
WebQuilt: A Framework for Capturing and Visualizing the
Web Experience

Jason I. Hong and James A. Landay
Group for User Interface Research, Computer Science Division

University of California at Berkeley
Berkeley, CA 94720-1776 USA

+1 510 643 7354

{jasonh, landay}@cs.berkeley.edu

ABSTRACT
WebQuilt is a web logging and visualization system that helps
web design teams run usability tests (both local and remote) and
analyze the collected data. Logging is done through a proxy,
overcoming many of the problems with server-side and client-side
logging. Captured usage traces can be aggregated and visualized
in a zooming interface that shows the web pages people viewed.
The visualization also shows the most common paths taken
through the website for a given task, as well as the optimal path
for that task as designated by the designer. This paper discusses
the architecture of WebQuilt and also describes how it can be
extended for new kinds of analyses and visualizations.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems – Human
factors; H.3.5 [Information Storage and Retrieval] Online
Information Services – Web-based services; H.5.2 [Information
Interfaces and Presentation] User Interfaces – Evaluation /
methodology; H.5.4 [Information Interfaces and Presentation]
Hypertext/Hypermedia – User issues

General Terms
Measurement, Design, Experimentation, Human Factors

Keywords
usability evaluation, log file analysis, web visualization, web
proxy, WebQuilt

1. INTRODUCTION
There are two problems all web designers face: understanding
what tasks people are trying to accomplish on a website and
figuring out what difficulties people encounter in completing
these tasks. Just knowing one or the other is insufficient. For
example, a web designer could know that someone wants to find
and purchase gifts, but this isn’t useful unless the web designer
also knows what problems are preventing the individual from
completing the task. Likewise, the web designer could know that
this person left the site at the checkout process, but this isn’t
meaningful unless the designer also knows that he truly intended
to buy something and is not simply browsing.

There are a variety of methods for discovering what people want
to do on a website, such as structured interviews, ethnographic
observations, and questionnaires (for example, see [3]). Instead,
we focus here on techniques for tackling the other problem, that is
understanding what obstacles people are facing on a website. 1

Traditionally, this kind of information is gathered by running
usability tests on a website. A usability specialist brings in several
participants to a usability lab and asks them to complete a few
predefined tasks. The usability engineer observes what stumbling
blocks people come across and follows up with a survey and an
interview to gain more insights into the issues.

The drawback to this traditional approach is that it is very time
consuming to run usability tests with large numbers of people: it
takes a considerable amount of work to schedule participants,
observe them, and analyze the results. Consequently, the data
tends to reflect only a few people and is mostly qualitative. These
small numbers also make it hard to cover all of the possible tasks
on a site. Furthermore, small samples are less convincing when
asking management to make potentially expensive changes to a
site. Lastly, a small set of participants may not find the majority of
usability problems. Despite previous claims that around five
participants are enough to find the majority of usability problems
[14, 19], a recent study by Spool and Schroeder suggests that this
number may be nowhere near enough [17]. Better techniques and
tools are needed to increase the number of participants and tasks
that can be managed for a usability test.

Figure 1. Server-side logging is done on the web server, but
the data is available only to the owners of the server.

In contrast to traditional usability testing, server log analysis (See
Figure 1) is one way of quantitatively understanding what large
numbers of people are doing on a website. Nearly every web
server logs page requests, making server log analysis quite
popular. In fact, there are over 90 research, commercial, and
freeware tools currently available [1]. Server logging also has the
advantage of letting test participants work remotely in their own
environments: instead of coming to a single place, usability test

WebQuilt source code and documentation can be downloaded at
http://guir.berkeley.edu/projects/webquilt

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WWW10, May 1-5, 2001, Hong Kong.
Copyright 2001 ACM 1-58113-348-0/01/0005…$5.00.

participants can evaluate a website from any location on their own
time, using their own equipment and network connection.

However, from the perspective of the web design team, there are
two problems with server logs. The first is with deployment.
Access to server logs are often restricted to just the owners of the
web server. This can make it difficult to analyze subsites that exist
on a server. For example, a company may own a single web server
with different subsites owned by separate divisions. For the same
reason, it is also impractical to do a log file analysis of a
competitor’s website. A competitive analysis is important in
understanding what features people consider important, as well as
learning what parts of your site are easy-to-use and which are not
in comparison to a competitor’s site.

Figure 2. Client-side logging is done on the client computer,
but requires special software running in the background or
having a special web browser.

Client-side logging has been developed to overcome these
deployment problems. In this approach, participants remotely test
a website by downloading special software that records web usage
(See Figure 2). However, client-side logging has two weaknesses.
First, the design team must deploy the special software and have
end-users install it. Second, this technique makes it hard to
achieve compatibility with a range of operating systems and web
browsers. What is needed is a logging technique that is easy to
deploy for any website and is compatible with a number of
operating systems and browsers.

Another problem with using either server- or client-side web logs
to inform web design is that existing server log analysis tools do
not help web designers understand what visitors are trying to do
on a website. Most of these tools produce aggregate reports, such
as “number of transfers by date” and “most popular pages.” This
kind of information resembles footsteps in the forest: you know
someone has been there and where they went, but you have no
idea what they were trying to do and whether they were
successful. What is needed are logging tools that can be used in
conjunction with known tasks, as well as sophisticated methods
for analyzing and visualizing the logged data.

To recap, there are four things that could greatly streamline
current practices in web usability evaluations:

1. A way of logging web usage that is fast and easy to
deploy on any website

2. A way of logging that is compatible with a range of
operating systems and web browsers

3. A way of logging where the task is already known
4. Tools for analyzing and visualizing the captured data

To address these needs, we developed WebQuilt, a tool for
capturing, analyzing, and visualizing web usage. To address the
first and second needs, we developed a proxy-based approach to
logging that is faster and easier to deploy than traditional log

analysis techniques (See Figure 3). This proxy has better
compatibility with existing operating systems and browsers and
requires no downloads on the part of end-users. It will also be
easier to make compatible with future operating systems and
browsers, such as those found on handheld devices and cellular
phones.

Figure 3. Proxy-based logging is done on an intermediate
computer, and avoids many of the deployment problems faced
by client-side and server-side logging.

To address the third need, we designed the proxy to be flexible
enough that it can be used in conjunction with existing tools, such
as those offering participant recruitment and online surveys. With
these existing tools, we can know who the users are, what tasks
they are trying to accomplish, and whether they were satisfied
with how the site supported these tasks (for example, tools like
these are provided by NetRaker [6]).

To address the fourth need, we designed a visualization that
aggregates data from several test sessions and displays the web
pages people viewed and the paths they took. However, we knew
that we would not immediately have all of the solutions for
analyzing the resulting data, so we also designed WebQuilt to be
extensible enough so that new tools and visualizations could be
implemented to help web designers understand the captured data.

WebQuilt is designed for task-based usability tests. Test
participants are given specific tasks to perform, such as browsing
for a specific piece of information or finding and purchasing an
item. The WebQuilt proxy can track the participants’ actions,
whether they are local or remote. After a number of web usage
traces have been captured, tools developed with the WebQuilt
framework can be used to analyze and visualize the results,
pointing to both problem areas and successful parts of the site. It
is important that a task be attached to the test participants’
interactions, because otherwise one must interpret the intent of
visitors, something difficult to do based on web usage traces
alone.

In the rest of this paper, we describe the architecture of WebQuilt
and give a description of our current visualization tool. We then
close with a discussion of related work and directions we plan to
take in the future.

2. WEBQUILT ARCHITECTURE
WebQuilt is separated into five independent components: the
Proxy Logger, the Action Inferencer, the Graph Merger, the
Graph Layout, and the Visualization (See Figure 4). The Proxy
Logger mediates between the client browser and the web server
and logs all communication between the two. The Action
Inferencer takes a log file for a single session and converts it into

a list of actions, such as “clicked on a link” or “hit the back
button.” The Graph Merger combines multiple lists of actions,
aggregating what multiple people did on a website into a directed
graph where the nodes represent web pages and the edges
represent page requests. The Graph Layout component takes the
combined graph of actions and assigns a location to each node.
The Visualization component takes the results from the Graph
Layout component and provides an interactive display.

Each of these components was designed to be as independent of
each other as possible. There is a minimal amount of
communication between each component, to make it as easy as
possible to replace components as better algorithms and
techniques are developed. In the rest of this section, we describe
each of these components in detail.

2.1 Proxy Logger
The goal of the Proxy Logger is to capture user actions on the
web. As a proxy, it lies between clients and servers, with the
assumption that clients will make all requests through the proxy.
In this section we first discuss problems with current logging
techniques, describe how WebQuilt’s proxy approach addresses
these problems, and then continue with a description of the
proxy’s architecture.

2.1.1 Problems with Existing Logging Techniques
Currently, there are two common ways of capturing and
generating web usage logs: server-side and client-side logging.
Server-side logs have the advantage of being easy to capture and
generate, since all transactions go through the server. However,
there are several downsides to server-side logging, as pointed out
by Etgen and Cantor [9] and by Davison [8]. One problem is that
web caches, both client browser caches and Intranet or ISP
caches, can intercept requests for web pages. If the requested page
is in the cache then the request will never reach the server and is
thus not logged. Another problem is that multiple people can also
share the same IP address, making it difficult to distinguish who is
requesting what pages (for example, America Online, the United
States’ largest ISP, does this). A third problem with server-side
logging is with dynamically assigned IP addresses, where a
computer’s IP address changes every time it connects to the
Internet. This can make it quite difficult to determine what an
individual user is doing since IP addresses are often used as
identifiers.

One alternative to gathering data on the server is to collect it on
the client. Clients are instrumented with special software so that
all usage transactions will be captured. Clients can be modified
either by running software that transparently records user actions
whenever the web browser is being used (as in [5]), by modifying
an existing web browser (as in [18] and [13]), or by creating a
custom web browser specifically for capturing usage information
(as with [20]).

The advantage to client-side logging is that literally everything
can be recorded, from low-level events such as keystrokes and
mouse clicks to higher-level events such as page requests.
However, there are several drawbacks to client-side logging. First,
special software must be installed on the client, which end-users
may be unwilling or unable to do. This can severely limit the
usability test participants to experienced users, which may not be
representative of the target audience. Second, there needs to be
some mechanism for sending the logged data back to the team that
wants to collect the logs. Third, the software is platform
dependent, meaning that the software only works for a specific
operating system or specific browser.

WebQuilt’s logging software differs from the server-side and
client-side approaches by using a proxy for logging instead. The
proxy approach has three key advantages over the server-side
approach. First, the proxy represents a separation of concerns.
Any special modifications needed for tracking purposes can be
done on the proxy, leaving the server to deal with just serving
content. This makes it easier to deploy, since the server and its
content do not have to be modified in any way.

Second, the proxy allows anyone to run usability tests on any
website, even people that do not own that website. One can
simply set up a proxy and ask testers to go through the proxy first.
The proxy simply modifies the URL of the targeted site to instead
go through the proxy. End users do not have to change any
settings to get started. Again, this makes it easy to run and log
usability tests on a competitor’s site.

Finally, having testers go through a proxy allows web designers to
“tag” and uniquely identify each test participant. This way
designers can know who the tester was, what they were trying to
do, and afterwards can ask them how well they thought the site
supported them in accomplishing their task.

The proxy approach is also better than the client-side approach. It
does not require any special software on the client beyond a web
browser, making it faster to deploy. The proxy also makes it easier

Figure 4. WebQuilt architecture overview. The Proxy Logger generates multiple log files, one log file per session. Each log file is
processed by the Action Inferencer, which converts the log of page transactions into a log of actions. The results are combined by
the Graph Merger, laid out by the Graph Layout, and visualized by the Visualization component.

to test a site with a wide variety of test participants, including
novice users who may be unable or afraid to download special
software. The proxy approach is also more compatible with a
wider range of operating systems and web browsers than a client-
side approach would be, as it works by modifying the HTML in a
platform-independent way. Again, this permits testing with a more
realistic sample of participants, devices, and browsers.

2.1.2 WebQuilt Proxy Logger Implementation
Our current implementation uses Java Servlet technology. The key
to this component, though, is the log file format, as it is the log
files that are processed by the Action Inferencer in the next step.
To use our analysis tools, it actually does not matter what
technologies are used for logging or whether the logger lies on the
server, on a proxy, or on the client, as long as the log format is
followed. Presently, the WebQuilt Proxy Logger creates one log
file per test participant session.

Table 1 shows a sample log. The Time field is the time in
milliseconds the page is first returned to a client, where 0 is the
start time of the session. The From TID and the To TID fields are
transaction identifiers. In WebQuilt, a transaction ID represents
the Nth page that a person has requested. The From TID field
represents the page that a person came from, and the To TID field
represents the current page the person is at. The transaction ID
numbers are used by the Action Inferencer for inferring when a
person used the browser back button and where they went back.

The HTTP Response field is just the response from the server,
such as “200 ok” and “404 not found.” The Link ID field specifies
which link was clicked on according to the Document Object
Model (DOM). In this representation, the first link in the HTML
has link ID of 0, the second has link ID of 1, and so on. This data
is useful for understanding which links people are following on a
given page. The last field is the Current URL field, which
represents the current page the person is at.
.

This log format supports some of the same things that other log
formats do. For example, the first row shows a start time of 20

msec and the second row 17825 msec. This means that the person
spent about 17 seconds looking at the page
http://www.yahoo.com. However, this format supports two things
that other tools and formats do not. The first is the Link ID.
Without this information, it can be difficult to tell which link a
person clicked on if there are redundant links to the same page,
which is a common practice in web design. This can be important
in understanding which links users are following and which are
being ignored. The second is exactly where a person used the back
button. The highlighted cells in Table 1 show an example of
where the person used the back button to go from transaction ID
of 3 back to transaction ID of 1, and then forward again, this time
to a different destination.

The proxy works by dynamically modifying all requested pages in
four ways:

• Link URLs are modified to go through the proxy
• Transaction IDs are added to link URLs
• Link IDs are added to link URLs
• Base HREF is added to point to the original site

The proxy modifies all link URLs in a page to use the proxy again
on the next page request. Thus, once a person has started to use
the proxy, all of the links thereafter will automatically be rewritten
to continue using the proxy. The proxy also adds Transaction IDs
to each link. Again, Transaction IDs represent the Nth page that a
person has requested. Embedding the transaction ID into a link’s
URL lets the proxy identify exactly what page a person came
from. Link IDs are also added to each link URL. This allows the
proxy to identify exactly which link in the page a person clicked
on. Lastly, a Base HREF tag is added to the top of the page, in
order to display images correctly.

There are two ways a person can start using the proxy. The first is
by requesting the proxy’s default web page and submitting a URL
to the proxy (See Figure 5). The other way a person could start
using the proxy is by using a link to a proxied page. For example,
suppose you wanted to run a usability study on Yahoo’s website.

Time From TID To TID HTTP Response Link ID Current URL

20 0 1 200 -1 http://www.yahoo.com/

17825 1 2 200 94 http://docs.yahoo.com/info/

22302 2 3 200 59 http://docs.yahoo.com/info/pr/

24056 1 4 200 26 http://dailynews.yahoo.com/

Table 1. Sample WebQuilt log file in tabular format. The highlighted cells show where a person went back
from the 3rd requested page to the 1st requested page, and then forward again.

Figure 5. Default page for the WebQuilt proxy. The proxy will retrieve and dynamically modify the URL that is entered.

If the proxy’s URL was:

http://tasmania.cs.berkeley.edu/webquilt,

then participants could just use the following link:

http://tasmania.cs.berkeley.edu/webquilt/redirect.jsp?replace
=http://www.yahoo.com.

This approach makes it easy to deploy the proxy, as the link can
just be emailed to people. Again, we expect other tools to be used
for recruiting participants and specifying tasks for them to do. The
proxy is flexible enough that it can easily be used with such other
usability evaluation tools.

The base case of handling standard HTTP and HTML is
straightforward. However, there are many special cases that must
be dealt with. For example, cookies are typically sent from web
servers to client browsers. These cookies are sent back to the web
server whenever a client browser makes a page request. The
problem is that, for security and privacy reasons, web browsers
only send cookies to certain web servers (ones in the same domain
as the web server that created the cookie in the first place). To
address this, the proxy logger manages all cookies for a user
throughout a session. It keeps a table of cookies, mapping from
users to domains. When a page request is made through the proxy,
it simply looks up the user, sees if there are any cookies associated
with the requested web server or page, and forwards these cookies
along in its request to the web server.

Another special case that must be dealt with is secure HTTPS.
HTTPS uses SSL (Secure Socket Layer) to secure page requests
and page data. The proxy logger handles HTTPS connections by
creating two HTTPS connections, one from the client browser to
the proxy, and another from the proxy to the web server.

Currently, the proxy logger does not handle server-side image
maps, JavaScript window popups, Java applets, and style sheets.

2.2 Action Inferencer
Action Inferencers transform a log of page requests into a log of
inferred actions, where an action is currently defined as either

requesting a page, going back by hitting the back button, or going
forward by hitting the forward button. The reason the actions must
be inferred is that the log generated by the proxy only captures
page requests. The proxy cannot capture where a person uses the
back or forward buttons to do navigation, since pages are loaded
from the local browser cache.

WebQuilt comes with a default Action Inferencer, but the
architecture is designed such that developers can create and plug
in new ones. It should be noted that given our logging approach,
the inferencer can be certain of when pages were requested and
can be certain of when the back button was used, but cannot be
certain of back and forward combinations.

As an example, figure 6 shows a graph of the log file shown in
Table 1. Figure 7 shows how the default Action Inferencer
interprets the actions in the log file. We know that this person had
to have gone back to Transaction ID 1, but we don’t know exactly
how many times he hit the back and forward buttons. Figure 7
shows what happens if we assume that the person went directly
back from TID 3 to TID 1, before going on to TID 4.

Figure 8 shows another valid way of inferring what happened with
the same log file. The person could have gone back and forth
between TID 2 and 3 a few times before returning to TID 1.

2.3 Graph Merger
The Graph Merger takes all of the actions inferred by the Action
Inferencer and merges them together. In other words, it merges
multiple log files together, aggregating all of the actions that
people did. A graph of web pages (nodes) and actions (edges) is
available once this step is completed.

2.4 Graph Layout
Once the log files have been aggregated, they are passed to the
Graph Layout component, which prepares the data for
visualization. The goal of this step is to give an (x,y) location to
all of the web pages. Since there are a variety of graph layout
algorithms available, we have simply defined a way for developers
to plug-in new algorithms. Currently, WebQuilt uses a simple
force-directed placement algorithm as its default. This algorithm
tries to place connected pages a fixed distance apart, and tries to
spread out unconnected web pages at a reasonable distance.

2.5 Visualization
The final part of the WebQuilt framework is the visualization
component. There are many ways of visualizing the information.
We have built one visualization that shows the web pages
traversed and paths taken (See Figures 9 and 10).

Web pages are represented by screenshots of that page as rendered
in a web browser. Arrows are used to indicate traversed links and
where people hit the back button. Thicker arrows indicate more
heavily traversed paths. Color is used to indicate the average
amount of time spent before traversing a link, with colors closer to
green meaning short amounts of time and colors closer to red
meaning longer amounts of time. Zooming is used to see the URL
for a web page and to see a detailed image of individual pages
(See Figure 10).

Figure 6. A graphical version of the log file in Table 1. The letters
‘A’, ‘B’, ‘C’, and ‘D’ are for this graph only and are not part of
the log file.

Figure 7. One possible way of interpreting the log file in Table 1.
This one assumes that a person repeatedly hit the back button
before clicking on a new link.

Figure 8. Another way of interpreting the log file in Table 1. This
one assumes that a person uses the back and forward buttons a
few times before clicking on a new link.

Figure 9. An example visualization of sixteen usage traces for a single defined task. The circle on the top-left shows the start of the
task. The circle on the top-right shows the end of the task. Thicker arrows indicate more heavily traversed paths (i.e., more users).
Red (darker) arrows indicate that users spent more time on a page before clicking a link.

Figure 10. The zoom slider on the left is used to change the zoom level. Individual pages can be selected and zoomed-in on to the
actual page and URL people went to.

Figure 9 shows an example visualization of sixteen usage traces,
where the task was to find a specific piece of information on the
website. The pages along the highlighted path at the top represent
the optimal path. By looking at the thickness of the lines, one can
see that many people took the optimal path, but about the same
number of people took a longer path to get to the same place. One
other page, at the bottom center, has a thick arrow going in but no
arrows coming out. This indicates a page which many people
visited but then used the back button to exit out.

There are also several red arrows (the dark colored ones), which
indicate that people took a long time before going to the next
page. However, none of the red arrows are along the optimal path,
meaning that people that took that path did not have to spend a
large amount of time to get to the next page.

3. RELATED WORK
In order to address some of the problems faced by client-side and
server-side logging, the National Institute for Standards and
Technology (NIST) has recently developed WebVIP [15].
Intended as a tool to help run usability tests, WebVIP makes a
local copy of an entire site and instruments each link with special
identifiers and event handling code. This code is activated when a
link is clicked on. WebVIP shares some of the same advantages
that WebQuilt’s logging software has, such as better compatibility
with existing operating systems and browsers (since only the
HTML is modified) and some ability to run logged usability tests
on sites one does not own. However, WebQuilt’s proxy approach
to logging lets it work without having to download an entire site,
which is unrealistic for many situations. WebQuilt avoids the
problems of stale content and of invalid path specifications for
complex sites, and also works with database-backed sites that
dynamically generate HTML when page requests are made.

Another system that is similar to WebQuilt’s logging software is
Etgen and Cantor’s Web-Event Logging Technique (WET) [9].
WET is an automated usability testing technique that works by
modifying every page on the server. It can automatically and
remotely track user interactions. WET takes advantage of the
event handling capabilities built into the Netscape and Microsoft
browsers. WET has more sophisticated event logging than
WebQuilt currently supports, though there are plans for merging
WET’s advanced event handling capabilities into WebQuilt (see
Future Work section). However, again, WebQuilt differs with its
proxy approach, which again does not require ownership of the
server and requires no changes to the server. These last two
advantages are important when trying to accomplish web
evaluations – the designers and usability team might not be
allowed to make changes to or be given access to a production
server.

Usability log visualization has a long history. Guzdial and
colleagues review and introduce several desktop-based systems in
[10]. There are other recent visualizations that use the notion of
paths. For example, the Footprints web history system [22]
displays aggregate user paths as hints to what pages have been
followed by other people. VISVIP [7] extends the work in
WebVIP and shows individual paths overlaid on top of a
visualization of the website.

Vividence Clickstreams [21] is a commercial usability tool for
visualizing individual and aggregate user paths through a website.
However, it uses client-side logging and has all of the problems

associated with that technique. Furthermore, WebQuilt’s
visualization differs in that it combines aggregate path
information with designated optimal paths, to make it easier to see
which pages people had trouble with. WebQuilt also uses a
zooming interface to show different portions of the website,
including screenshots of individual pages to provide better
context.

The closest visualization work is QUIP [11], a logging and
visualization environment for Java applications. WebQuilt builds
on QUIP by extending the logging and visualization to the web
domain. WebQuilt also adds in zooming, and uses screenshots of
web pages for detail instead of abstract circles.

4. FUTURE WORK
One important next step we are working on is capturing a richer
set of user interactions. For example, client-side logging can
capture such things as when a person hit the back or forward
button. With this kind of information, the Action Inferencer could
be bypassed entirely. We are currently investigating the approach
used by WET [9], which captures low-level events on the Mozilla
browser and on Microsoft’s Internet Explorer browser using
JavaScript.

We are also looking at additional visualizations for displaying the
traces. There has been some work done in visualizing server logs
[4, 12, 16] as well as visualizing individual and aggregate user
paths [7, 21, 22]. We plan to re-implement some of the ideas
demonstrated by these visualizations, and add in interactions and
visualizations that are more useful for web designers. As one
example, a web designer could designate one path as optimal,
highlight it in the visualization, and then see how people deviated
from that path. As another example, the visualization in Figure 10
could be modified such that when zoomed in, the arrows could be
re-anchored to show exactly which link was clicked on from a
given page. This is an example of semantic zooming [2], where
the details of the visualization changes depending on zoom level.

5. CONCLUSIONS
We have described WebQuilt, an extensible framework for
helping web designers capture, analyze, and visualize web usage
where the task is known. WebQuilt’s proxy-based approach to
logging overcomes many of the problems encountered with
server-side and client-side logging, in that it is fast and easy to
deploy, can be used on any site, can be used with other usability
tools such as online surveys, and is compatible with a wide range
of operating systems and web browsers.

We have also described the architecture for WebQuilt, and shown
how new algorithms and visualizations can be built using the
framework. Again, we knew that we would not have all the
solutions for analyzing and visualizing the captured data, so the
system must be extensible enough so that new tools can be easily
built. We have demonstrated one simple zooming interface for
displaying the aggregated results of captured web traces, and are
currently building more sophisticated visualizations and
interactions for understanding the data.

6. ACKNOWLEDGMENTS
We would like to thank James Lin and Francis Li for their
feedback during the development of WebQuilt. We would also

like to thank Sarah Waterson, Jeff Heer, Kevin Fox, and Andy
Edmonds for their ideas and work on improving portions of
WebQuilt. Lastly, we would like to thank NetClue for providing
us with a copy of their Java web browser component.

7. REFERENCES
[1] Access Log Analyzers.

http://www.uu.se/Software/Analyzers/Access-analyzers.html

[2] Bederson, B.B. and J.D. Hollan. Pad++: A Zooming
Graphical Interface for Exploring Alternative Interface
Physics. In Proceedings of the ACM Symposium on User
Interface Software and Technology: UIST ’94. Marina del
Rey, CA. pp. 17-26, November 2–4 1994.

[3] Beyer, H. and K. Holtzblatt, Contextual Design: Defining
Customer-Centered Systems. San Francisco: Morgan
Kaufmann, 1998.

[4] Chi, E., J. Pitkow, J. Mackinlay, P. Pirolli, R. Gossweiler,
and S. Card. Visualizing the Evolution of Web Ecologies. In
Proceedings of ACM CHI Conference on Human Factors in
Computing Systems. pp. 400-407 1998.

[5] Choo, C.W., B. Detlor, and D. Turnbull. A Behavioral
Model of Information Seeking on the Web – Preliminary
Results of a Study of How Managers and IT Specialists Use
the Web. In Proceedings of 1998 ASIS Annual Meeting
1998.
http://choo.fis.utoronto.ca/FIS/ResPub/asis99/default.html

[6] NetRaker Corporation. NetRaker Suite. 2001.
http://netraker.com/

[7] Cugini, J. and J. Scholtz. VISVIP: 3D Visualization of Paths
through Web Sites. In Proceedings of International
Workshop on Web-Based Information Visualization
(WebVis'99). Florence, Italy. pp. 259-263. IEEE Computer
Society, September 1-3 1999.

[8] Davison, B. Web Traffic Logs: An Imperfect Resource for
Evaluation. In Proceedings of Ninth Annual Conference of
the Internet Society (INET'99). San Jose, June 1999.

[9] Etgen, M. and J. Cantor. What Does Getting WET (Web
Event-Logging Tool) Mean for Web Usability? In
Proceedings of Fifth Human Factors and the Web
Conference 1999.

[10] Guzdial, M., P. Santos, A. Badre, S. Hudson, and M. Gray,
Analyzing and Visualizing Log Files: A Computational

Science of Usability. GVU Center TR GIT-GVU-94-8,
Georgia Institute of Technology 1994.

[11] Helfrich, B. and J.A. Landay, QUIP: Quantitative User
Interface Profiling. 1999.
http://home.earthlink.net/~bhelfrich/quip/

[12] Hochheiser, H. and B. Shneiderman, Understanding Patterns
of User Visits to Web Sites: Interactive Starfield
Visualizations of WWW Log Data. Technical Report
ncstrl.umcp/CS-TR-3989, University of Maryland, College
Park, February 1999.

[13] Ergosoft Laboratories, ErgoBrowser. 2001.
http://www.ergolabs.com/ergoBrowser/ergoBrowser.htm

[14] Nielsen, J. and T. Landauer. A mathematical model of the
finding of usability problems. In Proceedings of ACM
INTERCHI '93. Amsterdam, The Netherlands. pp. 206-213
1993.

[15] NIST, WebVIP. 1999.
http://zing.ncsl.nist.gov/webmet/vip/webvip-process.html

[16] Pitkow, J. and K. Bharat. WebViz: A Tool for World-Wide
Web Access Log Analysis. In Proceedings of First
International Conference on the World-Wide Web 1994.

[17] Spool, J. and W. Schroeder. Testing Web Sites: Five Users is
Nowhere Near Enough. In Proceedings of ACM CHI
Conference on Human Factors in Computing Systems.
Seattle, WA 2001.

[18] Tauscher, L.M., Evaluating History Mechanisms: An
Empirical Study of Reuse Patterns in WWW Navigation,
MSc Dissertation, University of Calgary, Calgary, 1999.
http://www.cpsc.ucalgary.ca/grouplab/papers/1996/96-
Tauscher.Thesis/thesis.html

[19] Virzi, R.A., Refining the Test Phase of Usability Evaluation:
How Many Subjects Is Enough? Human Factors, 1992.
34(4): p. 457-468.

[20] Vividence, Vividence Browser. 2000.
http://www.vividence.com/resources/public/solutions/demo/d
emo-print.htm

[21] Vividence, Vividence Clickstreams. 2000.
http://www.vividence.com/resources/public/solutions/demo/d
emo-print.htm

[22] Wexelblat, A. and P. Maes. Footprints: History-Rich Tools
for Information Foraging. In Proceedings of CHI '99.
Pittsburgh PA. pp. 270-277, May 1999.

