4.2.1. Challenges. Even after linking stack traces from multiple threads together, there714
are still two substantial challenges in inferring the purpose:715

—Prior research [Liu et al. 2015] shows that many third-party libraries use obfuscation,716
making it hard to identify third-party libraries using package names alone, let alone717
knowing the purposes.718

—While call stacks contain package names, class names, and method names, this719
information is sometimes still not enough for inferring purposes.720

4.2.2. Extracting App Profile. To address these two challenges, we generate an app profile721
beforehand using static analysis, which is then used to help infer purposes at runtime.722

We use static analysis in two ways. First, we identify third-party libraries that may723
be obfuscated. To do this, we use a clustering-based approach [Ma et al. 2016; Wang724
et al. 2015a] to identify third-party libraries in the app based on API features rather725
than comparing package names. Then we use a categorization of about 400 popular726
third-party libraries labeled previously [Lin et al. 2012, 2014] to label the purpose727
of sensitive data used by these third-party libraries. Note that the categorization is728
somewhat outdated, thus we added some new libraries, and added a new category729
called “map library” that includes SDKs such as osmdroid.730

Second, we extract additional identifiers such as field names and method names731
in the same class, which can also offer some hints to infer the purpose. We process732
the decompiled code and extract meaningful key words from identifier names for each733
class. Based on the results, we can extend the key words extracted from call stack.734
The features we use contain not only the key words that appear in the call stack, but735
also the key words extracted from various kinds of identifier names (field names, class736
names, method names) from classes used in the call stack. To extract keywords for each737
class, we apply identifier splitting as introduced in Section 3.738

4.2.3. Inferring Purpose at Runtime. Based on the call stack traces and app profile, our739
dynamic purpose inferring algorithm is comprised of the following steps:740

—We first check for sensitive dataflows through third-party libraries using the previ-741
ously built app profiles. If this sensitive data is used by a known third-party library,742
we label its purpose directly. Otherwise, the sensitive data is used by the custom app743
code.744

—Based on the call stack and app profile, we identify the classes used in the call stack,745
and combine the key words used in them. Then we calculate the TF-IDF vector as746
features. IDF is calculated based on a corpus of 2,000 apps.747

—Finally, we use a pretrained SVM model to infer the purpose. The SVM classifier748
is trained offline with 460 instances labeled in our static approach (Section 3). We749
implement the SVM classifier in the Android libcore, and the classifier runs entirely750
on the Android device.751

Note that, to improve the performance of purpose inferring at runtime, we calculate752
the TF-IDF for each class when creating an app profile. At runtime, when we need to753
extract features for a call stack, we first find used classes in the call stack and then754
calculate the new feature vector based on the TF-IDF vectors of related classes. Let755
fc(wordi) be the TF-IDF result for wordi in class c, Countc (wordi) is the term frequency756
of wordi in class c, and IDF(wordi) is the inverse document frequency of wordi. If the757
call stack contains two related class c1 and c2, the TF-IDF result for wordi in the call758

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

Understanding the Purpose of Permission Use in Mobile Apps 43:23

stack can be calculated as 759

fc1 (wordi) = Countc1 (wordi)
T otalc1

× IDF(wordi),

fc2 (wordi) = Countc2 (wordi)
T otalc2

× IDF(wordi),

fcall−stack (wordi) = T otalc1 × fc1 (wordi) + T otalc2 × fc2 (wordi)
T otalc1 + T otalc2

.

4.2.4. Optimization with Purpose Caching. We discovered significant repetition of several 760
call stack traces, meaning that the app was trying to send the same sensitive data 761
to a remote server multiple times. In most apps, the number of unique sensitive call 762
stack traces is small (less than 10), providing an opportunity to optimize the runtime 763
performance. 764

To improve the runtime performance, we introduce purpose caching, which involves 765
caching and reusing previous inferences of the exact same call stack. To enable efficient 766
comparison, we use a lightweight format to represent the call stack trace, which is 767
comprised of a quad including the destination IP address, sensitive data type, the 768
length of the call stack, and its purpose. The intuition is that, for repeated call stack 769
traces, these attributes should be identical, while nonrepeated call stack traces should 770
rarely, if ever, have identical attributes. In our experiment, we have manually checked 771
480 call stack traces and we did not find the nonrepeated call stack traces have all 772
these same identical attributes including IP, data type, and length. Nevertheless, even 773
if multiple distinct call stacks have all these same identical attributes, it is also easy to 774
optimize the efficient comparison in our work; we could add more features such as “the 775
key packages used in the call stack” to build a more robust feature vector of call stack. 776

As a result, our dynamic analysis system only needs to infer the purpose of a new 777
privacy leakage trace once. In steady state, the purposes can be reused from the cache 778
directly, reducing the overhead of our system. 779

4.3. Implementation 780

We have implemented a prototype of our dynamic analysis approach on top of Android. 781
Specifically, our implementation is based on TaintDroid [Enck et al. 2010] (Android 782
Version 4.3_r1). We modified both the Android framework and Android runtime as 783
follows: 784

—To construct the call stack, we modified Dalvik to maintain a bridge-thread map- 785
ping during runtime. More specifically, we instrumented and added several APIs 786
in classes including java.lang.Thread, java.util.concurrent.ThreadPoolExecutor, 787
and android.os.Handler. For example, we added four key APIs in java.lang.Thread, 788
including API setConcurrentTracingEnabled(), API setCallerBridge(), API set- 789
CalleeBridge(), and API getConcurrentStackTrace(). These APIs are used to take 790
a snapshot of the caller stack when the caller thread invokes a method to start a new 791
thread, find the bridge-thread mapping, and concatenate the stacks together to form 792
a full call stack. 793

—To infer the purpose at runtime, we implemented the library-based method and text- 794
based machine-learning method in the libcore of Android. We used the SVM [2016] 795
algorithm to do classification, and the implementation is based on LIBSVM [LibSVM 796
2016]. We used 460 labeled instances that use location permission provided by our 797
static approach (Section 3) to train a classifier offline and ported it to Android. 798

—We use TaintDroid for taint tracking. We instrumented each taint sink point to infer 799
the purpose based on the call stack. 800

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:24 H. Wang et al.

4.4. Evaluation801

4.4.1. Dataset. We performed experiments on 830 popular apps, including 400 popular802
apps randomly selected from the top 10,000 Google Play apps6 and 430 popular apps803
selected from the recommendation pages of the Baidu App Market (a popular third-804
party market in China). We used the Monkey testing tool [Monkey 2016] to dynamically805
test these apps in an automated way on a Nexus 4 phone with an instrumented Android806
4.3_r1 OS. Each app was tested for 60 seconds, although this can be increased easily.807
We performed our experiments outdoors with network accesses, in order to have the808
device connect to the GPS and trigger the sensitive behavior of mobile apps. Note that809
dynamic analysis relies heavily on the coverage of execution traces, thus it is almost810
impossible to reach 100% with automated testing techniques. In this work, we only811
focus on using dynamic analysis to infer the purpose of permission use, thus using812
other UI automated testing tools is outside the scope of this article.813

We first evaluate the accuracy of our dynamic analysis system in terms of purpose814
inference. Next, we evaluated the performance overhead as compared to native Android815
4.3 as well as TaintDroid.816

4.4.2. Dataset Statistics. We found a total of 81 apps (out of a total of 831 apps we tested)817
that leak GPS location data to remote servers, 630 apps leak the IMEI, and only three818
apps leak the contacts. In our evaluation, we focused on the leakage of location data,819
because few apps (only three apps) leak contacts data in our dataset.820

During our experiments, we collected 480 call stack traces that leak location, of821
which 171 were unique. In other words, more than 60%7 of the call stack traces were822
repeated (i.e., apps tried to send sensitive data multiple times during experiments).823
Among the 171 unique call stack, 74 of them (more than 40%) were constructed using824
thread-pairing method, which means that they contain call stack traces from at least825
two threads, thus demonstrating the utility of our thread-pairing method.826

4.4.3. Accuracy of Inferring Purpose. To measure the accuracy of our system, we manually827
checked the 171 unique call stack traces and labeled their purposes. Note that, for the828
permissions used by third-party libraries (e.g., ads, analytics), we could get very accu-829
rate data in our evaluation and it is easy for us to verify the detection results, because830
we use LibRadar [2016], an obfuscation-resilient tool developed by our team, which831
could accurately detect third-party libraries used in these apps based on the results of832
analyzing 1.2 million Android apps, even if they are obfuscated. For the call stack traces833
related to permission use in custom code, we used the app description, screenshots,834
and the text of the call stack, related decompiled code to label these purposes. We also835
intercepted the outgoing data at taint sinks in the Android system to try to understand836
the contents and the outgoing IP address they sent. Then we compared the result with837
the purposes our system inferred at runtime. Note that we could not label the purposes838
of 18 instances in our dataset, because the code is either fully obfuscated or the app839
mostly used native methods by calling “java.lang.reflect.Method.invokeNative.” This840
left us with 153 unique call stack trace instances.841

Overall Result. The overall result is shown in Table XII. Without considering the842
fully obfuscated instances, for the 153 instances, we can correctly infer the purpose of843
138 instances. Considering the repeated call stacks in our dataset, we could achieve844
an accuracy of 94.73% (line XV, row VII in Table XII). Taking the fully obfuscated ones845
also into account, our overall accuracy of inferring the purpose correctly is around 80%846
and 90% for the unique stack traces and overall traces, respectively.847

6Note that some apps use Google services that are inaccessible in China, thus these apps cannot run properly.
7Note that the longer the testing time, the higher the repetition rate.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

Understanding the Purpose of Permission Use in Mobile Apps 43:25

Table XII. The Result of Inferring the Purpose of Location Permission Use at Runtime

Purpose

#Unique
Call

Stacks

#Correct
Inferred
(Unique)

%Correct
Inferred
(Unique)

#All Call
Stacks

#Correct
Inferred

(All)

%Correct
Inferred

(All)

ad library 93 89 95.70% 234 229 97.86%
map library 3 3 100% 107 107 100%
social networking 2 2 100% 3 3 100%
analytics library 1 1 100% 8 8 100%
game engine library 1 1 100% 2 2 100%
total (library) 100 96 96% 354 349 98.59%

nearby searching 9 8 88.89% 31 29 93.55%
map and navigation 3 3 100% 15 15 100%
tracking 3 3 100% 6 6 100%
transportation 11 7 63.6% 12 8 66.67%
customization 27 21 77.78% 37 24 64.86%
total (custom code) 53 42 79.25% 101 82 81.19%

obfuscated/cannot infer 18 - - 25 - -

total (w/o obfuscated) 153 138 90.20% 455 431 94.73%
total (with obfuscated) 171 138 80.70% 480 431 89.80%

Results for Third-Party Libraries. Over 60% of call stacks in our evaluation are due 848
to third-party libraries, most of which are ad libraries. Our system could achieve over 849
96% accuracy in inferring purposes for unique call stack traces and more than 98% for 850
all traces. However, because the list of labeled third-party libraries [Lin et al. 2012] is 851
incomplete, our system missed four instances in our experiment. For example, the ad 852
library “net.miidi” was not labeled in the list. However, it is easy to add more labeled 853
libraries to improve accuracy. 854

Results for Custom Code. For the 53 call stack traces related to permission use in 855
custom code, we were able to infer the purpose correctly for 42 of them (79.25%). For the 856
“map/navigation” and “tracking” purposes, we achieve 100% accuracy. For the “trans- 857
portation” purpose, we only achieve an accuracy of 63.6%. The accuracy is determined 858
by the machine-learning classifier we used. As we discussed in Section 3, two factors 859
play an important role in the classification: distinctive features and the number of 860
features. 861

4.4.4. Performance Evaluation. Since our system is implemented based on TaintDroid, 862
our performance evaluation consists of two parts: (1) the overall system overhead using 863
Java benchmarks, and (2) the additional performance overhead of our dynamic analysis 864
system compared to TaintDroid. 865

Java Microbenchmark. We use the CaffeineMark 3.0 benchmark [CaffeineMark 866
2016] for Android to evaluate the performance of our system. Figure 7 compares the 867
performance of our dynamic analysis system with TaintDroid and native Android 4.3, 868
in terms of the CaffeineMark benchmark score. 869

The result shows that our system performs similar to TaintDroid (within the mea- 870
surement uncertainties), since these benchmarks do not leak sensitive data. The loop 871
benchmark experiences the greatest overhead, with a slowdown of about 47%. For other 872
benchmarks, the overhead ranges from 15% to 38%. The overall result is the cumula- 873
tive score across other individual benchmarks. Our system has a 27% overhead with 874
respect to unmodified Android, primarily due to the taint tracking overhead introduced 875
by TaintDroid. 876

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:26 H. Wang et al.

Fig. 7. Overhead of Java benchmarks when comparing our dynamic analysis system with native Android
and TaintDroid (higher score is better).

Fig. 8. Performance overhead distribution. The average performance overhead is about 258ms in total. SVM
classification and TF-IDF calculation account for most of the overhead.

4.4.5. Overhead of Purpose Inferring at Runtime. Compared to TaintDroid, our system in-877
troduces overhead only when an app leaks sensitive data. The overhead imposed by878
our dynamic analysis system comprises four components: call stack construction, li-879
brary comparison, TF-IDF calculation, and SVM classification. For apps that have no880
sensitive permissions, the performance of our system is the same as TaintDroid.881

To measure the overhead, we instrumented the OS to log the execution time of pur-882
pose inference at the time when app leaks location data. We conducted an experiment883
with 30 apps and collected 253 logs (call stack traces), including 77 unique call stack884
traces. For the 77 unique call stack traces, 40 call stack traces used location in ad885
libraries, and 37 call stack traces used location in custom code. For the 40 call stack886
traces with the purpose of advertisement, the overhead is 53ms on average, which only887
contains the execution time of call stack construction and library comparison. For the888
37 call stack traces that used sensitive data in custom code, the distribution of per-889
formance overhead is shown in Figure 8. The average performance overhead is about890
258ms in total. For each step, the average performance overhead and standard devia-891
tion is shown in Table XIII. SVM classification accounts for most of the overhead, with892
an average time of 160ms. TF-IDF calculation takes 43ms on average, with a standard893
deviation of 29.7, which is based on the number of features (key words). The time of894
library comparison varies from 1ms to around 250ms, which goes up along with the895
increasing of call stack size. We leave out the call stack construction time in Figure 8,896

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

Understanding the Purpose of Permission Use in Mobile Apps 43:27

Table XIII. Performance Overhead Breakdown

Call Stack Library TF-IDF SVM

Average time (ms) 5.81 49.03 43.38 159.95
Standard deviation 0 80.53 29.7 18.38

because it only costs 5.81ms on average, which is too short to compare with the other 897
steps. 898

Efficacy of Purpose Caching. As mentioned earlier, some apps send the same data 899
repeatedly, resulting in the same call stack traces. To evaluate the efficacy of our 900
caching optimization, we analyzed the overhead of the 176 repeated call stack traces. 901
The average time to look up the “purpose cache” is only 4.5ms, which greatly reduces 902
the overhead of our system in steady-state operation. The result shows that our system 903
introduced minimal performance reduction compared with TaintDroid. 904

5. COMPARISON OF THE STATIC AND DYNAMIC APPROACHES 905

Here we compare the static approach and the dynamic approach, discussing the 906
pros and cons of both approaches and the trade-offs involved. First, we present a 907
quantitative analysis on the static and dynamic approaches. We applied them to the 908
same dataset and compared their performance. Then, we present a qualitative analysis 909
of the static and dynamic approaches in Table XV from these aspects: granularity to 910
infer the purpose, accuracy, scalability, code coverage, impact of code obfuscation, and 911
the best fit application scenarios. 912

5.1. Quantitative Analysis 913

In this comparison, we manually collected more than 100 apps that likely access loca- 914
tion data. We used several keywords to search on Google Play (e.g., “location,” “nearby,” 915
“navigation,” “weather,” etc.), and downloaded top related apps. 916

We used the Monkey testing tool [Monkey 2016] to dynamically test these apps 917
in an automated way on a Nexus 4 smartphone with an instrumented Android 4.3 918
r1 OS. Each app was tested for 60 seconds. We performed our experiments outdoors 919
with network accesses, in order to have the device connect to the GPS and trigger 920
the sensitive behavior of mobile apps. We found 24 apps leaked GPS location data at 921
runtime. Note that some apps cannot run properly on Nexus 4 due to incompatible 922
versions, and some apps use services that are inaccessible in China. To make this a fair 923
comparison, we applied static analysis on the 24 apps to infer the purpose of permission 924
use. Besides, to measure the effect of multithreading call stack construction, we also 925
use the dynamic approach without multithreading call stack construction to test these 926
apps and compare the results. We manually checked the dynamic call stack traces, and 927
we also checked the packages that use location permission identified by static analysis 928
to measure the accuracy of both approaches. 929

The result is shown in Table XIV. Note that each instance (call stack or code package) 930
will receive 10 similarity values indicating the probabilities it belongs to each of the 931
10 categories (besides third-party libraries), and the sum of all 10 similarity values is 932
equal to 1. We choose the category with the largest similarity value as its category if the 933
similarity is larger than 0.20, otherwise we will put this instance into a new category 934
called cannot infer. 935

Based on the results, we make the following observations: 936

—Our dynamic approach could identify the purpose of permission use in third-party 937
libraries correctly. For 14 apps, our dynamic approach identified the sensitive data 938
leaked by third-party libraries, while our static analysis cannot identify these cases. 939
Although we could extend our static approach to work on third-party libraries, 940

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:28 H. Wang et al.

Table XIV. Quantitative Analysis of Our Static Approach and Dynamic Approach

App Name

Dynamic Analysis Static Analysis
Purpose

(Dynamic)
Purpose

(Dynamic w/o multi)
Manually
Checked

Purpose
(Static)

Manually
Checked

com.apalon.weatherlive.free customized,
ads(mopub)

customized,
ads(mopub)

customized,
ads(mopub)

customized customized

com.aws.andoid
customized,
geosocial

customized,
geosocial

customized customized customized

com.local.places.near.by.me nearby
searching

cannot infer nearby
searching

cannot
infer

nearby
searching

com.grabtaxi.passenger map library
(mapquest),
transport

map library
(mapquest),

transport
map library
(mapquest),
transport

transport transport

air.byss.mobi.instaplacefree analytics
(flurry),
cannot
infer

analytics (flurry),
cannot infer

analytics
(flurry),
cannot
infer

cannot
infer

geotag

com.appon.mancala ads(mopub) ads(mopub) ads(mopub) none none
com.fitnesskeeper.-

runkeeper.pro
ads

(KiipSDK)
ads

(KiipSDK)
ads

(KiipSDK)
transport

cannot
infer

com.grupoheron.worldclock ads(mopub) ads(mopub) ads(mopub) customized customized
com.reliancegames.-

singhamreturnsthegame
ads(vserv) ads(vserv) ads(vserv) location-

based game
location-
based game

com.devexpert.weather ads(domob),
customized

ads(domob),
customized

ads(domob),
customized

customized customized

com.android.game3dpool game engine
(unity3d),
social net-
working,
ads (crazy-
media)

game engine
(unity3d),

cannot infer,
ads (crazymedia)

game engine
(unity3d),
cannot
infer, ads
(crazy-
media)

cannot
infer

cannot
infer

com.digcy.mycast customized cannot infer customized customized customized
com.myteksi.passenger nearby

searching
nearby searching transport nearby

searching
transport

com.raycom.kcbd ads ads ads none none
com.tranzmate geosocial geosocial transport geosocial,

transport
transport

com.opensignal.weathersignal customized cannot infer customized
cannot
infer

cannot
infer

com.gau.go.launcherex ads ads ads
cannot
infer

cannot
infer

com.gpsserver.gpstracker tracking tracking tracking tracking tracking
com.gamecastor.nearbyme social

(foursquare)
social (foursquare) social

(foursquare)
none none

air.byss.instaweather customized customized customized customized customized
ro.startaxi.android.client transport cannot infer transport transport transport
com.seatosoftware.mapapic analytics

(flurry)
analytics (flurry) analytics

(flurry)
none none

sinhhuynh.map.fakelocation map library map library map library none none
com.foreca.android.weather customized customized customized customized customized

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

Understanding the Purpose of Permission Use in Mobile Apps 43:29

third-party libraries always contain unused permissions [Stevens et al. 2012; Wang 941
et al. 2015b] and some third-party libraries request sensitive data by invoking 942
methods in the app logic that provides access to resources, rather than accessing 943
resources directly [Liu et al. 2015]. Thus, extending the static approach to work on 944
third-party libraries could introduce false positives. 945

—Our dynamic approach reconstructing call stacks across multiple threads is better 946
than our approach without this reconstruction. For example, the app “com.local. 947
places.near.by.me” used the “com.android.volley” library to send asynchronous HTTP 948
requests, thus dynamic approach without multithreading call stack construction 949
cannot get useful information at the taint sinks, so it cannot infer the purpose as 950
a result. Our dynamic approach could construct the full call stack traces, which 951
could infer the purpose of the indirect data access. Besides third-party libraries, our 952
dynamic approach could infer the purpose of permission use in custom code that 953
static approach cannot identify in two cases. 954

—Our static approach focused on the use of sensitive data (taint source), while our 955
dynamic approach focused on the leakage of sensitive data (taint sink). In this 956
experiment, static analysis identified sensitive permission uses in four cases, but 957
dynamic analysis did not find these leakages at taint sinks. For example, app 958
“com.grupoheron.worldclock” and app “com.reliancegames.singhamreturnsthegame” 959
were found using location permission and static approach could accurately infer the 960
purpose, but dynamic approach did not find these leakages of sensitive data. This 961
result indicates that static approach and dynamic approach are suitable for different 962
usage scenarios; we will discuss it further in Section 5.2. Besides, dynamic analysis 963
relies heavily on the coverage of execution traces. Although static analysis has good 964
coverage, some sensitive API calls may never be executed by the app. 965

5.2. Qualitative Analysis 966

5.2.1. Granularity. The goal of our static approach is to identify packages that use 967
sensitive permissions and label the purpose for each package (directory). This is based 968
on the assumption that a directory will also have only a single purpose for a given 969
permission. Specifying purpose at a package granularity is coarse-grained as there 970
may be multiple purposes of data use in each package in reality. While in our dynamic 971
approach, the purpose is determined by the call stack traces of each sensitive date 972
leakage, which is more fine-grained and accurate. 973

5.2.2. Accuracy. Our static approach achieved high accuracy in our labeled dataset. 974
However, our labeled dataset is not comprehensive. For a few apps (less than 10%) in 975
the experiment, we could not understand how permissions are used, thus we did not use 976
them in our evaluation of static approach. In the static approach evaluation, our dataset 977
also did not include some apps that have unusual design patterns for using sensitive 978
data. For example, some apps provide services that access sensitive data, while other 979
parts of the app access these services to use sensitive data. Take the social networking 980
app “Skout” as an example. It has a package called “com.skout.android.service,” con- 981
taining services such as “LocationService.java” and “ChatService.java.” In this design 982
pattern, these services access sensitive data, with other parts of the app accessing these 983
services. There was very little meaningful text information in the directory where these 984
services are located, so the static approach would simply fail. 985

Our dynamic approach uses fine-grained call stack traces, which could deal with this 986
design pattern easily. By analyzing the call stack traces, we can learn which classes 987
and methods access the sensitive data and how that data is used. Thus our dynamic 988
approach is more accurate than the static approach. For the cases that our dynamic 989
approach fails, the static approach would fail too. 990

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:30 H. Wang et al.

Table XV. A Comparison of Our Static Approach and Dynamic Approach
for Inferring Purposes in Smartphone Apps

Static Approach Dynamic Approach

Granularity Coarse-grained Package level
(a directory of source code)

Fine-grained (call stack trace of
a sensitive data leakage)

Accuracy Medium (cannot handle indirect
permission use)

High

Scalability High Low
Coverage High Low
Application
Scenarios

Market level app analysis, help
respect to privacy

Purpose-based access control

5.2.3. Scalability. Our static approach does not need to run the app, which means it991
has good potential for scalability. In contrast, our dynamic approach is not as scalable,992
as it relies on dynamic testing tools to trigger an app’s behaviors. Due to the limitation993
of automated UI testing tools, it is hard to apply dynamic analysis to millions of apps.994

5.2.4. Code Coverage. While our static approach has good code coverage, our dynamic995
analysis approach relies heavily on execution traces, making it hard to reach complete996
coverage due to the large number of potential paths. Prior studies have proposed997
techniques for more advanced testing of mobile apps, such as UI fuzzing [Hu and998
Neamtiu 2011] and targeted event sequence generation [Jensen et al. 2013], which999
can be leveraged in our dynamic analysis in the future. It also demonstrated that the1000
dynamic approach is suitable for privacy enforcement at runtime, rather than dynamic1001
testing that relies on the coverage of execution traces.1002

5.2.5. Application Scenarios. Since our static analysis based approach has good code1003
coverage and scalability, it is feasible to deploy it on the app market to identify sensitive1004
behaviors of mobile apps, and help users to understand permissions used by an app and1005
help to respect privacy. Prior work [Lin et al. 2012] showed that purpose information is1006
important to assess people’s privacy concerns. Both users’ expectation and the purpose1007
of why sensitive resources are used have a major impact on users’ subjective feelings1008
and their trust decisions. Besides, properly informing users of the purpose of resource1009
access can ease users’ privacy concerns to some extent. Shih et al. [2015] showed similar1010
findings. They found that the purpose of data access is the main factor affecting users’1011
privacy choices. Thus, it is important to understand the purpose of permission use and1012
our work is the first attempt to infer the purpose of permission use from decompiled1013
code.1014

Our dynamic approach is fine-grained and accurate, thus it is more suitable to deploy1015
dynamic approach on real users’ phones and help them enforce privacy protection.1016
For example, users could define their privacy policies first, which specify whether an1017
app is allowed to use a sensitive data item for a particular purpose (e.g., disallow1018
accurate location for advertisement). If the detected sensitive behavior violates the1019
policy, an exception would be thrown to block the data path. Based on our experiment,1020
the overhead of inferring purpose at runtime is negligible and imperceptible to mobile1021
users. The average performance overhead to infer the purpose of sensitive data use is1022
258ms at runtime. Using a purpose caching optimization, the overhead is reduced to1023
4.5ms on average in steady state.1024

5.3. Purpose-Based Access Control1025

To demonstrate the usability of our dynamic analysis, we have implemented a prototype1026
access control system that can enforce purpose-based privacy policies. As shown in1027

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

Understanding the Purpose of Permission Use in Mobile Apps 43:31

Fig. 9. Overall architecture of the prototype access control system. We added the privacy policy and access
control parts (padding with green) based on the dynamic analysis framework we proposed.

Table XVI. Examples of Access Control Policies

Policy Description

< location, ads, block > disallow accurate location for advertisement
< location, nearbysearching, allow > allow to use location for nearby searching

Figure 9, we added the privacy policy and access control parts based on the dynamic 1028
analysis framework we proposed. 1029

Users can easily define global privacy policies for all the apps using a triple 1030
<permission, purpose, action>. For example, a set of privacy policies for a par- 1031
ticular user could use the form as shown in Table XVI. Further, we expect that more 1032
complex policies can also be implemented on top of our system in the future. For ex- 1033
ample, user could define policies based on app category, app name, used permission, 1034
purpose of permission use, destination IP address, and whether it uses SSL connection. 1035
For example, a user could block egress of sensitive contacts data for all game apps. 1036
Furthermore, we could use context information such as at home or at work to enforce 1037
purpose-based context-aware access control. 1038

Note that currently we do not have a UI to specify these policies for our prototype 1039
system. Instead, in this article we focus on exploring the capability of dynamic analysis 1040
in inferring purposes, and enabling the new functionality of purpose-based control, and 1041
demonstrating its feasibility. We leave the design and evaluation of appropriate UIs for 1042
allowing users to specify these access policies to future work. However, we note that 1043
such a UI can be integrated with Android AppOps or with other systems such as the 1044
ProtectMyPrivacy app [Agarwal and Hall 2013]. 1045

For policy enforcement, we modified TaintDroid such that at each sink point the 1046
app behavior is checked against user-defined policies. If the sensitive behavior violates 1047
the policy, an exception would be thrown to block the data path. Note that if the 1048
app does not catch and handle the exception, the app may crash. Our goal is to let 1049
users selectively enforce privacy policies for sensitive behaviors associated with certain 1050
purposes, without affecting other behaviors or functionalities of the app. During our 1051

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:32 H. Wang et al.

Fig. 10. Impact to app functionality. Examples of three kinds of behaviors if we block sensitive data: “run
normally and no result is shown,” “run normally but show error,” and “app crash at runtime.”

experiments, we observed three kinds of results for blocking sensitive data at runtime,1052
as shown in Figure 10.1053

Blocking necessary sensitive data use in some apps can cause it to crash (less than1054
10% of apps in our experiment), mainly because the apps did not catch and handle the1055
exceptions when our system blocked the data. In contrast, blocking sensitive data in1056
third-party libraries rarely caused crashes. We also note that since the arrival of fine-1057
grained permission control in Android 6.0, it is only a matter of time before developers1058
will change their apps to add exceptional handlers as users use the Android UI to allow1059
or deny access to sensitive data to the entire app.1060

6. DISCUSSION1061

6.1. Code Obfuscation1062

In our previous experiments, we first identified the classes that use sensitive permis-1063
sions, then we determined whether the class is obfuscated or not. We only examined1064
code using permission-related android APIs, and we found that about 10% of apps1065
contain obfuscated code, with much of it belonging to third-party libraries. Previous1066
research [Linares-Vásquez et al. 2014] analyzed 24,379 Android apps, and they only1067
found 415 apps (less than 2%) with obfuscated custom code.1068

To further measure the code obfuscation rate in current Android apps and measure1069
the effectiveness of our approach, we manually downloaded 1,600 popular Android1070
apps from Google Play in September 2016. All of them are top apps from different1071
categories. Then we analyzed these apps in detail.1072

We focus on four research questions:1073

—How many of the popular apps are obfuscated?1074
—How many of them are fully obfuscated? Even when an app is obfuscated, not all1075

classes in it are obfuscated (e.g., some code cannot be obfuscated because it is defined1076
or referenced externally, etc). So what is the obfuscation rate of these obfuscated1077
apps?1078

—Do they have significant impact on the effectiveness of our approach?1079
—Are there any feasible ways to deal with code obfuscation?1080

We investigated these apps in detail, and answer each question in the following.1081

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

Understanding the Purpose of Permission Use in Mobile Apps 43:33

6.1.1. How Many of the Popular Apps are Obfuscated? Following previous work [Linares- 1082
Vásquez et al. 2014], we use a simple heuristic to measure whether an app is obfuscated 1083
or not. This heuristic is based on the fact that certain obfuscators, in particular the 1084
popular tool Proguard, renames classes using a lexicographic order. Therefore, to detect 1085
obfuscated apps, we look for apps with class names that have only a single letter, for 1086
example, a.java, b.java, c.java, etc. We decided to use this simple heuristic because we 1087
were interested only in the impact of identifier obfuscation. That is to say, as long as we 1088
find an app with a class named with a single letter, we will mark this app as obfuscated. 1089

For the 1,600 popular apps, 1,144 of them are marked as obfuscated apps, which 1090
accounts for 71.5% of the apps. This result suggested that obfuscation is quite popular 1091
in Android apps. But does it mean we cannot infer the purpose of permission use in 1092
these apps? We further analyzed these apps in the following. 1093

6.1.2. How Many of Them are Fully Obfuscated? What is the Obfuscation Rate of Obfuscated 1094
Apps? Note that even if an app is obfuscated, not all classes in it are obfuscated. On 1095
one hand, some code cannot be obfuscated because it is defined or referenced exter- 1096
nally, such as APIs defined in the framework and components related to the Android 1097
app lifecycle. On the other hand, some code may need extra efforts if they are to be 1098
obfuscated. For example, some complicated packages or classes may result in runtime 1099
errors due to improper ProGuard rules. Many developers would leave these packages 1100
and classes alone because they have to debug them and configure detailed obfuscation 1101
rules if they want to obfuscate them. 1102

We define obfuscation rate as the proportion of likely obfuscated classes (a class in 1103
which more than 50% of the identifier names are likely obfuscated) among all classes 1104
in an app. We build an identifier name dictionary to identify regular obfuscated names, 1105
including the names in short alphabet format (e.g., a, b, c, aa, ab,...) produced by 1106
ProGuard in default setting and other customized rules using different dictionaries. 1107

As a result, we find that most of the obfuscated packages and classes are from third- 1108
party libraries, while the obfuscation rate in custom code is low. Roughly more than 1109
50% of the obfuscated apps have obfuscation rate less than 20% in their custom code 1110
excluding third-party libraries. Only 14 apps (out of 1,600 apps we examined) are fully 1111
obfuscated. 1112

6.1.3. Do they have Significant Impact on the Effectiveness of Our Approach? We use an 1113
obfuscation-resilient method [LibRadar 2016; Ma et al. 2016] to identify third-party 1114
libraries in the app based on Android API features. Most of the obfuscated classes are 1115
from third-party libraries, so these classes almost have no impact on the effectiveness 1116
of our approach. 1117

For code obfuscation in custom code, as long as they are not fully obfuscated, our 1118
approach might still be able to extract meaningful features and learn its purpose. 1119
Excluding third-party libraries, most of the apps do not have a higher obfuscation rate. 1120

We also examined the apps we studied in our previous experiment. For the roughly 1121
600 apps in our static analysis, around 300 of them are found to have a class that is 1122
named with a single letter, which means roughly 50% of them are possibly obfuscated. 1123
But in our previous experiment, we could still label the purposes and using text-mining 1124
to extract features and learn the purposes. 1125

Thus, whether code obfuscation could have great impact on the effectiveness of our 1126
approach depends on the obfuscation level and obfuscation rate. 1127

6.1.4. Are there any Feasible Ways to Deal with Code Obfuscation? A recent work DE- 1128
GUARD [Bichsel et al. 2016] was proposed to reverse layout obfuscation (naming 1129
obfuscation) of Android APKs. In layout obfuscation, the names of program identi- 1130
fiers that carry key semantic information are replaced with other (short) identifiers 1131

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:34 H. Wang et al.

with no semantic meaning. Examples of such elements are variable, method, and class1132
names. They learn probabilistic models from “Big Code” and then use these models to1133
achieve overall precision and scalability of the probabilistic predictions. It could recover1134
79.1% of the program element names obfuscated with ProGuard, which could be used1135
in our work to recover obfuscated code and help us extract meaningful features.1136

In summary, based on our preliminary study on 1,600 recent popular apps from1137
Google Play, we have the following findings:1138

—Code obfuscation is quite popular in Android apps; more than 70% of apps are obfus-1139
cated to some extent in our study.1140

—Most of the obfuscated packages and classes are from third-party libraries, while the1141
obfuscation rate in custom code is low. Only 14 apps (out of 1,600 apps we examined)1142
are fully obfuscated.1143

—Third-party library obfuscation almost has no impact on the effectiveness of our1144
approach. Whether code obfuscation could have great impact on the effectiveness of1145
our approach depends on the obfuscation level and obfuscation rate of custom code.1146

—There are some feasible ways to deal with code obfuscation, which could be potentially1147
used to help us infer the purpose.1148

6.2. Implicit Control Flow and Native Code1149

Our dynamic analysis system inherits two limitations from TaintDroid, that is, im-1150
plicit control flow analysis and native code issues. TaintDroid does not track implicit1151
dataflows, for example, an app’s control flow [Sarwar et al. 2013] (e.g., conditional1152
branching). Besides, native code is unmonitored in TaintDroid. Thus, our dynamic1153
analysis approach would fail in these cases. Subsequent work [Gilbert et al. 2011] pro-1154
posed to add implicit flow support to TaintDroid, which we could use to improve our1155
system.1156

6.3. Indirect Permission Use1157

As stated earlier, some apps use sensitive data through a level of indirection rather1158
than directly accessing it. In this case, our static analysis approach would fail, while our1159
dynamic approach could deal with this design pattern easily. One approach would be1160
expanding the static analysis to look for this kind of design pattern. Another approach1161
would be expanding the granularity of analysis from a directory to the entire app, and1162
changing the classification from single-label classification to multilabel classification.1163

6.4. ICC-Based Multihreading1164

The thread-pairing method we used to construct the full call stack at runtime is also1165
able to handle the case of ICC-based multithreading. Using ICC, the parent threadQ31166
can send an intent to framework, and the framework handles the intent to start a1167
new thread. In this case, the “intent” object can be used as a bridge between the sender1168
thread and receiver thread, just like the “task” object used as a bridge between caller1169
thread and callee thread in AsyncTask-based multithreading. Figure 11 shows an1170
example of ICC-based multithreading, the sender Activity starts the receiver Activity1171
by sending an Intent, and the “intent” object is shared by both sender and receiver.1172
We can hook the “startActivity()” method in sender thread to record the mapping from1173
sender to the intent, and hook the “onCreate()” method of receiver to get the “intent”1174
object that started the receiver thread.1175

Thus, it is easy to extend our current dynamic analysis system and implement ICC-1176
based call stack construction. Previous work AppContext [Yang et al. 2015] proposed1177
to chain all ICCs within the app and construct an Extended Call Graph (ECG) to1178
infer activation events, which we could also use to improve our work. We did not1179

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

Understanding the Purpose of Permission Use in Mobile Apps 43:35

Fig. 11. A bridge-building example of ICC-based multithreading. The “intent” object can be used as a bridge
between the sender thread and receiver thread.

implement it in the current system, because ICC is often used to start an Android 1180
component (Activity, Service, etc.). In this article, we think different components often 1181
have different purposes. For example, a normal Activity may start a new Activity to 1182
present an Advertisement. As our goal is to infer the purpose based on call stack 1183
traces, we only need the call stack of the current Android component. Although it is 1184
better to connect current component with the background services in some cases (e.g., 1185
malware performs suspicious behaviors in the thread initiated by ICC), we are still not 1186
sure how much it will impact the performance of our system. During our preliminary 1187
experiment, we found that if current component is connected with other components 1188
using ICC and they cooperate to exhibit some behaviors, the current component will 1189
need to receive intent from the other components, and the code that handles the intent 1190
will provide some information to help us infer the purpose of permission use in the 1191
current component. We will further analyze this issue in the future. 1192

6.5. The Diversity of Developer Defined Features 1193

Our approach is mainly based on text-based features. However, developers do not 1194
always use good identifier names, for example, “v1” for a variable name. Developers also 1195
use abbreviations, for example, using “loc” instead of “location.” Our current splitting 1196
method does not work well for these cases. One option is to manually label some known 1197
abbreviations. Another option is to use techniques such as approximate string matching 1198
[StringMatching 2016] to infer abbreviated words. 1199

6.6. Expanding to Other Permissions and Purposes 1200

We have created a taxonomy of 10 purposes for the location permission and 10 purposes 1201
for the contacts permission. While our taxonomy is good enough for our experiments, it 1202
is possible that there are other purposes that we cannot find. Furthermore, depending 1203
on how purposes are used, our taxonomy might be too fine-grained or too coarse- 1204
grained. This article demonstrated that we could infer purpose from the decompiled 1205
code or call stack at runtime. We believe that our approach should generalize for new 1206
purposes and for other sensitive permission. For example, if there are more purposes 1207
for location data or contact list, we can simply add more training instances. 1208

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:36 H. Wang et al.

Besides, if possible, and depending on how the purposes are used, we could use1209
clustering-based approaches to automatically learn the purposes of permission uses1210
from the extracted text features in future work. For example, one possible way is that1211
we could use LDA on the extracted texts from decompiled permission-related code,1212
and identify the main topics for each package, and then cluster packages by related1213
topics. We could regard each cluster as a “purpose” of permission use. Based on how1214
the purposes are used, we could use clustering algorithm such as k-means to define the1215
number of clusters. Then we could identify fine-grained or coarse-grained “purposes”1216
based on the number of clusters. Note that one problem remains here is that maybe it1217
is hard to assign a name for each automated identified purpose.1218

Moreover, previous work AppContext [Yang et al. 2015] proposed to use information1219
flow analysis and machine learning to identify malicious behaviors, which we could use1220
to improve our work and identify malicious purposes.1221

6.7. Bypassing Our Detection System1222

Note that our work assumes that developers do not deliberately use misleading identi-1223
fiers. If our approach becomes popular, a malicious developer could rename identifiers1224
to confuse our classification. For example, a developer could rename identifiers to con-1225
tain words such as “weather” or “temperature” to mislead how location data is used.1226
Fortunately, we did not find any instances of this in our experimental data. It is also1227
not immediately clear how to detect these kinds of cases either.1228

6.8. Practicality and Usability of the Dynamic System1229

The goal of this article is to show that purpose-based access control of permissions1230
is indeed possible and to present a prototype implementation. In order to deploy our1231
dynamic system widely to regular users, we will ideally need the functionality we have1232
proposed to be integrated into the OS itself (e.g., Android or through a port such as1233
Cyanogen) and support different versions of Android. Our work is based on TaintDroid1234
to track sensitive information flow, which only supports up to Android 4.2. To work on1235
new versions of Android (especially 6.0 and above), we should use other dynamic taint1236
analysis approaches.1237

Furthermore, while prior work showed that purpose information is important to1238
assess people’s privacy concerns, there have been no user studies to show how users1239
interact with a system with these capabilities and what the appropriate UI might look1240
like. We are investigating ways to deploy and test our system on real users, but note1241
that it will require an extensive user study.1242

7. CONCLUSIONS1243

In this article, we propose a text mining based method to infer the purpose of a permis-1244
sion use for Android apps. We present the design, implementation, and evaluation of1245
two approaches to inferring purposes, which are based on static analysis and dynamic1246
analysis, respectively. We first evaluate the effectiveness of using text analysis tech-1247
niques on decompiled code statically. Our experiments show that we can achieve about1248
85% accuracy in inferring the purpose of location use, and 94% for contact list use.1249
Then we introduce a dynamic analysis technique to overcome the limitations of static1250
analysis. For the dynamic approach, we try to infer the purpose of permission use in1251
the entire app, including third-party libraries and custom code. Experimental results1252
show that we are able to successfully infer the purpose of over 90% sensitive location1253
data uses. We also discuss the pros and cons of both static and dynamic approaches,1254
and the trade-offs involved.1255

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

Understanding the Purpose of Permission Use in Mobile Apps 43:37

REFERENCES 1256

Yuvraj Agarwal and Malcolm Hall. 2013. ProtectMyPrivacy: Detecting and mitigating privacy leaks on ios 1257
devices using crowdsourcing. In Proceedings of the 11th Annual International Conference on Mobile 1258
Systems, Applications, and Services. 97–110. 1259

Hazim Almuhimedi, Florian Schaub, Norman Sadeh, Idris Adjerid, Alessandro Acquisti, Joshua Gluck, 1260
Lorrie Faith Cranor, and Yuvraj Agarwal. 2015. Your location has been shared 5,398 times!: A field 1261
study on mobile app privacy nudging. In Proceedings of the 33rd Annual ACM Conference on Human 1262
Factors in Computing Systems (CHI’15). 787–796. 1263

Shahriyar Amini, Jialiu Lin, Jason I. Hong, Janne Lindqvist, and Joy Zhang. 2013. Mobile application 1264
evaluation using automation and crowdsourcing. In Proceedings of the PETools. 1265

Apktool 2016. Apktool: A tool for reverse engineering Android apk files. Retrieved from https://code.google. 1266
com/p/android-apktool/. 1267

AppStore 2016. Wikipedia App Store (iOS). Retrieved from https://en.wikipedia.org/wiki/App_Store_(iOS). 1268
Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le 1269

Traon, Damien Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise context, flow, field, object- 1270
sensitive and lifecycle-aware taint analysis for android apps. In Proceedings of the 35th ACM SIGPLAN 1271
Conference on Programming Language Design and Implementation (PLDI’14). 259–269. 1272

Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout: Analyzing the android per- 1273
mission specification. In Proceedings of the 2012 ACM Conference on Computer and Communications 1274
Security (CCS’12). 217–228. 1275

Michael Backes, Sven Bugiel, Sebastian Gerling, and Philipp von Styp-Rekowsky. 2014. Android security 1276
framework: Extensible multi-layered access control on android. In Proceedings of the 30th Annual 1277
Computer Security Applications Conference (ACSAC’14). 46–55. 1278

Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and Philipp von Styp-Rekowsky. 1279
2013. AppGuard: Enforcing user requirements on android apps. In Proceedings of the 19th International 1280
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’13). 543–548. 1281

Rebecca Balebako, Jaeyeon Jung, Wei Lu, Lorrie Faith Cranor, and Carolyn Nguyen. 2013. “Little brothers 1282
watching you”: Raising awareness of data leaks on smartphones. In Proceedings of the 9th Symposium 1283
on Usable Privacy and Security (SOUPS’13). 12:1–12:11. 1284

Alastair R. Beresford, Andrew Rice, Nicholas Skehin, and Ripduman Sohan. 2011. MockDroid: Trading 1285
privacy for application functionality on smartphones. In Proceedings of the 12th Workshop on Mobile 1286
Computing Systems and Applications (HotMobile’11). 49–54. 1287

Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. 2016. Statistical deobfuscation of 1288
android applications. In CCS’16. 1289

Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. 2013. Flexible and fine-grained mandatory ac- 1290
cess control on android for diverse security and privacy policies. In Proceedings of the 22nd USENIX 1291
Conference on Security (SEC’13). 131–146. 1292

C4.5 2016. Wikipedia. C4.5 Algorithm. (2016). http://en.wikipedia.org/wiki/C4.5_algorithm. 1293
CaffeineMark 2016. CaffeineMark. Retrieved from https://play.google.com/store/apps/details?id=com. 1294

android.cm3&hl=zh_CN. 1295
Erika Chin, Adrienne Porter Felt, Vyas Sekar, and David Wagner. 2012. Measuring user confidence in 1296

smartphone security and privacy. In Proceedings of the 8th Symposium on Usable Privacy and Security 1297
(SOUPS’12). 1298

Cross-Validation 2016. Wikipedia. Cross-validation. Retrieved from https://en.wikipedia.org/wiki/Cross- 1299
validation_(statistics). 1300

Benjamin Davis and Hao Chen. 2013. RetroSkeleton: Retrofitting android apps. In Proceedings of the Inter- 1301
national Conference on Mobile Systems, Applications, and Services (MobiSys’13). 1302

Benjamin Davis, Ben Sanders, Armen Khodaverdian, and Hao Chen. 2012. I-arm-droid: A rewriting frame- 1303
work for in-app reference monitors for android applications. In Proceedings of the Mobile Security 1304
Technologies. 1305

Dex2jar 2016. dex2jar. Retrieved from https://code.google.com/p/dex2jar/. 1306
Serge Egelman, Adrienne Porter Felt, and David Wagner. 2012. Choice architecture and smartphone privacy: 1307

There’s a price for that. In Proceedings of the Workshop on the Economics of Information Security (WEIS). 1308
William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol 1309

N. Sheth. 2010. TaintDroid: An information-flow tracking system for realtime privacy monitoring on 1310
smartphones. In Proceedings of the 9th USENIX Conference on Operating Systems Design and Imple- 1311
mentation (OSDI’10). 1312

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

https://code.google.com/p/android-apktool/
https://code.google.com/p/android-apktool/
https://en.wikipedia.org/wiki/App_Store_(iOS)
http://en.wikipedia.org/wiki/C4.5_algorithm
https://play.google.com/store/apps/details?id$=$com.android.cm3
https://play.google.com/store/apps/details?id$=$com.android.cm3
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://code.google.com/p/dex2jar/

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:38 H. Wang et al.

William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. 2011. A study of android applica-1313
tion security. In Proceedings of the 20th USENIX Conference on Security (SEC’11).1314

William Enck, Machigar Ongtang, and Patrick McDaniel. 2009. On lightweight mobile phone application1315
certification. In Proceedings of the 16th ACM Conference on Computer and Communications Security1316
(CCS’09). 235–245.1317

Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and David Wagner. 2012.1318
Android permissions: User attention, comprehension, and behavior. In Proceedings of the 8th Symposium1319
on Usable Privacy and Security (SOUPS’12). 3:1–3:14.1320

Peter Gilbert, Byung-Gon Chun, Landon P. Cox, and Jaeyeon Jung. 2011. Vision: Automated security valida-1321
tion of mobile apps at app markets. In Proceedings of the 2nd International Workshop on Mobile Cloud1322
Computing and Services (MCS’11). 21–26.1323

GooglePlay 2016. Wikipedia. Google Play. Retrieved from http://en.wikipedia.org/wiki/Google_Play.1324
Michael I. Gordon, Deokhwan Kim, Jeff Perkins, Limei Gilham, Nguyen Nguyen, and Martin Rinard. 2015.1325

Information flow analysis of android applications in DroidSafe. In Proceedings of NDSS 2015.1326
Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. 2014. Checking app behavior against1327

app descriptions. In Proceedings of the 36th International Conference on Software Engineering (ICSE’14).1328
1025–1035.1329

Marian Harbach, Markus Hettig, Susanne Weber, and Matthew Smith. 2014. Using personal examples to1330
improve risk communication for security and privacy decisions. In Proceedings of the 32nd Annual ACM1331
Conference on Human Factors in Computing Systems (CHI’14).1332

Stephan Heuser, Adwait Nadkarni, William Enck, and Ahmad-Reza Sadeghi. 2014. ASM: A programmable1333
interface for extending android security. In Proceedigns of the 23rd USENIX Security Symposium1334
(USENIX Security’14). 1005–1019.1335

Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wetherall. 2011. These aren’t1336
the droids you’re looking for: Retrofitting android to protect data from imperious applications. In Pro-1337
ceedings of the 18th ACM Conference on Computer and Communications Security (CCS’11). 639–652.1338

Cuixiong Hu and Iulian Neamtiu. 2011. Automating GUI testing for android applications. In Proceedings of1339
the 6th International Workshop on Automation of Software Test. 77–83.1340

Wei Huang, Yao Dong, Ana Milanova, and Julian Dolby. 2015. Scalable and precise taint analysis for android.1341
In Proceedings of the 2015 International Symposium on Software Testing and Analysis (ISSTA’15). 106–1342
117.1343

Qatrunnada Ismail, Tousif Ahmed, Apu Kapadia, and Michael Reiter. 2015. Crowdsourced exploration of1344
security configurations. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing1345
Systems (CHI’15).1346

JD-Core-Java 2016. JD-Core-Java. Retrieved from http://jd.benow.ca/.1347
Casper S. Jensen, Mukul R. Prasad, and Anders Møller. 2013. Automated testing with targeted event1348

sequence generation. In Proceedings of ISSTA’13. 67–77.1349
Yiming Jing, Gail-Joon Ahn, Ziming Zhao, and Hongxin Hu. 2014. RiskMon: Continuous and automated risk1350

assessment of mobile applications. In Proceedings of the 4th ACM Conference on Data and Application1351
Security and Privacy (CODASPY’14). 99–110.1352

Jaeyeon Jung, Seungyeop Han, and David Wetherall. 2012. Short paper: Enhancing mobile application1353
permissions with runtime feedback and constraints. In Proceedings of the 2nd ACM Workshop on Security1354
and Privacy in Smartphones and Mobile Devices (SPSM’12). 45–50.1355

Patrick Gage Kelley, Lorrie Faith Cranor, and Norman Sadeh. 2013. Privacy as part of the app decision-1356
making process. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems1357
(CHI’13). 3393–3402.1358

LibRadar 2016. LibRadar: Detecting Libraries in Android Apps. Retrieved from http://radar.pkuos.org/.1359
(2016).1360

LibSVM 2016. LIBSVM—A Library for Support Vector Machines. Retrieved from https://www.csie.1361
ntu.edu.tw/ cjlin/libsvm/.1362

Jialiu Lin, Shahriyar Amini, Jason I. Hong, Norman Sadeh, Janne Lindqvist, and Joy Zhang. 2012. Expec-1363
tation and purpose: Understanding users’ mental models of mobile app privacy through crowdsourcing.1364
In Proceedings of the 2012 ACM Conference on Ubiquitous Computing (UbiComp’12). 501–510.1365

Jialiu Lin, Bin Liu, Norman Sadeh, and Jason I. Hong. 2014. Modeling users’ mobile app privacy preferences:1366
Restoring usability in a sea of permission settings. In Proceedings of the 2014 Symposium On Usable1367
Privacy and Security (SOUPS’14).1368

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

http://en.wikipedia.org/wiki/Google_Play
http://jd.benow.ca/
http://radar.pkuos.org/
https://www.csie.ntu.edu.tw/
https://www.csie.ntu.edu.tw/

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

Understanding the Purpose of Permission Use in Mobile Apps 43:39

Mario Linares-Vásquez, Andrew Holtzhauer, Carlos Bernal-Cárdenas, and Denys Poshyvanyk. 2014. Revis- 1369
iting android reuse studies in the context of code obfuscation and library usages. In Proceedings of the 1370
11th Working Conference on Mining Software Repositories (MSR’14). 242–251. 1371

Bin Liu, Bin Liu, Hongxia Jin, and Ramesh View. 2015. Efficient privilege de-escalation for ad libraries in 1372
mobile apps. In Proceedings of the the 13th International Conference on Mobile Systems, Applications, 1373
and Services (MobiSys’15). 1374

Looper 2016. Looper. Retrieved from http://developer.android.com/reference/android/os/Looper.html. 1375
Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. LibRadar: Fast and accurate detection of 1376

third-party libraries in android apps. In Proceedings of the 2016 IEEE/ACM 38th IEEE International 1377
Conference on Software Engineering Companion. 653–656. 1378

Mallet 2016. Mallet: MAchine Learning for LanguagE ToolkiT. Retrieved from http://mallet.cs.umass.edu/. 1379
Clara Mancini, Keerthi Thomas, Yvonne Rogers, Blaine A. Price, Lukazs Jedrzejczyk, Arosha K. Bandara, 1380

Adam N. Joinson, and Bashar Nuseibeh. 2009. From spaces to places: Emerging contexts in mobile 1381
privacy. In Proceedings of the 11th International Conference on Ubiquitous Computing (UbiComp’09). 1382
1–10. 1383

Maximum Entropy 2016. Wikipedia Maximum Entropy. Retrieved from http://en.wikipedia.org/wiki/ 1384
Maximum_entropy. 1385

Monkey 2016. UI/Application Exerciser Monkey. Retrieved from developer.android.com/tools/help/monkey. 1386
html. 1387

MultipleThreads 2016. MultipleThreads. Retrieved from http://developer.android.com/intl/en-us/training/ 1388
multiple-threads/index.html. 1389

Mohammad Nauman, Sohail Khan, and Xinwen Zhang. 2010. Apex: Extending android permission model 1390
and enforcement with user-defined runtime constraints. In Proceedings of the 5th ACM Symposium on 1391
Information, Computer and Communications Security (ASIACCS’10). 328–332. 1392

Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick McDaniel. 2009. Semantically rich 1393
application-centric security in android. In Proceedings of the 2009 Annual Computer Security Applica- 1394
tions Conference (ACSAC’09). 340–349. 1395

Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. 2013. WHYPER: Towards automating 1396
risk assessment of mobile applications. In Proceedings of the 22nd USENIX Conference on Security 1397
(SEC’13). 527–542. 1398

Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner. 2012. AdDroid: Privilege separation 1399
for applications and advertisers in android. In Proceedings of the 7th ACM Symposium on Information, 1400
Computer and Communications Security (ASIACCS’12). 1401

PermissionMappings 2015. Permission mappings. Retrieved from http://pscout.csl.toronto.edu/. 1402
Porter 2015. The Porter Stemming Algorithm. Retrieved from http://tartarus.org/martin/PorterStemmer/. 1403
PrivacyGrade 2015. PrivacyGrade: Grading the privacy of smartphone apps. Retrieved from http:// 1404

privacygrade.org/. 1405
PScout API 2015. Documented API calls mappings. Retrieved from http://pscout.csl.toronto.edu/ 1406

download.php?file=results/jellybean_publishedapimapping. 1407
PScout ContentProvider 2015. Content Provider (URI strings) with permissions. Retrieved from http:// 1408

pscout.csl.toronto.edu/download.php?file=results/jellybean_contentproviderpermission. 1409
PScout Intent 2015. Intents with Permissions. Retrieved from http://pscout.csl.toronto.edu/download.php? 1410

file=results/jellybean_intentpermissions. 1411
Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and Zhong Chen. 2014. AutoCog: 1412

Measuring the description-to-permission fidelity in android applications. In Proceedings of the 2014 1413
ACM SIGSAC Conference on Computer and Communications Security (CCS’14). 1354–1365. 1414

Franziska Roesner and Tadayoshi Kohno. 2013. Securing embedded user interfaces: Android and beyond. In 1415
Proceedings of the 22nd USENIX Conference on Security (SEC’13). 97–112. 1416

Golam Sarwar, Olivier Mehani, Roksana Boreli, and Dali Kaafar. 2013. On the effectiveness of dynamic taint 1417
analysis for protecting against private information leaks on android-based devices. In Proceedings of the 1418
10th International Conference on Security and Cryptography (SECRYPT’13). 461–467. 1419

Daniel Schreckling, Johannes Kstler, and Matthias Schaff. 2013. Kynoid: Real-time enforcement of fine- 1420
grained, user-defined, and data-centric security policies for Android. Information Security Technical 1421
Report 17, 3 (2013), 71–80. 1422

SciKit 2016. Scikit-learn Machine learning in Python. Retrieved from http://scikit-learn.org/stable/ 1423
index.html. 1424

Shashi Shekhar, Michael Dietz, and Dan S. Wallach. 2012. AdSplit: Separating smartphone advertising from 1425
applications. In Proceedings of the 21st USENIX Conference on Security Symposium (Security’12). 1426

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

http://developer.android.com/reference/android/os/Looper.html
http://mallet.cs.umass.edu/
http://en.wikipedia.org/wiki/Maximum_entropy
http://en.wikipedia.org/wiki/Maximum_entropy
http://developer.android.com/intl/en-us/training/multiple-threads/index.html
http://developer.android.com/intl/en-us/training/multiple-threads/index.html
http://pscout.csl.toronto.edu/
http://tartarus.org/martin/PorterStemmer/
http://privacygrade.org/
http://privacygrade.org/
http://pscout.csl.toronto.edu/download.php?file$=$results/jellybean_publishedapimapping
http://pscout.csl.toronto.edu/download.php?file$=$results/jellybean_publishedapimapping
http://pscout.csl.toronto.edu/download.php?file$=$results/jellybean_contentproviderpermission
http://pscout.csl.toronto.edu/download.php?file$=$results/jellybean_contentproviderpermission
http://pscout.csl.toronto.edu/download.php?file$=$results/jellybean_intentpermissions
http://pscout.csl.toronto.edu/download.php?file$=$results/jellybean_intentpermissions
http://scikit-learn.org/stable/index.html
http://scikit-learn.org/stable/index.html

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

43:40 H. Wang et al.

Fuming Shih, Ilaria Liccardi, and Daniel Weitzner. 2015. Privacy tipping points in smartphones privacy1427
preferences. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing1428
Systems (CHI’15). 807–816.1429

Irina Shklovski, Scott D. Mainwaring, Halla Hrund Skúladóttir, and Höskuldur Borgthorsson. 2014. Leaki-1430
ness and creepiness in app space: Perceptions of privacy and mobile app use. In Proceedings of the 32nd1431
Annual ACM Conference on Human Factors in Computing Systems (CHI’14). 2347–2356.1432

Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. 2012. Investigating user privacy1433
in android ad libraries. In Proceedings of the Workshop on Mobile Security Technologies (MoST).1434

StringMatching 2016. Wikipedia Approximate String Matching. Retrieved from http://en.wikipedia.org/1435
wiki/Approximate_string_matching.1436

SVM 2016. Wikipedia Support Vector Machine. Retrieved from http://en.wikipedia.org/wiki/Support_vector_1437
machine.1438

Yang Tang, Phillip Ames, Sravan Bhamidipati, Ashish Bijlani, Roxana Geambasu, and Nikhil Sarda. 2012.1439
CleanOS: Limiting mobile data exposure with idle eviction. In Proceedings of the 10th USENIX Confer-1440
ence on Operating Systems Design and Implementation (OSDI’12). 77–91.1441

Eran Toch, Justin Cranshaw, Paul Hankes Drielsma, Janice Y. Tsai, Patrick Gage Kelley, James Springfield,1442
Lorrie Cranor, Jason Hong, and Norman Sadeh. 2010. Empirical models of privacy in location sharing.1443
In Proceedings of the 12th ACM International Conference on Ubiquitous Computing (UbiComp’10). 129–1444
138.1445

Omer Tripp and Julia Rubin. 2014. A Bayesian approach to privacy enforcement in smartphones. In Pro-1446
ceedings of the 23rd USENIX Conference on Security Symposium (Security’14).1447

Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. 2015a. WuKong: A scalable and accurate two-1448
phase approach to android app clone detection. In Proceedings of the ACM International Symposium on1449
Software Testing and Analysis (ISSTA’15). 71–82.1450

Haoyu Wang, Yao Guo, Zihao Tang, Guangdong Bai, and Xiangqun Chen. 2015b. Reevaluating android1451
permission gaps with static and dynamic analysis. In Proceedings of GLOBECOM’15.1452

Haoyu Wang, Jason I. Hong, and Yao Guo. 2015c. Using text mining to infer the purpose of permission use in1453
mobile apps. In The 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing1454
(UbiComp’15). 1107–1118.1455

Haoyu Wang, Zhe Liu, Yao Guo, Xiangqun Chen, Miao Zhang, Guoai Xu, and Jason Hong. 2017. An explo-1456
rative study of the mobile app ecosystem from app developers’ perspective. In Proceedings of the 26th1457
International Conference on World Wide Web (WWW’17). 163–172.1458

Jiayu Wang and Qigeng Chen. 2014. ASPG: Generating android semantic permissions. In Proceedings of the1459
IEEE 17th International Conference on Computational Science and Engineering. 591–598.1460

Takuya Watanabe, Mitsuaki Akiyama, Tetsuya Sakai, and Tatsuya Mori. 2015. Understanding the incon-1461
sistencies between text descriptions and the use of privacy-sensitive resources of mobile apps. In 11th1462
Symposium On Usable Privacy and Security (SOUPS 2015). 241–255.1463

WordList 2015. English wordlist. (2015). http://www-personal.umich.edu/jlawler/wordlist.1464
Rubin Xu, Hassen Saı̈di, and Ross Anderson. 2012. Aurasium: Practical policy enforcement for android1465

applications. In Proceedings of the 21st USENIX Conference on Security Symposium (Security’12).1466
Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and William Enck. 2015. AppContext: Differen-1467

tiating malicious and benign mobile app behaviors using context. In Proceedings of the 37th International1468
Conference on Software Engineering (ICSE’15). 303–313.1469

Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X. Sean Wang. 2013. AppIntent: Analyzing1470
sensitive data transmission in android for privacy leakage detection. In Proceedings of the 2013 ACM1471
SIGSAC Conference on Computer and Communications Security (CCS’13). 1043–1054.1472

Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent W Freeh. 2011. Taming information-stealing smart-1473
phone applications (on android). In Proceedings of the 4th International Conference on Trust and Trust-1474
worthy Computing (TRUST’11). 93–107.1475

Received July 2016; revised March 2017; accepted April 2017

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 43, Publication date: May 2017.

http://en.wikipedia.org/wiki/Approximate_string_matching
http://en.wikipedia.org/wiki/Approximate_string_matching
http://en.wikipedia.org/wiki/Support_vector_machine
http://en.wikipedia.org/wiki/Support_vector_machine
http://www-personal.umich.edu/jlawler/wordlist

TOIS3504-43 ACM-TRANSACTION May 24, 2017 16:9

QUERIES

Q1: AU: Please provide complete mailing and email addresses for all authors.
Q2: AU: Please check definition of NLP.
Q3: AU: Please define ICC.

