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ABSTRACT 
We introduce a body-based identification system that 
leverages individual differences in body segment lengths 
and hand waving gesture patterns. The system identifies 
users based on a two-second hand waving gesture captured 
by a Microsoft Kinect. To evaluate our system, we 
collected 8640 gesture measurements from 75 participants 
through two lab studies and a field study. In the first lab 
study, we evaluated the feasibility of our concept and basic 
properties of features to narrow down the design space. In 
the second lab study, our system achieved a 1% equal error 
rate in user identification among seven registered users after 
two weeks following initial registration. We also found that 
our system was robust even when lower body segments 
could not be measured because of occlusions. In the field 
study, our system achieved 0.5 to 1.6% equal error rates, 
demonstrating that the system also works well in 
ecologically valid situations. Lastly, throughout the studies, 
our participants were positive about the system. 

Author Keywords 
User Identification; Gesture; Natural User Interface; 

ACM Classification Keywords 
H.5.2 User Interfaces: Interaction styles. 

INTRODUCTION 
Many future visions of interactive computing have us 
moving away from keyboard and mouse interactions, opting 
instead for natural user interfaces that bridge the physical 
and virtual worlds. These natural user interfaces might 
include input modalities such as speech, handwriting, or 
gestures. Here, we focus just on physical gestures. 

While there has been a great deal of exploration into what 
the user experience might be like for gesture-based 
interfaces in smart environments, there has been little work 
on how one might manage user identification. In GUI-based 
systems, a user specifies his identity by choosing it from a 
list of users or typing a user ID; the system then typically 
asks for a password to verify the claimed identity. 
Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this notice and the full citation on the 
first page. Copyrights for components of this work owned by others than ACM must be 
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on 
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request 
permissions from permissions@acm.org. 
CHI 2014, April 26–May 1, 2014, Toronto, Ontario, Canada. 
Copyright ©ACM 978-1-4503-2473-1/14/04...$15.00. 
Add the DOI string/url from the eform confirmation here 

Figure 1. The proposed system can identify users based on 2 
seconds of hand waving gesture measured by a Microsoft 
Kinect. 

However, this approach assumes the existence of displays 
and keyboards (either physical or virtual), which may not 
hold or make sense, especially if gesture-based interfaces 
become popular. For example, many electric appliances, 
such as air conditioners, room lights, thermostats, and 
stereos, have limited input and output capabilities, but could 
potentially benefit from gesture-based controls as well as 
personalization based on user identification. A simple 
example would be turning on an air conditioner with a 
gesture and setting a personalized temperature based on 
user identification. Other examples might include being 
able to access game consoles, parental controls, 
personalization for electric appliances like DVRs, or 
showing some personalized information on wall displays 
(such as today’s schedule or feeds from SNSs). 
Furthermore, many of these applications will be deployed 
in places with reasonably good physical security, such as 
homes, meaning that user identification can be designed in 
favor of usability over security. 

In this paper, we investigate a novel body-based 
identification scheme that uses a two-second hand wave 
gesture captured by a Microsoft Kinect to identify users 
(Figure 1). We evaluated our system through three user 
studies. In our first study, we evaluated the feasibility of 
using body segment lengths as well as four natural gestures 
for user identification. Our analysis showed that body 
segment lengths and gesture patterns were not reliable 
enough when used separately; however, when we combine 
body lengths with a natural gesture, the system achieved 
reasonable performance. Furthermore, we found that a 
hand-waving gesture yielded the best performance among 
the four gestures. In our second user study, we further 
evaluated hand-waving gesture through a two-week lab 

http:978-1-4503-2473-1/14/04...$15.00
mailto:permissions@acm.org
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study. The study showed that user identification was stable 
over this timeframe and performed well when trained with 
data from two sessions. In our third study, we tested our 
system in participants’ living rooms. Our system still had 
good performance here, where environmental conditions 
were not controlled and some partial body occlusions 
occurred. Finally, throughout the three studies, our 
participants reported that they were positive about body-
based identification system. 

In summary, we make the following three research 
contributions. First, we measured, in the context of user 
identification, the reliability of body segment lengths and 
gesture data extractable from Microsoft Kinect’s standard 
APIs. Second, we developed a body-based identification 
system that works on the basis of body segment lengths and 
hand-waving gesture patterns, and evaluated it through 
three user studies consisting of 75 participants in total. 
Third, we measured the robustness of our body-based 
identification to partial-body occlusions, the reliability over 
a two week period, robustness against environmental 
changes, and participants’ responses to the system. 

RELATED WORK 
Many pieces of past work have leveraged gestures captured 
by sensors for user identification and authentication. User 
identification and authentication are similar but distinct 
concepts. User identification is a process where a system 
identifies a user among a set of pre-registered users and 
verifies the identity, whereas user authentication is a 
process where a system verifies whether a user is actually 
the pre-registered user that he claims to be [12]. In other 
words, a system performing user identification does not 
know a user ID, whereas one performing user 
authentication does. 

Several lines of past work have used gestures with devices 
for authentication. For example, Chong et al. used discrete 
gestures consisting of a series of orientations as a password 
for mobile phones [1]. Jiayang et al. used a tri-axis 
accelerometer that yielded 2% false rejections and 12% 
false acceptances for authentication [9]. Patel et al. 
developed a system that authenticates users to public 
terminals through gestures captured by a mobile device 
[18]. Mayrhofer and Gellersen used a shaking gesture for 
device-device authentication [16]. 

There have also been authentication systems using 
Microsoft Kinect. For example, KinWrite authenticates 
users based on handwriting in mid-air [23]. With BroAuth, 
a user touched her own and her virtual partners’ bodies in a 
sequence to authenticate [15]. For all of the systems above 
(mobile and Kinect), users need to first register and 
memorize a secret gesture. Although this approach has 
advantages on small devices where typing text is hard, the 
memorability of these gestures is not clear, especially if 
there are multiple gestures that need to be memorized. In 
contrast, our system uses a hand-waving gesture for all 
users; thus, it does not require any memorization. 

Kam et al. proposed a hand-gesture-based authentication 
system for surveillance cameras that requires the same 
gestures for all users. The system authenticated people 
based on a series of eight pre-determined gestures [10]. In a 
more HCI related domain, biometric-rich gestures [17] 
required users to perform the same multi-finger gesture on 
touch displays (e.g., touch a display with five fingers and 
then close the fingers). Their system achieved an equal 
error rate (EER) ranging from 6.6% to 18.9%, depending on 
the gestures. Our work differs from these works in that it 
combines body segment lengths and gestures to improve 
performance, and uses a two-second hand wave gesture 
rather than series of gestures or multi-finger gestures. 

Biometrics are another class of research using sensor data 
for user authentication / identification. Biometrics can be 
classified into two categories [8]. The first category 
leverages users’ physiological properties, such as 
fingerprints (e.g., [1,14]), face, or voice. For example, 
Heusch et al. developed face authentication with a 2.4% 
EER under controlled background and light conditions. 
However the EER became 13.49% under uncontrolled 
background and light conditions [6]. Wan et al. 
demonstrated a 4.03% EER using voice [24]. Schmidt et al. 
developed HandsDown, which identified users based on 
hand contour [21]. Our paper explores a new design space 
for user identification in the context of gesture-based 
interfaces. 

Human body sizes, primarily studied in the context of 
ergonomics design [4,20], can be another physiological 
property used for biometrics. In 2010, Microsoft released 
the Microsoft Kinect, which uses a depth camera to identify 
individuals as well as gestures. Although the details of the 
Kinect user identification algorithm have not been 
disclosed, Leyvand et al. as well as Gantenbein reported 
that the identification was based on a person’s height, face, 
and clothing [2,11]. The user identification is done without 
explicit user inputs because it is primarily designed for user 
identification during gaming. As a result, its accuracy is 
relatively low. Our work investigates ways of improving 
user identification using a Kinect. 

The second category is behavioral biometrics, which 
authenticates / identifies users based on behavioral 
characteristics, such as key typing pattern [19] and gait 
patterns [5]. For example, Mäntyjärvi et al. achieved 7% to 
19% EER for gait pattern authentication [11]. These 
approaches are related to our system in a sense that users 
are identified based on individual differences extracted 
from common behaviors. However, as far as we know, 
natural gestures, such as hand-waving gesture, have not 
been studied in the context of behavioral biometrics. 

Finally, there are systems that combined multiple 
biometrics [7]. Snelick et al. demonstrated that combining 
fingerprint and face recognition could achieve a 0.64% 
EER [22]. These pieces of past work focused on achieving 
high accuracy to improve security. In contrast, our work 



    

        
      

  
      

     
         

      
         

      
        
  

          
         

       
       

        
          

        
       
       

        
      

        
       

         
           

           
         

          
        

        
        
          
     
       

        
     

      
     

   
       

        

          
        

         
          

          
        

      
       

       
        
        

  
      

        
     
       

         
        
  

             
      

        
      

     
         

     
      

        
    

      
     

        
     

     
        

       
      

       
     

      
   

    

 
       

         
        

       
    

    
 

       
    

 

 
 

        
   

 

 
        

   
 

       
     

 

      
   

 

  
 

       
   

 

          

Figure 2. Overall algorithm of body-based identification. A 
body length feature vector (L) and a gesture feature vector (G) 
are extracted from joint positions. The vectors are 
concatenated and used for user identification with a SVM 
classifier trained with pre-recorded samples. 

focuses on achieving high usability with reasonably good 
security by combining multiple factors. 

BODY-BASED USER IDENTIFICATION 
Our body-based user identification makes use of both 
physiological and behavioral properties of users, namely 
body segment lengths and gestures. We decided to use both 
of these properties because our preliminary analysis 
indicated that neither of them was reliable enough for user 
identification by itself. Our prototype consists of a 
computer, a display for showing the user instructions, and a 
Microsoft Kinect. 

At a high level, our system works as follows (Figure 2). 
First, the system is trained by recording users performing a 
pre-specified gesture (e.g., hand waving). The recordings 
contain trajectories of three-dimensional positions of users’ 
joints. In the training phase, our system extracts a body 
length feature vector and a gesture feature vector from the 
recordings. These two vectors are concatenated and used to 
train a SVM model that identifies the users. The system 
trains pair-wise SVM classifiers using a polynomial kernel 
(exponent=1) with logistic models for all possible pairs of 
users, and combine these classifiers to build a multi-class 
classifier that predicts user IDs with probabilities. We also 
tried Decision Tree, k-Nearest Neighbor, and Naïve Bayes 
as classifiers. Based on evaluations using a subset of our 
data, we chose SVM as well as its kernel and parameters. 

Once the model is built, the system identifies the users and 
verifies their identities when they repeat the gesture once. 
The system extracts the two feature vectors, feeds them into 
the classifier, and predicts a user ID with a probability. 
When the probability is higher than a pre-defined threshold, 
the system accepts the user as the predicted user. Otherwise, 
the system rejects the user as a stranger. The system needs 
this threshold because, without the threshold, any person 
can be identified as one of the registered users. All 
registered users perform the same gesture, so the system 
discriminates users based on systematic differences in body 
segment lengths and gesture patterns. In the following, we 
describe the process more in detail. 

Measurements of Gestures 
Our system measures gestures with a Microsoft Kinect 
using APIs provided in Microsoft Kinect SDK 1.5. When a 

Features Description # of 
features 

Positions 10, 30, 50, 70, and 90 percentiles of 15 
wrist positions for each axis 

Angles (hand - Max, min and mean of the 3D angles 3 
wrist-elbow) consisting of hand-wrist-elbow 
Angles (wrist- Max, min and mean of the 3D angles 3 
elbow-shoulder) consisting of wrist-elbow-shoulder 

Speeds Mean absolute speed of hand, wrist 
and elbow calculated in 3D 

3 

Accelerations Mean absolute acceleration of hand 1 
calculated in 3D 

# of gesture 
sequences 

Mean cross freq. of wrist positions. 
0 for static gestures 

1 

Table 1. 26 features consisting of a gesture feature vector. 

user stands in front of the Kinect and raises her dominant 
hand to shoulder level, the system initiates a measuring 
process. The system then asks the user to perform a hand-
waving gesture (or other gestures in the user study #1). 
While a user is performing the gesture, our system records 
the trajectories of 21 joints [3] every 20 milliseconds. In 
total, the system obtains 100 three-dimensional position 
measurements of the 21 joints over two seconds. In our 
studies, data was processed off-line using Matlab and Weka. 
Processing one measurement took less than 0.5 seconds on 
a Macbook Pro with 2.6GHz Intel Core i7. 

Gestures 
Our body-based identification requires all registered users 
to perform the same gesture. In user study #1, we tested 
four gestures (hand waving, come-over, one-hand raised, 
and phone-to-ear) in two postures (standing and sitting), to 
investigate which gesture yields the best results. Based on 
the results from the study, we used hand-waving gestures in 
user studies #2 and #3. 

We chose the four gestures to be tested in the study #1 as 
follows. First, we wanted gestures that people were familiar 
with performing, so that people could easily repeat the same 
pattern. Second, we wanted gestures that could be 
performed by one arm, because gestures performed by other 
parts of the body (e.g., nodding) could be too simple to 
discriminate between many users. We also avoided gestures 
requiring synchronizing movements from multiple body 
parts as we felt these would be too complicated for most 
users to reproduce precisely. Furthermore, we 
hypothesized that there would be a trade-off in 
reproducibility and discriminatory power. For example, 
complex gestures that require a lot of arm movements 
should have very distinct performance profiles across users; 
however, precisely reproducing these gestures could be 
difficult for users. In contrast, simple gestures that involve 
little movement should be easy for users to reproduce but 
might be performed similarly by other users, as well. 

Considering these, we chose two kinetic gestures that 
involved continuous arm movements (hand waving and 
come-over), and two static gestures that involved little 
movement (one-hand raised and phone-to-ear gestures) to 
be investigated in the user study #1. 



    

 
      

        
      

        
      

       
          
        

        
         

      
      

      
      

          

  
      

    
    

       
         

        
        

  

  

         
     

   
      

        
          

     
      

        
         

        
         

        
      
       

        
       

          
       

       
      

  
          

      
        

        

         
  

 
        

        
         

     
   

         
      

    
   

  
         

       
      

          
       

       
        

     
        

       
            

     
           

        
       

        
        

       
        
    

    
         

       
       

      
        

    
     
        

   

     
      

      
         

    

       
       

       
     
       

         

Feature Vectors 
For each measurement, the system extracts a sample 
consisting of a body segment length vector and a gesture 
vector. Our system calculates the Euclidian distances 
between 17 pairs of adjacent joints. The distances are 
averaged over the 100 captured frames to mitigate sensor 
noise. Gesture features are extracted from the trajectory of 
joints of the user’s dominant arm, relative to the user’s 
head. From this trajectory, our system extracts 26 features 
that comprise a gesture feature vector (see Table 1). Except 
for the position features, all features were calculated in 
three-dimensional coordinates. We initially extracted more 
features, then, chose these features based on evaluation with 
a subset of our data. While these features worked 
reasonably well to demonstrate feasibility of our concept, 
we do not claim these are the best features. 

Evaluation Metrics 
In our body-based identification, there are two types of 
errors: false acceptances and false rejections. False 
acceptances denote the cases where a registered user is 
identified as a different user. False rejections denote cases 
where a registered user is rejected. The False Acceptance 
Rate (FAR) and False Rejection Rate (FRR) were 
calculated as shown in the Eq. (1) and (2). 

Number!of!False!Acceptances 
FA R = (1) Number!of!Identifications 

Number!of!Fa l s e !Rejections!
FR R = (2) =--be-!of!---ntifications 

We used Equal Error Rates (EER) to evaluate performance 
of the body-based identification rather than the 
classification accuracy because false acceptances are more 
serious errors than false rejections, and simple classification 
accuracies do not make a distinction between the two types 
of errors. EER is the error rate where FAR and FRR 
become equal when changing the threshold for rejections. 
Therefore, smaller EERs indicate better performance. 

In this paper, to calculate EER, we simulated having seven 
registered users to avoid the effects of having a variable 
number of participants. Our three studies consisted of 36, 
25, and 12 participants. If we used all participants as 
registered users when calculating EERs, we cannot easily 
compare our results across studies, especially since user 
identification becomes more difficult when the number of 
users in a dataset increases. Additionally, for our expected 
use cases (e.g., home situations), we felt it would not be 
common to have more than seven registered users. Thus, in 
the following analyses, we randomly chose 10,000 
combinations of seven participants from a dataset, and 
calculated EER over all combinations. 

USER STUDY #1: FEASIBILITY EVALUATION 
The overall goal of this lab study was to investigate basic 
properties of body segment lengths and gesture patterns 
captured by Microsoft Kinect. Additionally, we chose the 
most promising gesture among the four gestures based on 

the result. The chosen gesture was further investigated in 
the following studies. 

Participants 
We recruited 36 participants from an existing university 
recruiting website meant for the general public. Out of the 
36 participants, 14 were male and 22 were female. 
Participants were 32.6 years old on average, ranging from 
19 to 64. Twenty-three participants were university 
students, two were university staff employees and the other 
eleven were employed. Participants were 168cm tall, on 
average (SD=10.2), and weighed 78.0kg (SD=22.0). We 
paid $40 for completing the study. 

Data Collection 
The lab study consisted of two sessions. All sessions were 
conducted in the same windowless room, to avoid sunlight 
interference with the Kinect measurements. Both sessions 
took about 40 minutes to complete. In the first session, we 
explained that our system recorded participants’ gestures 
using a Microsoft Kinect and identified them using their 
gestures as well as their body segment lengths. We then 
asked participants to perform the four gestures both 
standing and sitting, 10 times each. Participants stood three 
meters away from the Kinect. While standing, participants 
were asked to move half a meter to the left and back 
between measurements to mitigate habituation. While 
sitting, we asked participants to stand up and sit back down 
between measurements for the same reason. Half of the 
participants started the measuring session standing and the 
other half started sitting. We counterbalanced the order of 
the gestures using a Latin square. Three days later, in the 
second session, we repeated the procedure except 
explanation of our system. At the end of study, we asked 
participants to fill out a survey. 

We collected 80 (10 samples times eight gesture-posture 
pairs) for each participant. In total, we collected 5760 
samples from the 36 participants. Each sample consisted of 
a body segment length and a gesture feature vector. All data 
was processed off-line after the study. Thus, participants 
were not given feedback about the classification results. 

Evaluating Feature Vectors Separately 
Before combining the body segment length and gesture 
feature vectors, we started by analyzing them separately to 
understand their properties. 

Performance Within Session and Posture 
As baselines for the following analyses, we first 
investigated the consistency of the body segment length and 
gesture feature vectors in the same session and posture 
through 10-fold cross validation. 

Figure 3 shows that identification through body segment 
lengths alone had EERs around 0.6% in the standing 
conditions and 1.5% in the sitting conditions. This indicates 
that the body segment lengths measurements were 
consistent in the same postures in one session. Additionally, 
the come-over gesture had low EERs relative to other 



    

       
       

 

     
         

        
         

           
       

         
         

          
         

    

        
      

      
        

       
        

         
       

 

     
        

       
        
      

       
      

        
    

       
       
        

       
        

        
    

  
      

   
      

     

          
        

      
         

        
      

        

 
       

     
     

       
    

  
        

      
       

         
     

          
        

   
        

 
          

         
           

        
         

        
           

     

 
          
          

       

Figure 3. Equal Error Rates (EER) for user identification 
using one feature vector. Classifiers were evaluated with 
samples in the same posture as in the first session using 10-fold 
cross validation. Smaller EERs denote better performance. 

gestures. In other words, the hand motions of the come-over 
gesture varied more between participants relative to other 
gestures, and thus have greater discriminatory power. 

Performance Across Session and Posture 
To evaluate robustness of the body segment lengths and 
gesture feature vector, we tested our system against samples 
measured in different sessions or postures. The results were 
similar for all gestures, and so for brevity, we only show the 
results for the hand waving gesture (Figure 4). We trained 
samples in the standing condition in the first session. Then, 
we calculated EERs using the samples of the standing 
condition in the second session and of the sitting condition 
in the first session as test sets. We include EERs calculated 
in Figure 3 as baselines. 

Across sessions, the EERs were much higher. Thus, the 
feature vectors are not very repeatable across sessions. The 
EERs calculated for body segment length feature vectors 
and gesture feature vectors increased 20 fold and 5 fold 
respectively compared to the baselines. This finding 
indicates that, to further improve the performance, we need 
to train the classifier on samples acquired from multiple 
sessions to account for systematic sensor and performance 
imprecision across sessions. 

Furthermore, across postures, the EERs calculated using 
just the body segment lengths feature vector increased over 
80 fold. The EERs calculated from the gesture feature 
vector for hand waving also increased by a factor of 5. 
These results suggested that body segment length feature 
vectors were sensitive to postures and that we needed to 
train a separate SVM classifier for each posture. 

The source of the inconsistencies in the measurement of 
body segment length remains unclear. We held the 
environment in which we took measurements constant, so 
environmental causes were unlikely. Rather, we suspect the 
inconsistencies across sessions may be caused by clothing 
changes across sessions. This hypothesis could explain why 
the samples within sessions are consistent but the samples 

Figure 4. EERs with hand waving across sessions or postures. 
When classifiers were tested with samples in different sessions 
or postures, the EERs became higher. Note that the x-axis scale 
is different from that in Figure 3. 

across sessions are inconsistent. However, further study is 
necessary to confirm the hypothesis. 

Evaluation of Body-Based identification 
We found that, when used separately, neither the body 
segment length nor the gesture feature vector was consistent 
enough to identify users reliably. Next, we evaluated 
identification performance using both feature vectors. 

The previous analysis indicated that we needed to train our 
classifier with samples collected in difference sessions to 
achieve better performance. However, in this study, we 
have only two sessions. Therefore, we decided to train our 
classifiers only using samples from the first session to 
separate training and test sets clearly. We evaluate training 
with multiple sessions in the next study. 

Dataset 
For all samples, we concatenated body-lengths feature 
vectors and gesture feature vectors. For each gesture-
posture pair, we trained SVM classifiers using samples 
collected in the first session, and evaluated with samples 
collected in the second session. 

User Identification 
Figure 5 shows EERs for each posture-gesture pair. For 
instance, when the hand waving gesture feature vector was 
combined with the body segment lengths feature vector, our 
system obtained 4.3% and 6.2% EERs in the standing and 
sitting conditions respectively. For other gesture-posture 
pairs, the EERs range from 2.6% to 7.6%. Thus, across 
sessions, our system performed much better by combining 
both body segment lengths and gestures when compared to 
either one separately as shown in Figure 4. This shows 

Figure 5. EERs for gesture-posture pairs. The system was 
trained with samples collected in the first session and tested 
with samples collected in the second session. 



    

      
     

  
           

      
      

         
       

      
          

           
          

            
        

         
       

         
      

          
          

       
      

       
      

        
      

  

      
        

         
      

       
          

           
          

    
        

       
     

         
   

      
     

      
           

  

   
        

    
         

        
       

         
           

     
        

         

    
       

     
           

       
      

       
     

         
    

     
           

         
          

        
      

        
        

        
      

 

    
          

        
        

         
          

           
     

         
         

        
      

 
          

          
            

        
 

      
      

      
     

    
          
        

    

Gesture Naturalness Ease of Use Security 
One Hand Raised 4.0 5.0 3.0 
Phone to Ear 2.0 4.0 3.0 
Hand Waving 4.0 5.0 3.0 
Come-over 2.0 4.0 3.0 

Table 2. The numbers represent the median of the five-point 
Likert scale ratings by the participants. Higher numbers 
denotes positive ratings. 

feasibility and effectiveness of the user identification based 
on both body segment lengths and gesture patterns. 

Survey Results 
At the end of the second session, we asked participants to 
complete a post-test survey. We asked participants to rate 
our body-based identification in terms of naturalness, ease 
of use, and security on a five-point Likert scale. For 
instance, with regard to naturalness, we asked how strongly 
participants agreed or disagreed a statement “using body 
lengths and hand waving to log into systems is natural” 
where 5 stands for strongly agree and 1 stands for strongly 
disagree. We used “logging in” as an example because it 
was easy to understand for users and it was one of the 
typical use cases of user identification. For the remainder of 
this section, we denote the median of the ratings in 
parentheses. See Table 2 for a summary of results. 

The participants rated both the one-hand raised gesture and 
hand waving as natural (4.0) and very easy to use (5.0). For 
example, P11 commented, “I feel that the waving gesture is 
most appropriate for a login process because it has a 
connotation of welcoming and saying ‘hello’, which seems 
to feel right for a login screen.” Indeed, the one-hand raised 
and hand waving gestures are common greetings that 
initiate human-human interactions. Thus, it makes sense 
that participants reported that these gestures were a natural 
form of identification—the common initiation of many 
human-computer interactions. 

Participants rated body-based identification as neutral in 
terms of security (3.0). One explanation could be that 
participants were not familiar with the security properties of 
behavioral biometrics. P15 had concerns in using gestures 
for identification. She commented, “For the purpose of 
logging into a system, I would feel more secure if I could 
select a gesture, or motion, that I feel is somewhat unique to 
me, […] and therefore less likely to be copyable.” 

In summary, participants reported that the body-based 
identification system was natural and easy to use, thought 
its level of security was unclear. We agree that 
impersonation is possible by mimicking a user’s gestures 
especially when an attacker has body lengths similar to a 
target user. However, for environments with reasonable 
physical security, such as homes, or for non-critical 
applications, usability may be favored over security. 
Furthermore, applications requiring more security could 
still make use of our work, but it should be complemented 
by additional techniques. 

Figure 6. EER for each condition along with the number of 
days from the first session. The numbers in parentheses denote 
the numbers of sessions used to train the system. Training the 
system with samples from two sessions significantly improved 
performance. 
USER STUDY #2: TWO WEEKS EVALUATION 
For our second user study, we chose to investigate 
performance when trained with samples collected in two 
sessions, as well as longer-term robustness of users’ gesture 
patterns. In this study, we only tested the hand-waving 
gesture because it was the most promising—it had low 
EERs and was well liked by users. Gestures were measured 
in the same manner as the first study (in two postures and 
10 samples for each posture in each session). We conducted 
the measurements in four sessions: on the first day, three 
days later, one week later, and two weeks later. 

We recruited 27 participants using an existing university 
recruiting website meant for the general public. Out of the 
27 participants, 20 participants were male and 7 were 
female. Their ages ranged from 19 to 62 years old with a 
mean of 29.7. Sixteen participants were university students, 
four were university staff employees and seven were 
otherwise employed. Their average height was 173cm 
(SD=9.8) and their average weight was 75.1kg (SD=21.1). 
None of them participated the previous study. We paid $50 
for completion of the study. 

Performance over a Two-Week Period 
Figure 6 shows how the EERs changed over time. In Figure 
6, Standing (1) shows the EERs in the standing condition 
when samples obtained in the first session were used as a 
training set. According to the figure, the EERs were 
constant around 3% one week later and two weeks later. 
Similarly, in the sitting condition (i.e., Sitting (1)), the 
EERs were around 5.1%. The results were consistent with 
the results from our first study, indicating that the 
performance of body-based identification was stable for 
two weeks. 

Training Classifiers with Samples from Two Sessions 
The results in our first study indicated that training a SVM 
classifier with samples collected in different sessions would 
improve the performance. Standing (2) and Sitting (2) in 
Figure 6 show EERs obtained when the samples in the first 
and second session were used as a training set, and the 
samples in the third and fourth sessions as test sets. As we 
expected, the performance was improved significantly. In 
the standing and sitting conditions, the EERs were 0.7% 
and 0.9%. Furthermore, the EERs were constant in the two-
weeks period. These results suggest that samples from two 
different dates should be enough to represent variations of 



    

        
        

      

      
         
        

        
       

       
     

       
     

        
          

        

      
        

     
         

         
        

         
      
       
       
        

         

   
       

          
      
        

          
      

      
    

        
      

        
       

         

        
         

       
        

      
        

      
    

   
       

    
        

       
       

  
  

       
         

         
            

     
      

     
        

         
         

   
        

       
      

     
 

        
         

       
        

         
        

    

        
         

      

 
           

        
           
      

 

 
         

         
   

Figure 7. EER for each condition along with the number of 
registered users. The numbers in parentheses denote the 
numbers of sessions used for training. When the number of 
registered users increased, EERs increased almost 
proportionally 

features, and that training SVM classifiers with samples 
from two dates addresses the variation in body segment 
length measurements and gestures effectively. 

Effect of Numbers of Registered Users 
As stated earlier, in this paper, we calculate EERs based on 
the assumption that the system has seven registered users. 
However, in practice, the system may have different 
numbers of registered users. Thus, we investigated how the 
number of registered users affected EERs. For each N 
(N=3, 4, …, 25), we randomly chose 10,000 combinations 
of N participants, and calculated the EERs among the 
combinations. The classifiers were trained using either the 
samples from the first session or the samples from both the 
first and the second sessions as training sets. We used the 
samples obtained in the fourth session as a test set. 

Figure 7 shows the EERs for different numbers of 
registered users for each condition. Generally, the EERs 
increase proportionally to the number of registered users.� 
When the system was trained with samples from the first 
session, the EERs were 10.4% and 9.0% for 25 registered 
users in the standing and the sitting conditions respectively. 
Likewise, when trained with samples from the first and the 
second session, the EERs were 2.3% and 2.8% respectively 
(N=25). These results are very encouraging. Considering 
that our system requires only performing a waving gesture 
for two seconds to identify a user among 25 registered 
users, the EERs less than 3% were surprisingly low. 

Robustness to Partial-Body Occlusions 
In our studies, participants stood or sat three meters away 
from the Kinect to allow our system to capture the 
participant’s entire body. However, in practice, capturing 
entire bodies may be difficult—for example, if a user is too 
close to the Kinect or if there are objects in the room 
obstructing part of the camera’s view. 

To estimate the impact of partial-body occlusions on 
performance, we ran simulations with body segment length 
feature vectors that only included segment lengths above 
the spine—using joints from shoulders to hands and heads. 

Figure 8 shows the EERs with simulated occlusions along 
with EERs without occlusions. Classifiers were trained 
either using samples from the first session (Standing (1) and 

Sitting (1)) or using samples from the first and second 
sessions (Standing (2) and Sitting (2)) as training sets. For 
both cases, samples from the fourth session were used as a 
test set. Figure 6 shows that the estimated effects of the 
partial-body occlusions are limited. On average, the EERs 
increase by just by 0.96% (σ=0.40%). In other words, our 
body-based identification system worked reliably even if 
lower body segments were occluded. 

USER STUDY #3: FIELD STUDY 
In our two lab studies, we demonstrated that the body-based 
identification performed well in identifying users. However, 
the lab studies were conducted in a well-controlled 
procedure (e.g., using a window-less room and controlling a 
distance between participants and a Kinect). To evaluate the 
body-based identification system in more ecologically valid 
situations, we conducted a field study. 

We recruited five households (12 participants) by posting 
flyers in a local neighborhood. Out of the 12 participants, 
five were male and seven were female. Their age ranged 
from 18 to 42 years old with a mean of 33 years old. Seven 
participants were employed, two were students and three 
were unemployed. Their average height was 159.5cm 
(SD=11.4) and their average weight was 56.9kg (SD=6.9). 
None of them participated the previous studies. 

This study consisted of three sessions at their homes. The 
three sessions took place on different days in a week 
depending on participants’ availabilities. The gaps between 
sessions were not controlled because the results of the study 
#2 indicated that days from registration had limited impact 
on the performance. However, successive sessions had at 
least one-day gap between them to have some distractions 
between sessions. 

For each session, we collected data in their living rooms. 
We put a Microsoft Kinect on their TVs and asked 
participants to perform waving gestures in front of the TVs 
as if they were interacting with the TVs. All living rooms 
had windows to outside, and room lights were kept as the 
participants configured prior to our visits. This gave us a 
variety of infrared and visible light conditions. 

We collected 10 hand-waving gestures in two postures, just 
as in our second study. In the standing posture, participants 
were asked to stand in positions where they felt confortable, 

Figure 8. We simulated occlusions by using body part 
locations only above spines. On average, the EERs became 
only 0.74% higher. 



    

          
     

          
     

           
          
         

       
           
        

    

      
       

       
       

       
        

     
 

       
      
      

         

  
         

         
      

           
       
        

          
          

         
       

         

         
     

          
           

       
          

       
          

      
         

    
    

  

    
         

     
          

        
       

        
     

          
        

     
       

          
      

     
     

         
           

     

        
      

      
         

        
         

      
        

        
            

         
           

       
          

      
      

  

       
   

        
       
       

       
        

         
         

         
          

    
        

    
  

 
           

         
      

assuming that they would be interacting with the TVs using 
gestures. All participants stood two to three meters away 
from TVs facing to them. In the sitting posture, we asked 
participants to sit as they usually did in their living room. 
Eight participants sat on couches, two sat on chairs, and two 
sat on cushions placed on the floor. After the third session, 
the participants were asked to fill a post-survey followed by 
brief interviews based on their responses to the survey. The 
first and the second session took about 15 minutes, and the 
third session took about 45 minutes to complete. We paid 
$40 for completion of the study. 

As we anticipated, we observed partial-body occlusions in 
the subset of samples. The occlusion occurred in the 
samples from six participants in the sitting posture. For 
those samples, tables placed between TVs and participants 
occluded participants’ legs. We used classifiers trained with 
body segment lengths above the spine, as we did in the 
simulation of partial-body occlusion, to perform user 
identification with these samples. 

In the less controlled study design described above, we 
collected samples with natural variations in participants’ 
postures, orientations and distances between a Kinect in 
addition to light condition changes and some occlusions. 

User Identification 
We trained classifiers for each posture either using samples 
from the first session, or from the first and the second 
sessions. Each classifier was tested with samples collected 
in the third session (Figure 9). When the first session was 
used as a training set, the EERs of the standing and sitting 
posture were 3.4% and 5.3% respectively. The EER values 
were close to the result in the second study (3.8% and 
5.1%). When we trained the SVM classifiers with the first 
and second sessions, the EERs were 0.5% and 1.6% for the 
standing and the sitting posture respectively, which were 
also comparable to results (0.9% and 1.0%) in the study #2. 

During the study, we noticed that the participants’ sitting 
posture varied more than we observed in our lab studies. 
We suspect that the participants in this study were more 
relaxed than ones in the lab study because this study was 
conducted in their living rooms. However, the EERs 
remained almost same as ones from the lab studies. This 
finding offers additional support that we can compensate 
the variations in the features by training the system with 
samples obtained in two different sessions. Additionally, 
the results obtained in this field study show that the body-
based identification system also works well in ecologically 
valid situations with partial body occlusions and 
environmental changes. 

Survey and Interview Results 
In the survey, we asked questions about how well body-
based identification could be used in practice. First, we 
asked how many people they would want to register to this 
system, and who those people would be. They answered 
that, on average, they wanted to register 5.2 users (SD=1.1). 

Figure 9. EERs obtained in a field study. Overall, the EERs 
remained similar to the results in the study #2 showing 
robustness of the system to environmental changes. 
Most of the users were people they were living with (e.g., 
family members and roommates). Four participants 
mentioned that they wanted to register one or two friends 
who visited their home frequently. These responses validate 
our assumption of having roughly seven registered users, as 
assumption we made in calculating EERs. 

We then asked participants to rate the statement “I will use 
body-based identification system if it is available on home 
electric appliances such as TVs” using a five-point Likert 
scale (1=strongly disagree and 5=strongly agree). 
Participants responded they agreed with the sentence with a 
median of 4.0. Although we have to be careful of possible 
novelty effect, these ratings are encouraging. 

We further asked participants for what purposes they 
wanted to use the body-based identification. Five 
participants mentioned parental controls. P1 said, “I want 
control what my child can do with electric appliances such 
as TVs. They quickly learn how to use remotes. So, it's 
difficult to stop them using a TV. But, if the TV checks 
[users’] heights, it will be easy.” Two participants 
mentioned personalization as a potential use case. P5 
commented, “If a TV automatically turns on and shows a 
TV program that I regularly watch when I wave to it, that 
would be great. I don’t need to search a remote.” P7 noted, 
“If I have a wall display, and I can check personalized 
information such as today’s schedule, subjects of received 
emails, local weather by waving to it in a busy morning, 
that would be useful.” Although these responses were 
speculative, they indicate that participants saw value for 
body-based identification in practical situations. 

We also asked participants to rate the statement, “It is 
acceptable that the body-based identification system 
requires two sessions of data (20 waving gestures for one 
posture) to register a user” using a 5-point Likert scale. 
Participants generally agreed with the sentence with a 
median of 4. Two participants chose strongly agree, eight 
chose agree, and two chose disagree. P2 commented, 
“Registration happens only once. So, I don't care. Once I’m 
registered, it’s pretty quick.” On the other hand, P9 said, 
“Doing 10 waving [gestures] would be OK. But, it’s 
troublesome if I need to do more than that.” These 
responses are encouraging because the current un-optimized 
training process was acceptable for the majority of 
participants. However, further investigation would be 
necessary to shorten the process. 



    

 
          

        
        

       
       

       
       

      
        

       
   

         
         

         
        

        
       
       

   

         
      

        
       

   

 
     

     
        

      
      

        
  

        
         

      
     

        
       

     
     

       
       

      
        

       
     

        
     

       
    

        
      

    

       
     

          
      

        
             
          

       
       

      
       

 

       
         

          
     

      
     

        
       

        
       
          

     
     

        
      

     
       

      
      

    
     

    

   
      
     

        
    

         
         

       
       

           
         

       
      

 
     

      
     

         
         

       
        

LIMITATIONS 
While our results are encouraging, there are a few caveats 
to our findings that represent fruitful opportunities for 
future work. In our user studies, we did not provide 
feedback about user identification results to avoid biasing 
users. However, for real deployments, the system should 
provide feedback, which would affect how users perform 
gestures. Some users may consciously reproduce their 
individual gesture patterns; moreover, some may game the 
system by registering distinct waving patterns to be easily 
identified. Investigation of these user behaviors could be 
interesting follow-up research. 

Furthermore, in the second study, two weeks may not be 
long enough to evaluate the long-term robustness of the 
system. In the third study, we collected data at participants’ 
living rooms; however, it was not a field deployment (e.g., 
we still have sessions). As a result, participants’ responses 
to our survey were speculative. A longitudinal deployment 
of a body-based identification will provide further insight 
into these issues. 

Finally, we do not claim that the features we use and the 
models we employ are optimal. Our system performed 
reasonably well using a simple model and feature set, but it 
would be possible to further optimize performance using 
other interesting features and models. 

DISCUSSION 
While our body-based identification was reasonably 
accurate, there is still a room for improvement. One 
opportunity is to improve the precision of the body segment 
length measurements. We found that, within the same 
session, body segment lengths were reliable, but were 
unreliable across sessions. We suspected that this would be 
primarily because participants’ clothing changed between 
sessions. Because we did not control participants’ clothing, 
we think our results reflect variations caused by different 
clothing. Moreover, in the second study, there were two 
participants wearing baggy clothing; however, it did not 
affect our system’s performance. While these indicate that 
real-time joint extraction in the Kinect SDK is reasonably 
robust, more computationally expensive processing could 
yields better results in user identification. 

Additionally, we found that the performance of body-based 
identification depends on consistency in postures. However, 
in practice, it would be ideal for body-based identification 
to be reliable regardless of the posture variations. Our 
results offer some hints in this vein. Specifically, we found 
that removing some body segment lengths from the body 
segment length feature vector did not significantly affect 
performance. Consequently, we could omit body segment 
lengths that have imprecise readings in different postures to 
stabilize performance across postures. 

Similarly, users’ orientations to a Kinect could affect 
performance. A Kinect extracts the three-dimensional 
position of users’ joints. Thus, theoretically, body-based 

identification should be robust to changes in relative 
orientations between a user and a Kinect. Moreover, in the 
use cases where a Kinect is placed near the device that 
users interact with (e.g., in our third study), users naturally 
face to the Kinect. Thus, the orientations would be less of 
an issue. In contrast, in the use cases where we put a Kinect 
in a room and users interact with devices placed at many 
different positions in the room, users are unlikely to face to 
the Kinect. As a result, users’ bodies could occlude their 
gestures and/or body lengths measurements could become 
less robust. Further investigation would be necessary for 
these use cases. 

Furthermore, the registration process could be improved. In 
our analyses, we trained the system using 20 samples 
collected on two different days for each standing and sitting 
postures. Although, in our field study, majority of 
participants reported that it was acceptable, requiring data 
from two sessions could pose challenges in practice. 

It is also possible to improve the user identification 
algorithm. One possible approach is to build models that 
represent how the feature values measured for the same 
user could vary. We did build such models and found that 
they did not perform well (not reported in this paper due to 
space constraints). However, we still believe that there are 
opportunities in this direction. Another approach would be 
to build a layered classifier combining other factors 
amenable to natural user interfaces, such as face 
recognition, to improve the overall performance of user 
identification. An upper layer classifier can use predictions 
from lower layer classifiers, such as body-based 
identification, face recognition and voice recognition to 
perform combined user identification. As we demonstrated, 
using multiple factors has great potential in improving 
overall performance in user identification. 

One interesting implication for gesture-based interfaces 
would be the usefulness of recognizing both gestures and 
users’ identities. Currently, gesture-based interface systems 
recognize what gesture users are performing. Then, the 
systems execute the same commands regardless of users 
performing the gestures (e.g., when a TV recognizes a user 
performing hand waving, the TV turns on). However, if a 
system can recognize both gestures and users’ identifies, 
the system can personalize execution of the commands 
(e.g., turning on a TV and showing program that a specific 
user prefers). The first lab study suggested that users also 
could be identified when performing other gestures. This 
could be an interesting direction for future research. 

CONCLUSION 
We proposed body-based user identification: a new form of 
user identification based on the body segment lengths and a 
hand-waving gesture. We evaluate the system through two 
lab studies and one field study consisting of 8,640 samples 
from 75 users in total. Our first lab study explored the basic 
feasibility of the system, in terms of properties of body 
segment length and four different gestures. Based on the 



    

       
       

          
          

        
    

      
      
         

        
 

      
       

      
          

       

       
          
      

 

 
        

      
 

       
     

 
        

  
 

      
       

  
  

    
  

      
     

        
       

   
       

       
     

 
           

      
      
 

         
      

  

         
     

     
 

          
       

  
       

        
     

      
     

     
         

       
      

      
    

          
  

    
  

    
      
     

 
         

   
      

        
   
       

      

  
        

   
   

 
       

       
     

      
    

           
   

        
  

         
      

    
   

results, we chose a hand waving gesture as the most 
promising gesture to be used in subsequent studies. 

Our second lab study showed the robustness of our system 
over a two-week period, as well as robustness to partial 
body occlusions. Our study also showed that training the 
system using samples collected on two different days 
effectively addresses the variations in the body segment 
length measurements and hand-waving measurements. The 
EERs improved from 3.0% to 0.7% when trained with 
samples collected on two different days compared to when 
trained with samples collected on a day. 

Finally, our field study demonstrated that our proposed 
system worked well in ecologically valid situations, in 
terms of different environments and partial occlusions. Our 
system achieved an equal error rate ranging from 0.5 to 
1.6% when trained with samples from two sessions. 

Given our encouraging results, we believe that this paper 
makes a first step toward the vision of more natural and 
usable user identification seamlessly integrated with 
gesture-based interfaces. 
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