
WebQuilt: A Framework for Capturing and Visualizing the
Web Experience

Jason I. Hong, Jeffrey Heer, Sarah Waterson, and James A. Landay
Group for User Interface Research, Computer Science Division

University of California at Berkeley
Berkeley, CA 94720-1776 USA

+1 510 643 7354
{jasonh, waterson, landay}@cs.berkeley.edu, jheer@hkn.eecs.berkeley.edu

ABSTRACT
WebQuilt is a web logging and visualization system that helps
web design teams run usability tests (both local and remote) and
analyze the collected data. Logging is done through a proxy,
overcoming many of the problems with server-side and client-side
logging. Captured usage traces can be aggregated and visualized
in a zooming interface that shows the web pages people viewed.
The visualization also shows the most common paths taken
through the website for a given task, as well as the optimal path
for that task as designated by the designer. This paper discusses
the architecture of WebQuilt and also describes how it can be
extended for new kinds of analyses and visualizations.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems – Human
factors; H.3.5 [Information Storage and Retrieval] Online
Information Services – Web-based services; H.5.2 [Information
Interfaces and Presentation] User Interfaces – Evaluation /
methodology; H.5.4 [Information Interfaces and Presentation]
Hypertext/Hypermedia – User issues

General Terms
Measurement, Design, Experimentation, Human Factors

Keywords
usability evaluation, log file analysis, web visualization, web
proxy, WebQuilt

1. INTRODUCTION
1.1 Background
There are two usability problems all web designers face:
understanding what tasks people are trying to accomplish on a
website and figuring out what difficulties people encounter in
completing these tasks. Just knowing one or the other is
insufficient. For example, a web designer could know that
someone wants to find and purchase gifts, but this isn’t useful
unless the web designer also knows what problems are preventing
the individual from completing the task. Likewise, the web
designer could know that this person left the site at the checkout
process, but this isn’t meaningful unless the designer also knows

that he truly intended to buy something and is not simply
browsing.

There are a variety of methods for discovering what people want
to do on a website, such as structured interviews, ethnographic
observations, and questionnaires (for example, see [1]). Instead,
we focus here on techniques designers can use for tackling the
other problem, that is, understanding what obstacles people are
facing on a website in the context of a specific task.

Through interviews with a number of web designers, we identified
a few important indicators to look for when analyzing the results
of a task-based usability test. These indicators include identifying
the various paths users take, recognizing and classifying the
differences in browsing behavior, knowing key entry and exit
pages, and understand various time-based metrics (e.g. average
time spent on a page, time to download, etc.). All of this data,
when given the framework of a task and the means to analyze it,
would be useful for designers.

Traditionally, this kind of information is gathered by running
usability tests on a website. A usability specialist brings in several
participants to a usability lab and asks them to complete a few
predefined tasks. The usability engineer observes what stumbling
blocks people come across and follows up with a survey and an
interview to gain more insights into the issues.

The drawback to this traditional approach is that it is very time
consuming to run usability tests with large numbers of people: it
takes a considerable amount of work to schedule participants,
observe them, and analyze the results. Consequently, the data
tends to reflect only a few people and is mostly qualitative. These
small numbers also make it hard to cover all of the possible tasks
on a site. Furthermore, small samples are less convincing when
asking management to make potentially expensive changes to a
site. Lastly, a small set of participants may not find the majority of
usability problems. Despite previous claims that around five
participants are enough to find the majority of usability problems
[2, 3], a recent study by Spool and Schroeder suggests that this
number may be nowhere near enough [4]. Better tools and
techniques are needed to increase the number of participants and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WWW10, May 1-5, 2001, Hong Kong.
Copyright 2001 ACM 1-58113-348-0/01/0005…$5.00.

Figure 1. Server-side logging is done on the web server, but
the data is available only to the owners of the server.

tasks that can be managed for a usability test.

In contrast to traditional usability testing, server log analysis (See
Figure 1) is one way of quantitatively understanding what large
numbers of people are doing on a website. Nearly every web
server logs page requests, making server log analysis quite
popular. In fact, there are over 90 research, commercial, and
freeware tools currently available [5]. Server logging also has the
advantage of letting test participants work remotely in their own
environments: instead of coming to a single place, usability test
participants can evaluate a website from any location on their own
time, using their own equipment and network connection.

However, from the perspective of the web design team, there are
some problems with server logs. Access to server logs are often
restricted to just the owners of the web server, making it difficult
to analyze subsites that exist on a server. For example, a company
may own a single web server with different subsites owned by
separate divisions. Similarly, it is also impractical to do a log file
analysis of a competitor’s website. A competitive analysis is
important in understanding what features people consider
important, as well as learning what parts of your site are easy-to-
use and which are not.

Figure 2. Client-side logging is done on the client computer,
but requires special software running in the background or
having a special web browser.
Client-side logging has been developed to overcome these
deployment problems. In this approach, participants remotely test
a website by downloading special software that records web usage
(See Figure 2). However, client-side logging has two weaknesses.
First, the design team must deploy the special software and have
end-users install it. Second, this technique makes it hard to
achieve compatibility with a range of operating systems and web
browsers. What is needed is a logging technique that is easy to
deploy for any website and is compatible with a number of
operating systems and browsers.

Another problem with using either server- or client-side web logs
to inform web design is that existing server log analysis tools do
not help web designers understand what visitors are trying to do
on a website. Most of these tools produce aggregate reports, such
as “number of transfers by date” and “most popular pages.” This
kind of information resembles footsteps in the forest: you know
someone has been there and where they went, but you have no
idea what they were trying to do and whether they were
successful. To better understand usability problems, designers
need logging tools that can be used in conjunction with known
tasks, as well as sophisticated methods for analyzing the logged
data.

1.2 WebQuilt
As pointed out, gathering web usability information is not a
simple task with current tools. Furthermore, a best practice

industry has learned is that the earlier usability feedback can be
incorporated into the design, the easier and less costly it is to fix
the problems. To recap, there are four things that could greatly
streamline current practices in web usability evaluations:

1. A way of logging web usage that is fast and easy to
deploy on any website

2. A way of logging that is compatible with a range of
operating systems and web browsers

3. A way of logging where the task is already known
4. Tools for analyzing and visualizing the captured data

To address these needs, we developed WebQuilt, a tool for
capturing, analyzing, and visualizing web usage. To address the
first and second needs, we developed a proxy-based approach to
logging that is faster and easier to deploy than traditional log
analysis techniques (See Figure 3). This proxy has better
compatibility with existing operating systems and browsers and
requires no downloads on the part of end-users. It will also be
easier to make compatible with future operating systems and
browsers, such as those found on handheld devices and cellular
phones.

Figure 3. Proxy-based logging is done on an intermediate
computer, and avoids many of the deployment problems faced
by client-side and server-side logging.
To address the third need, we designed the proxy to be flexible
enough that it can be used in conjunction with existing tools, such
as those offering participant recruitment and online surveys. With
these existing tools, we can know who the users are, what tasks
they are trying to accomplish, and whether they were satisfied
with how the site supported these tasks (for example, tools like
these are provided by NetRaker [6] and Vividence [7]).

To address the fourth need, we designed a visualization that takes
the aggregated data from several test sessions and displays the
web pages people viewed, as well as the paths they took.
However, knowing that we would not immediately have all of the
solutions for analyzing the resulting data, WebQuilt was designed
to be extensible enough so that new tools and visualizations could
be implemented to help web designers understand the captured
data.

WebQuilt is intended for task-based usability tests. Test
participants are given specific tasks to perform, such as browsing
for a specific piece of information or finding and purchasing an
item. The WebQuilt proxy can track the participants’ actions,
whether they are local or remote. After a number of web usage
traces have been captured, tools developed with the WebQuilt
framework can be used to analyze and visualize the results,
pointing to both problem areas and successful parts of the site. It
is important that a task be attached to the test participants’

interactions, because otherwise one must interpret the intent of
visitors, something that is difficult to do based on web usage
traces alone. Though WebQuilt can certainly be used to capture
any general browsing behavior, the visual analysis provided in
this paper is structured to support a task-basked framework.

In the rest of this paper, we describe the architecture of WebQuilt
and give a description of our current visualization tool. We then
close with a discussion of related work and directions we plan to
take in the future.

2. WEBQUILT ARCHITECTURE
WebQuilt is separated into five independent components: the
Proxy Logger, the Action Inferencer, the Graph Merger, the
Graph Layout, and the Visualization (See Figure 4). The Proxy
Logger mediates between the client browser and the web server
and logs all communication between the two. The Action
Inferencer takes a log file for a single session and converts it into
a list of actions, such as “clicked on a link” or “hit the back
button.” The Graph Merger combines multiple lists of actions,
aggregating what multiple people did on a website into a directed
graph where the nodes represent web pages and the edges
represent page requests. The Graph Layout component takes the
combined graph of actions and assigns a location to each node.
The Visualization component takes the results from the Graph
Layout component and provides an interactive display.

Each of these components was designed to be as independent of
each other as possible. There is a minimal amount of
communication between each component, to make it as easy as
possible to replace components as better algorithms and
techniques are developed. In the rest of this section, we describe
each of these components in detail.

2.1 Proxy Logger
The goal of the proxy logger is to capture user actions on the web.
As a proxy, it lies between clients and servers, with the
assumption that clients will make all requests through the proxy.
Proxies have been used in a number of applications, from mining
user “trails,” caching, and web cataloguing [8, 9]. WebQuilt uses
a proxy to log user sessions. In this section we first discuss
problems with current logging techniques, describe how
WebQuilt’s proxy approach addresses these problems, and then
continue with a description of the proxy’s architecture.

2.1.1 Problems with Existing Logging Techniques
Currently, there are two common ways of capturing and
generating web usage logs: server-side and client-side logging.
Server-side logs have the advantage of being easy to capture and
generate, since all transactions go through the server. However,
there are several downsides to server-side logging, as pointed out
by Etgen and Cantor [10] and by Davison [11]. One problem is
that web caches, both client browser caches and Intranet or ISP
caches, can intercept requests for web pages. If the requested page
is in the cache then the request will never reach the server and is
thus not logged. Another problem is that multiple people can also
share the same IP address, making it difficult to distinguish who is
requesting what pages (for example, America Online, the United
States’ largest ISP, does this). A third problem with server-side
logging is with dynamically assigned IP addresses, where a
computer’s IP address changes every time it connects to the
Internet. This can make it quite difficult to determine what an
individual user is doing since IP addresses are often used as
identifiers. While researchers have found novel ways of extracting
useful user path data from server logs on a statistical level [12],
the exact paths of individual users still remain elusive.
Furthermore, with standard server logs users’ tasks and goals (or
lack thereof) are highly ambiguous.

One alternative to gathering data on the server is to collect it on
the client. Clients are instrumented with special software so that
all usage transactions will be captured. Clients can be modified
either by running software that transparently records user actions
whenever the web browser is being used (as in [13]), by
modifying an existing web browser (as in [14] and [15]), or by
creating a custom web browser specifically for capturing usage
information (as with [7]).

The advantage to client-side logging is that literally everything
can be recorded, from low-level events such as keystrokes and
mouse clicks to higher-level events such as page requests. All of
this is valuable usability information. However, there are several
drawbacks to client-side logging. First, special software must be
installed on the client, which end-users may be unwilling or
unable to do. This can severely limit the usability test participants
to experienced users, which may not be representative of the
target audience. Second, there needs to be some mechanism for
sending the logged data back to the team that wants to collect the
logs. Third, the software is platform dependent, meaning that the
software only works for a specific operating system or specific
browser.

Figure 4. WebQuilt dataflow overview. The proxy logger captures web sessions, generating one log file per session. Each log file is
processed by the Action Inferencer, which converts the log of page transactions into a log of actions. The results are combined by
the Graph Merger, laid out by the Graph Layout, and visualized by the Visualization component.

WebQuilt’s logging software differs from the server-side and
client-side approaches by using a proxy for logging instead. The
proxy approach has three key advantages over the server-side
approach. First, the proxy represents a separation of concerns.
Any special modifications needed for tracking purposes can be
done on the proxy, leaving the server to deal with just serving
content, making it easier to deploy, as the server and its content
do not have to be modified in any way.

Second, the proxy allows anyone to run usability tests on any
website, even if they do not own that website. One can simply set
up a proxy and ask testers to go through the proxy first. The proxy
simply modifies the URL of the targeted site to instead go through
the proxy. End users do not have to change any settings to get
started. Again, this makes it easy to run and log usability tests on
a competitor’s site.

Finally, having testers go through a proxy allows web designers to
“tag” and uniquely identify each test participant. This way
designers can know who the tester was, what they were trying to
do, and afterwards can ask them how well they thought the site
supported them in accomplishing their task.

A proxy logger also has advantages over client-side logging. It
does not require any special software on the client beyond a web
browser, making it faster and much simpler to deploy. The proxy
also makes it easier to test a site with a wide variety of test
participants, including novice users who may be unable or afraid
to download special software. It is also more compatible with a
wider range of operating systems and web browsers than a client-
side logger would be, as it works by modifying the HTML in a
platform-independent way. Again, this permits testing with a more
realistic sample of participants, devices, and browsers.

It is important to note that this approach is slightly different from
traditional HTTP proxies. Traditional proxies (e.g. a corporate
firewall) serve as a relay point for all of a user’s web traffic, and
the user’s browser must be configured to send all requests through
the proxy. The WebQuilt proxy differs in that it is URL based – it
redirects all links so that the URLs themselves point to the proxy,
and the intended destination is encoded within the URL’s query
string. This avoids the need for users to manually configure their
browsers to route requests through the WebQuilt proxy, and so
allows for the easy deployment of remote usability tests by simply
providing the proper link.

2.1.2 WebQuilt Proxy Logger Implementation
The current WebQuilt proxy logger implementation uses Java
Servlet technology. The heart of this component, though, is the
log file format, as it is the log files that are processed by the
Action Inferencer in the next step. To use the WebQuilt analysis
tools, it actually does not matter what technologies are used for

logging or whether the logger lies on the server, on a proxy, or on
the client, as long as the log format is followed. Presently, the
WebQuilt Proxy Logger creates one log file per test participant
session.

WebQuilt Log File Format
Table 1 shows a sample log. The Time field is the time in
milliseconds the page is first returned to a client, where 0 is the
start time of the session. The From TID and the To TID fields are
transaction identifiers. In WebQuilt, a transaction ID represents
the Nth page that a person has requested. The From TID field
represents the page that a person came from, and the To TID field
represents the current page the person is at. The transaction ID
numbers are used by the Action Inferencer for inferring when a
person used the browser back button and where they went back.
The Parent ID field specifies the frame parent of the current page.
This number is the TID of the frameset to which the current page
belongs, or –1 if the current page is not a frame.

The HTTP Response field is just the response from the server,
such as “200 ok” and “404 not found.” The Link ID field specifies
which link was clicked on according to the Document Object
Model (DOM). In this representation, the first link in the HTML
has link ID of 0, the second has link ID of 1, and so on. Both <A>
and <AREA> tags are considered links. This data is useful for
understanding which links people are following on a given page.

The Frame ID field indicates which frame in an enclosing
frameset the current page is in. These are numbered similarly to
link IDs – a frame ID of 0 indicates the first frame in the frameset,
and so on. If the current page is not a frame, a value of –1 is used.
The HTTP Method field specifies which HTTP method was used
to request the current page. Currently the proxy supports the GET
and POST methods. The last fields are the URL + Query fields,
which represent the current page the person is at and any query
data (e.g. CGI parameters) that was sent along with the request.

The WebQuilt log format supports the same features that other log
formats do. For example, the first row shows a start time of 6062
msec and the second row 11191 msec. This means that the person
spent about 5 seconds on the page http://www.google.com.
However, it has two additional features other logging tools and
formats do not. The first is the Link ID. Without this information,
it can be difficult to tell which link a person clicked on if there are
redundant links to the same page, which is a common practice in
web design. This can be important in understanding which links
users are following and which are being ignored. The second is
finding where a person used the back button. The highlighted
cells in Table 1 show an example of where the person used the
back button to go from transaction ID of 4 back to transaction ID
of 2, and then forward again, this time to a different destination.

Time From
TID

To
TID

Parent
ID

HTTP
Response

Frame
ID

Link
ID

HTTP
Method

URL + Query

6062 0 1 -1 200 -1 -1 GET http://www.google.com

11191 1 2 -1 200 -1 -1 GET http://www.phish.com/index.html
q=Phish&btnI=I%27m+Feeling+Lucky

167525 2 3 -1 200 -1 1 GET http://www.phish.com/bios.html

31043 3 4 -1 200 -1 2 GET https://www.phish.com/bin/catalog.cgi

68772 2 5 -1 200 -1 15 GET http://www.emusic.com/features/phish

Table 1. Sample WebQuilt log file in tabular format. The highlighted cells show where a person went back from the fourth
requested page to the second, and then forward again.

WebQuilt Proxy Logger Architecture
Figure 5 illustrates the Proxy Logger’s architecture. As mentioned
before, the WebQuilt Proxy is built using Java Servlet technology.
The central component of the system is the WebProxy servlet,
which must be run within a Servlet and JSP engine (e.g. Jakarta
Tomcat or IBM WebSphere). The Servlet engine provides most of
the facilities for communicating with the client – it intercepts
HTTP requests and hands them off to the WebProxy servlet,
handles session management, and provides output streams for
sending data back to the client. The WebProxy component
processes client’s requests and performs caching and logging of
page transactions. It is aided by the ProxyEditor module, which
updates all the links in a document to point back to the proxy.
Underlying the WebProxy component is the HTTPClient library
[16], an extended Java networking library providing full support
for HTTP connections, including cookie handling.
Phase (1) - Processing Client Requests

In the first phase, an HTTP request is received from the client by
the proxy. All WebQuilt specific parameters (including the
destination URL) are extracted and saved. At this time the proxy
collects most of the data that is saved in the log file. For example,
the time elapsed since the beginning of the session is calculated,
and other various parameters such as transaction IDs, parent ID,
and link ID are stored.

There are two ways a person can start using the proxy. The first is
by requesting the proxy’s default web page and submitting a URL
to the proxy (See Figure 6). The other way a person could start
using the proxy is by using a link to a proxied page. For example,
suppose you wanted to run a usability study on Yahoo’s website.
If the proxy’s URL was:

http://tasmania.cs.berkeley.edu/webquilt,

then participants could just use the following link:
http://tasmania.cs.berkeley.edu/webquilt/webproxy?replace=
http://www.yahoo.com.

This method makes it easy to deploy the proxy, as the link can just
be sent via email to users. Again, we expect other tools to be used
for recruiting participants and specifying tasks for them to do. The
proxy is flexible enough that it can easily be integrated with such
other usability evaluation tools.

Phase (2) - Retrieving the Requested Document

After the client’s request has been received and analyzed, the
proxy attempts to retrieve the document specified by the request.
If no document has been requested (i.e. the replace parameter was
absent) the proxy returns the default start page. Otherwise, the
proxy opens an HTTP connection to the specified site and
requests the document using either the GET or POST method,
depending on which method the client used to request the page
from the proxy. The proxy then downloads the document from the
server. At this time, the rest of the data needed for the log entry is
also stored, including the HTTP response code and the final
destination URL (in case we were redirected by the server).

Phase (3) – Redirecting Links to the Proxy

Before the downloaded page is sent back to the client, it must be
edited so that all the links on the page are redirected through the
proxy. This work is done by the Proxy Editor module. Initially,
the proxy checks the content type of the page. If the content type
is provided by the server and is not of the form text/html, the
proxy assumes that the page is not an HTML document and
returns it to the client without editing. Otherwise, the proxy runs
the page through the proxy editor.

The editor works by dynamically modifying all requested pages,
so that future requests and actions will be made through the
proxy. The document’s base HREF is updated and all links,
including page hyperlinks, frames, and form actions, are
redirected through the proxy.

First, the <BASE> tag is updated or added to the page within the
page’s enclosing <HEAD> tags. This tag’s HREF field points to
the document base – a location against which to resolve all
relative links. This allows the client browser to then request
stylesheets, images, and other embedded page items from the
correct web location rather than through the proxy.

Client Browser Web Server WebQuilt Proxy

Proxy Editor

Cached Pages WebQuilt Logs

WebProxy Servlet 1 2

3
4 5 HTTPClient

Package

Client Browser Web Server WebQuilt Proxy

Proxy Editor

Cached Pages WebQuilt Logs

WebProxy Servlet 1 2

3
4 5 HTTPClient

Package

1. Process client request
2. Retrieve the requested

document
3. Redirect links to proxy,

send page to client
4. Cache the page
5. Log the transaction

Figure 5. Proxy architecture overview.

Figure 6. Default page for the WebQuilt proxy. The proxy will

retrieve and dynamically modify the URL that is entered.

The proxy editor also modifies all link URLs in the page to use
the proxy again on the next page request. Thus, once a person has
started to use the proxy, all of the links thereafter will
automatically be rewritten to continue using the proxy. The editor
also adds Transaction IDs to each link. Again, Transaction IDs
represent the Nth page that a person has requested. Embedding
the transaction ID into a link’s URL lets the proxy identify exactly
what page a person came from. Link IDs are also added to each
link URL. This allows the proxy to identify exactly which link in
the page a person clicked on. If the current page is a frame, the
proper Parent ID and Frame ID parameters are also included.

The link URL and other parameters are included as variables
within a query string for the link. The link URL itself is first
rewritten as an absolute link and then added, along with the other
parameters, to a query that will be read by the proxy. For example,
if you are viewing the page www.yahoo.com through the proxy,
the link

could be rewritten as
<A HREF="http://tasmania.cs/webquilt/webproxy?
replace=http://www.yahoo.com/computers.html&ti
d=1&linkid=12">

HTML <FRAME> tags are dealt with similarly – the URLs for
the target frames are rewritten to pass through the proxy and extra
information such as the frame parent’s TID and the frame ID are
included. <FORM> tags are dealt with a little differently. The
<FORM> tag’s ACTION field is set to point back to the proxy as
usual, but the actual target URL, the current TID, and, if
necessary, the Parent ID and Frame ID, are encapsulated in
<INPUT> tags with input type “hidden”. These tags are inserted
directly after the enclosing <FORM> tag. Since they are of type
“hidden”, they do not appear to the user while browsing, but are
included in the resulting query string upon a FORM submit. The
proxy editor also handles tags of the form <META HTTP-
EQUIV=“refresh” …>. These tags cause the browser to load a
new URL after a specified time duration. The editor updates these
tags to make sure the new URL is requested through the proxy.

The Proxy Editor implementation uses a simple lexical analysis
approach to edit the page. The editor linearly scans through the
HTML; comments and plain text are passed along to the client
unchanged. When a tag is encountered, the type of the tag (e.g.
‘A’ or ‘TABLE’) is compared against a set of tags that require
editing. If the tag is not in this set (i.e. not a link) it is simply
passed along to the client, otherwise it is handed off to the proper
TagEditor module, which updates the tag contents as described
above, before being sent along.

Phases (4) and (5) – Page Caching and Logging

After performing any necessary editing and sending the requested
document to the client, the proxy then saves a cached copy of the
HTML page. Before writing out to disk or to a database, the
original document is run through the proxy editor again, but this
time only the <BASE> tag is updated. This allows for the page to
be opened locally and yet still appear as it would on the web, as
long as none of the non-cached items, such as images, have not
changed on the server. Finally, the log entry for the current
transaction is written to the appropriate log file.

2.1.3 Additional Proxy Functionality
The base case of handling standard HTTP and HTML is
straightforward. However, there are also some special cases that
must be dealt with. For example, cookies are typically sent from
web servers to client browsers. These cookies are sent back to the
web server whenever a client browser makes a page request. The
problem is that, for security and privacy reasons, web browsers
only send cookies to certain web servers (ones in the same domain
as the web server that created the cookie in the first place). To
address this, the proxy logger manages all cookies for a user
throughout a session. It keeps a table of cookies, mapping from
users to domains. When a page request is made through the proxy,
it simply looks up the user, sees if there are any cookies associated
with the requested web server or page, and forwards these cookies
along in its request to the web server. This is currently handled
within the proxy by the HTTPClient library, with modifications
made to ensure separate cookie tables are used for each active user
session.

Another special case that must be dealt with is the HTTPS
protocol for secure communication. HTTPS uses SSL (Secure
Socket Layer) to encrypt page requests and page data. The proxy
logger handles HTTPS connections by using two separate secure
connections. When a client connects to the proxy over a secure
connection, the proxy in turn creates a new HTTPS connection to
the destination server, ensuring that all network communication
remains secure. Our implementation uses Sun’s freely available
JSSE (Java Secure Socket Extension) [17] in the underlying
network layer to enable encrypted communication both to and
from the proxy.

2.1.4 Proxy Logger Limitations
Trapping every possible user action on the web is a daunting task,
and there are still limitations on what the WebQuilt proxy logger
can capture. The most pressing of these cases is links or redirects
created dynamically by JavaScript and other browser scripting
languages. As a consequence, the JavaScript generated pop-up
windows and DHTML menus popular on many websites are not
captured by the proxy. Other elusive cases include server-side
image maps and embedded page components such as Java applets
and Flash animations.

One obvious way to overcome these limitations is to use a
traditional proxy approach, where all requests are transparently
routed through a proxy. While this would certainly allow one to
capture all user interactions, it introduces some serious
deployment issues. Most significantly, the traditional proxy
approach would require users to configure their browsers to use
the proxy and then undo this setting after performing usability
tests. This would seriously hamper the ease with which remote
usability tests could be performed. Furthermore, any users who
currently sit behind a firewall would be unable to participate, as
changes to their proxy settings could render them unable to
connect to the internet.

2.2 Action Inferencer
Action Inferencers transform a log of page requests into a log of
inferred actions, where an action is currently defined as either
requesting a page, going back by hitting the back button, or going
forward by hitting the forward button. The reason the actions must
be inferred is that the log generated by the proxy only captures

page requests. The proxy cannot capture where a person uses the
back or forward buttons of the browser to do navigation, since
pages are loaded from the local browser cache.

WebQuilt comes with a default Action Inferencer, but the
architecture is designed such that developers can create and plug
in new ones. It should be noted that given our logging approach,
the inferencer can be certain of when pages were requested and
can be certain of when the back button was used, but cannot be
certain of back and forward combinations. Additionally, the
current implementation does not specifically identify when a user
clicks on the browser’s refresh button.

As an example, figure 7 shows a graph of a sample log file. Figure
8 shows how the default Action Inferencer interprets the actions
in the log file. We know that this person had to have gone back to
Transaction ID 1, but we don’t know exactly how many times
they hit the back and forward buttons. Figure 8 shows what
happens if we assume that the person went directly back from TID
3 to TID 1, before going on to TID 4.

Figure 9 shows another valid way of inferring what happened with
the same log file. The person could have gone back and forth
between TID 2 and 3 a few times before returning to TID 1.

2.3 Graph Merger
The Graph Merger takes all of the actions inferred by the Action
Inferencer and merges them together. In other words, it merges
multiple log files together, aggregating all of the actions that test
participants did. A graph of web pages (nodes) and actions
(edges) for the task is available once this step is completed.

2.4 Graph Layout
Once the log files have been aggregated, they are passed to the
Graph Layout component, which prepares the data for
visualization. The goal of this step is to give an (x,y) location to
all of the web pages. Since there are a variety of graph layout
algorithms available, we have simply defined a way for developers
to plug-in new algorithms. Currently, WebQuilt uses an edge-
weighted depth-first traversal of the graph, displaying the most
trafficked path along the top, and incrementally placing the less
and less followed paths below. This algorithm also uses a grid
positioning to help organize and align the distances between the
nodes. Another possible algorithm that has been attempted is a
simple force-directed layout of the graph. This algorithm tries to
place connected pages a fixed distance apart, and tries to spread
out unconnected web pages at a reasonable distance.

2.5 Visualization
The final part of the WebQuilt framework is the visualization
component. There are many ways of visualizing the information.
We have built one visualization that shows the web pages
traversed and paths taken (See Figures 10 and 11).

Web pages are represented by screenshots of that page as rendered
in a web browser. Arrows are used to indicate traversed links and
where people hit the back button. Thicker arrows indicate more
heavily traversed paths. Color is used to indicate the average
amount of time spent before traversing a link, with colors closer to
white meaning short amounts of time and colors closer to red
meaning longer amounts of time. Zooming is used to see the URL

for a web page and to see a detailed image of the individual pages
(See Figure 10).

Figure 10 shows an example visualization of twelve usage traces,
where the task was to find a specific piece of information on the
U.C. Berkeley website. The pages along the highlighted path at
the top represent the optimal path. By looking at the thickness of
the lines, one can see that many people took the optimal path, but
about the same number of people took a longer path to get to the
same place. Following some of these longer paths, one can also
see where users come to a page, and decide to backtrack, either
via the back button or a link. Figure 11 shows a zoomed in view
of one of the pages.
There are also several red arrows, which indicate that people took
a long time before going to the next page. However, none of the
red arrows are along the optimal path, meaning that people that
took that path did not have to spend a large amount of time to get
to the next page. One key feature of this visualization is the ability
to zoom in and provide various levels of detail. For example, from
the overview of the entire task, a viewer can see a red arrow
indicating a long time spent on the page, but upon zooming in on
that page the viewer would see that it is perhaps a very text-heavy
page the user probably spent time reading. Providing the context
of the task and a framework to add more details when needed, this
visualization offers a number of simple, but very useful and quick
analysis of the user experience.

Figure 7. A graphical version of the log file in Table 1. The letters
‘A’, ‘B’, ‘C’, and ‘D’ are for this graph only and are not part of
the log file.

Figure 8. One possible way of interpreting the log file in Table 1.
This one assumes that a person repeatedly hit the back button
before clicking on a new link.

Figure 9. Another way of interpreting the log file in Table 1. This
one assumes that a person uses the back and forward buttons a
few times before clicking on a new link.

Figure 11. The zoom slider on the left is used to change the zoom level. Individual pages can be selected and zoomed-in on to the
actual page and URL people went to.

Figure 10. An example visualization of twelve usage traces for a single defined task. The circle on the top-left shows the
start of the task. The circle on the top-right shows the end of the task. Thicker arrows indicate more heavily traversed paths
(i.e., more users). Thick blue arrows mark a designer indicated optimal path. Darker red arrows indicate that users spent
more time on a page before clicking a link, while the lighter pink arrows indicate less time.

3. RELATED WORK
In order to address some of the problems faced by client-side
and server-side logging, the National Institute for Standards and
Technology (NIST) has recently developed WebVIP [18].
Intended as a tool to help run usability tests, WebVIP makes a
local copy of an entire site and instruments each link with
special identifiers and event handling code. This code is
activated when a link is clicked on. WebVIP shares some of the
same advantages that WebQuilt’s logging software has, such as
better compatibility with existing operating systems and
browsers (since only the HTML is modified) and some ability to
run logged usability tests on sites one does not own. However,
WebQuilt’s proxy approach to logging lets it work without
having to download an entire site, which is more realistic for
many situations. WebQuilt avoids the problems of stale content
and of invalid path specifications for complex sites, and also
works with database-backed sites that dynamically generate
HTML when page requests are made.

Another system that is similar to WebQuilt’s logging software is
Etgen and Cantor’s Web-Event Logging Technique (WET) [10].
WET is an automated usability testing technique that works by
modifying every page on the server. It can automatically and
remotely track user interactions. WET takes advantage of the
event handling capabilities built into the Netscape and Microsoft
browsers. WET has more sophisticated event logging than
WebQuilt currently supports, though there are plans for merging
WET’s advanced event handling capabilities into WebQuilt (see
Future Work section). However, again, WebQuilt differs with its
proxy approach, which again does not require ownership of the
server and requires no changes to the server. These last two
advantages are important when trying to accomplish web
evaluations – the designers and usability team might not be
allowed to make changes to or be given access to a production
server.

Usability log visualization has a long history. Guzdial and
colleagues review and introduce several desktop-based systems
in [19]. There are other recent visualizations that use the notion
of paths. For example, the Footprints web history system [20]
displays aggregate user paths as hints to what pages have been
followed by other people. VISVIP [21] extends the work in
WebVIP and shows individual paths overlaid on top of a
visualization of the website.
Two commercially available tools share similar goals to
WebQuilt. Vividence Clickstreams [22] visualizes individual
and aggregate user paths through a website. However, it uses
client-side logging and has all of the problems associated with
that technique. Furthermore, WebQuilt’s visualization differs in
that it combines aggregate path information with designated
optimal paths to make it easier to see which pages people had
trouble with. WebQuilt also uses a zooming interface to show
different portions of the website, including screenshots of
individual pages to provide better context.
Visual Insight’s eBizinsights [23] is a sophisticated server log
visualization tool for generating custom reports and interacting
with the log data. While providing a number of interesting and
useful chart-style visualizations, eBizinsights targets a marketing
and management audience, which eventually will affect the
designer decisions, but isn’t intended as a tool for the designer

to use as he or she works. eBizinsights also uses server side
logging, which, again, has all of the problems mentioned earlier
with this technique.
The closest visualization work is QUIP [24], a logging and
visualization environment for Java applications. WebQuilt
builds on QUIP by extending the logging and visualization to
the web domain. WebQuilt also adds in zooming, and uses
screenshots of web pages for detail instead of abstract circles.

4. FUTURE WORK
We would like to extend our proxy logging system to overcome
some of its current limitations, especially the handling of
JavaScript. One possible approach would be to include a full
JavaScript parser within the Proxy Editor module. The
JavaScript code itself could then be updated to ensure that
dynamically created links and pop-up windows pass through the
proxy. Care must be taken, however, to ensure that the parsing
and editing can be done in a reasonable amount of time, so the
user’s browsing experience is not adversely affected.

We would also like to capture a richer set of user interactions as
they surf or perform a task. There is a wealth of data available to
client-based loggers that our proxy currently does not collect.
This includes page locations that are mistaken for links and
clicked, page scrolling events, and more. By writing JavaScript
code that captures these events and then inserting this code into
pages as they are proxied, we may be able to remotely log some
of these forms of interaction without any additional effort on the
part of the user. We are currently investigating the approach
used by WET [10], which captures low-level events on the
Mozilla browser and on Microsoft’s Internet Explorer browser,
as well as work done by Edmonds on tracking user actions [25].
However, using some of these technologies could limit the
variety of internet-enabled devices on which to use this proxy
framework. Ideally, we would like WebQuilt to gather data from
more than just traditional web browsers. We would like to see to
our framework configured for interaction logging on hand-held
computers, web-enabled cell phones, and other emerging
internet-ready devices.

We are also looking at additional visualizations for displaying
and interacting with the traces. There has been some work done
in visualizing server logs [26-28] as well as visualizing
individual and aggregate user paths [20-22]. We plan to re-
implement some of the ideas demonstrated by these
visualizations, and add in interactions and visualizations that are
more useful for web designers. For example, the visualization in
Figure 11 could be modified such that when zoomed in, the
arrows could be re-anchored to show exactly which link was
clicked on from a given page. This is an example of semantic
zooming [29], where the details of the visualization changes
depending on zoom level. Along the same lines, we would like
to include methods for accessing more details, or filtering of
information, depending upon the needs of the individual
designer.

Lastly, we plan on doing a rigorous evaluation of WebQuilt with
real designers and usability experts to assess the quality of the
tool and explore of larger, more complex data sets.

5. CONCLUSIONS
We have described WebQuilt, an extensible framework for
helping web designers capture, analyze, and visualize web usage
where the task is known. WebQuilt’s proxy-based approach to
logging overcomes many of the problems encountered with
server-side and client-side logging, in that it is fast and easy to
deploy, can be used on any site, can be used with other usability
tools such as online surveys, and is compatible with a wide
range of operating systems and web browsers.

We have also described the architecture for WebQuilt, and
shown how new algorithms and visualizations can be built using
the framework. Again, we knew that we would not have all the
solutions for analyzing and visualizing the captured data, so the
system must be extensible enough so that new tools can be
easily built. We have demonstrated one simple zooming
interface for displaying the aggregated results of captured web
traces, and are currently building more sophisticated
visualizations and interactions for understanding the data.

WebQuilt can be found at:

 http://guir.berkeley.edu/projects/webquilt

6. ACKNOWLEDGMENTS
We would like to thank James Lin and Francis Li for their
feedback during the development of WebQuilt. We would also
like to thank Kevin Fox, Tim Sohn, Andy Edmonds, and the
Group for User Interface Research for their ideas and work on
improving portions of WebQuilt. Lastly, we would like to thank
NetClue for providing us with a copy of their Java web browser
component.

7. REFERENCES

1. Beyer, H. and K. Holtzblatt, Contextual Design: Defining

Customer-Centered Systems. 1998, San Francisco: Morgan
Kaufmann.

2. Virzi, R.A., Refining the Test Phase of Usability
Evaluation: How Many Subjects Is Enough? Human
Factors, 1992. 34(4): p. 457-468.

3. Nielsen, J. and T. Landauer. A mathematical model of the
finding of usability problems. in ACM INTERCHI'93.
1993. Amsterdam, The Netherlands.

4. Spool, J. and W. Schroeder. Testing Web Sites: Five Users
is Nowhere Near Enough. in ACM CHI Conference on
Human Factors in Computing Systems. 2001. Seattle, WA.

5. Access Log Analyzers.
http://www.uu.se/Software/Analyzers/Access-
analyzers.html

6. NetRaker Corporation, NetRaker Suite. 2001.
7. Vividence, Vividence Browser. 2000.
8. Pikrakis, A. MEMOIR - Software Agents for Finding

Similar Users by Trails. in Third International Conference
and Exhibition on The Practical Application of Intelligent
Agents and Multi-Agensts. 1998. London, UK.

9. Chris Dodge, B.M., Hans Pfeiffenberger. Web Cataloguing
Through Cache Exploitation and Steps Toward
Consistency Maintenance. in Third International World
Wide Web Conference. 1995.

10. Etgen, M. and J. Cantor. What Does Getting WET (Web
Event-Logging Tool) Mean for Web Usability? in Fifth
Human Factors and the Web Conference. 1999.

11. Davison, B. Web Traffic Logs: An Imperfect Resource for
Evaluation. in Ninth Annual Conference of the Internet
Society (INET'99). 1999. San Jose.

12. Pitkow, J.E. and P. Piroli. Mining Longest Repeated
Subsequences to Predict World Wide Web Surfing. Second
USENIX Symposium on Internet Technologies and
Systems. 1999.

13. Choo, C.W., B. Detlor, and D. Turnbull. A Behavioral
Model of Information Seeking on the Web -- Preliminary
Results of a Study of How Managers and IT Specialists Use
the Web. in 1998 ASIS Annual Meeting. 1998.

14. Tauscher, L.M., Evaluating History Mechanisms: An
Empirical Study of Reuse Patterns in WWW Navigation, in
Department of Computer Science. 1999, University of
Calgary: Calgary.

15. ErgoSoft Laboratories, ErgoBrowser. 2001.
http://www.ergolabs.com/ergoBrowser/ergoBrowser.htm

16. Tschalar, R., HTTPClient V0.3-2. 2000.
http://www.inovation.ch/java/HTTPClient/index.hml

17. Sun, Java Secure Socket Extension. 2001.
http://java.sun.com/products/jsse/index.html

18. NIST, WebVIP. 1999.
http://zing.ncsl.nist.gov/webmet/vip/webvip-process.html

19. Guzdial, M., et al., Analyzing and Visualizing Log Files: A
Computational Science of Usability. 1994, Georgia
Institute of Technology.

20. Wexelblat, A. and P. Maes. Footprints: History-Rich Tools
for Information Foraging. in CHI99. 1999. Pittsburgh PA.

21. Cugini, J. and J. Scholtz. VISVIP: 3D Visualization of
Paths through Web Sites. in International Workshop on
Web-Based Information Visualization (WebVis'99). 1999.
Florence, Italy: IEEE Computer Society.

22. Vividence, Vividence Clickstreams. 2000.
http://www.vividence.com/resources/public/solutions/demo
/demo-print.htm

23. Visual Insights, eBizinsights. 2001.
http://www.visualinsights.com/

24. Helfrich, B. and J.A. Landay, QUIP: Quantitative User
Interface Profiling. 1999.
http://home.earthlink.net/~bhelfrich/quip/

25. Edmonds, A., Lucidity Project. 2001.
http://sourceforge.net/projects/lucidity

26. Chi, E., et al. Visualizing the Evolution of Web Ecologies.
in ACM CHI Conference on Human Factors in Computing
Systems. 1998.

27. Hochheiser, H. and B. Shneiderman, Understanding
Patterns of User Visits to Web Sites: Interactive Starfield

Visualizations of WWW Log Data. 1999, University of
Maryland, College Park.

28. Pitkow, J. and K. Bharat. WebViz: A Tool for World-Wide
Web Access Log Analysis. in First International
Conference on the World-Wide Web. 1994.

29. Bederson, B.B. and J.D. Hollan. Pad++: A Zooming
Graphical Interface for Exploring Alternative Interface
Physics. in the ACM Symposium on User Interface
Software and Technology: UIST ’94. 1994. Marina del
Rey, CA.

	INTRODUCTION
	Background
	WebQuilt

	WEBQUILT ARCHITECTURE
	Proxy Logger
	Problems with Existing Logging Techniques
	WebQuilt Proxy Logger Implementation
	WebQuilt Log File Format
	WebQuilt Proxy Logger Architecture

	Additional Proxy Functionality
	Proxy Logger Limitations

	Action Inferencer
	Graph Merger
	Graph Layout
	Visualization

	RELATED WORK
	FUTURE WORK
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

