
Exploring Capturable Everyday Memory for 
Autobiographical Authentication 

Sauvik Das 
Carnegie Mellon University  

sauvik@cmu.edu 

Eiji Hayashi 
Carnegie Mellon University 

ehayashi@cs.cmu.edu 

Jason Hong 
Carnegie Mellon University 

jasonh@cs.cmu.edu 
 

ABSTRACT 
We explore how well the intersection between our own 
everyday memories and those captured by our smartphones 
can be used for what we call autobiographical 
authentication—a challenge-response authentication system 
that queries users about day-to-day experiences. Through 
three studies—two on MTurk and one field study—we 
found that users are good, but make systematic errors at 
answering autobiographical questions. Using Bayesian 
modeling to account for these systematic response errors, 
we derived a formula for computing a confidence rating 
that the attempting authenticator is the user from a sequence 
of question-answer responses. We tested our formula 
against five simulated adversaries based on plausible real-
life counterparts. Our simulations indicate that our model of 
autobiographical authentication generally performs well in 
assigning high confidence estimates to the user and low 
confidence estimates to impersonating adversaries. 
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INTRODUCTION 
In this paper, we examine a new kind of authentication 
leveraging something you know: one’s own everyday 
autobiographical data. It is motivated by the observation 
that smartphones know a lot about their users, such as their 
call logs, location traces, and browser history. In turn, users 
might accurately remember only some of the details stored 
in these logs. We call this intersection of what smartphones 
can capture and what humans can remember capturable 
everyday memory, and explored how well it can be used for 
autobiographical authentication challenges. 

There are several potential advantages to this approach. 
Unlike most other forms of authentication, autobiographical 
authentication can be scaled by context. For example, users 

might have to answer one challenge if authenticating in 
their homes, but five if in a city they have never visited 
before. This scaling property also allows for non-binary 
authentication. Rather than pivot access to all of a 
smartphone’s data and permissions through one or two 
passwords, access can be granted in tiers. In other words, a 
user who wants to access banking information may have to 
answer several questions, while a user who wants to check 
the weather may have to answer one easy question. 
Furthermore, authentication challenges are automatically 
adjusted as a person goes about his daily life, making many 
attacks harder to successfully execute—for example, 
shoulder surfing, replay attacks and phishing.  

This paper makes two contributions. First, we report on 
three studies—two on MTurk and one field study—to 
construct an empirical model of capturable everyday 
memory. In our two MTurk studies, we narrowed down the 
broad search space of candidate autobiographical questions. 
In our field study, we deployed an Android app that asks 
users to answer questions constructed from ground-truth 
data. We analyzed 2167 question-answer responses 
collected from 24 users over 2 weeks, and found that users 
answered approximately 64% of questions correctly, 
overall. Furthermore, the type of question mattered: 
questions about phone usage—about facts such as app 
usage and website visits—were answered correctly less 
often than questions about communications and location. 
Also, performance was stable over time: users performed as 
well at the end of two weeks as they did at the beginning. 

Second, we offer a framework for autobiographical 
authentication that accounts for users’ systematic response 
error to compute a confidence estimate that an attempting 
authenticator is the user. We evaluated our framework 
against five simulated adversaries based on different threat 
models. We found that while choice of adversary to 
optimize against mattered, our framework shows promise: 
generally, users obtained high confidence ratings while 
impersonators obtained low confidence ratings.  

RELATED WORK 
Textual Passwords and Alternatives 
The core strengths of textual passwords are speed, 
convenience and challenge [8]. However, many studies 
have documented their weaknesses, as well. For example, 
Adams and Sasse [1] discuss the burdens that textual 
passwords impose on users, and how people tended to 
circumvent it and undermine security to get their work 
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done. Allan [2] states that the increase in computational 
power predicted by Moore’s law continually increases the 
lower bound of acceptable password complexity. Equally, 
studies of password policy (e.g. [8,12,18]) have concluded 
that while users can be encouraged to select safer secrets, 
new attacks such as phishing and keylogging make high 
password strength a dubiously effective security measure. 

Graphical passwords [19], such as Android’s 9-dot 
password, is one alternative form of authentication that has 
been gaining popularity. However, while generally easy and 
quick to use, graphical passwords can be insecure as they 
are vulnerable to shoulder-surfing attacks and have small 
search spaces [19]. Challenge questions [11] are the most 
related alternative authentication technique. Challenge 
questions authenticate users by matching their answer to a 
preset query to one previously supplied. Questions typically 
focus on persistent facts relating to a user's life, such as 
"what is your mother's maiden name?" or "what is your 
birthday?" Studying these question systems, Rabkin [14] 
identified the increasing amount of personal information 
available online as a weakness: using online sources, 
attackers can retrieve basic information about a user to 
answer a wide range of the most commonly used questions. 
Furthermore, Schechter et al. [17] pointed out that 
challenge questions are easily guessed by acquaintances, 
that some answers are relatively predictable, and that many 
users forget their responses over time.  

On the other hand, the increasing online presence of many 
users is providing new approaches to question systems. For 
example, in Love and Authentication [10] questions were 
derived from responses to surveys on online matchmaking 
and dating services. The authors found that responses to 
these questions were highly memorable, stable over time, 
and hard for others to guess. Similarly, Gupta et al. [6] 
investigated how well users could answer patterns of 
cellphone usage they style “memory fingerprints,” finding 
that users can answer these questions well but not perfectly. 
This approach provides advantages over traditional 
challenge question systems in that it requires minimal 
enrolment costs (questions are generated automatically 
from data stored on Facebook) and has low challenge 
reoccurrence—any photo from any friend can be used.  

Autobiographical authentication can offer improvements 
over traditional passwords and challenge question schemes. 
By relying on automatically captured data it hopes to ensure 
a high diversity of presented challenges, while limiting how 
easily correct responses may be guessed. It also avoids 
explicit user enrollment costs; data is generated by users 
through their day-to-day activities and captured 
automatically via sensor-equipped smartphones.  

Autobiographical Memory 
Conway & Pleydell-Pearce [3] provide an informative 
perspective on autobiographical memory, suggesting that 
our "self-memory system" is divided by granularity: 
lifetime periods, general events, and event-specific 

knowledge. Most relevant to our cause is the latter: Event-
specific knowledge (ESK) relates to vivid memories about 
specific event details, for example the act of text messaging 
a friend. In that regard, Conway and Pleydell-Pearce's [3] 
notion of ESK is highly salient for autobiographical 
authentication, as it refers to highly specific memories of 
events that have a short shelf life—they fade from memory 
in a matter of days or weeks. These memories are ideal for 
autobiographical authentication, as they likely correspond 
to memories that users find easy to recall, but are ephemeral 
and consequently relatively hard for either strangers or 
friends to guess, discover or deduce.  

However, encoding autobiographical memories is a 
complex process. Conway and Pleydell-Pearce argue it 
depends on a range of unobservable factors such as 
emotion, affect and age [3]; others suggest that gender and 
vocabulary also exert an effect [20]. In a recent update to 
this literature, Kristo et al. [13] conducted an Internet-based 
diary study. They found that different aspects of everyday 
memories have different retention rates. For example, the 
content and time of a memory were better remembered than 
the details; less regularly occurring events were more likely 
to be remembered; and, pleasant events were better 
remembered than unpleasant events.  

While these findings offer us guidance, there is little 
presently in the literature about the intersection between 
human memory and smartphone logs—capturable everyday 
memory. To better conceptualize the bounds of capturable 
everyday memory, we ran a series of studies: two moderate-
scale MTurk mini-studies and one two-week long field 
study. From this data, we construct an empirical model of 
capturable everyday memory and derive a Bayesian 
framework for computing confidence estimates that an 
attempting authenticator is the user. 

USER STUDIES 
Mechanical Turk Questionnaires 
Study 1: What comprises capturable everyday memory? 
We first wanted a qualitative categorization of capturable 
everyday memory and to formulate candidate questions. We 
constructed a questionnaire utilizing the Galton-Crovitz 
cueing technique [4,5], a method frequently employed by 
cognitive psychologists who study autobiographical 
memories [13]. Participants were asked to recall the first 
memory that comes to mind associated with a keyword. 
Careful selection of keywords allowed us to nudge 
participants’ memories to those capturable by smartphones. 
Thus, 28 keywords were selected by considering the broad 
categories of information a smartphone might know about 
its users. Example keywords include “alarm clock”, “SMS”, 
and “phone call.” We omit the full list for brevity. 

Participants had to answer the questionnaire for five 
keywords. For each keyword, participants had to describe, 
in at least 100 characters, a specific, recent memory 
associated with the keyword in relation to digital 
technology. If they were unable to think of such a memory, 



they could enter any other recent memory associated with 
digital technology. 

Results 
We obtained 272 valid keyword questionnaires from 70 
participants. Thirty-five of the participants were female, 
and the average age was 36 years (s.d. 12.9).  

We constructed a data-driven categorization of user 
responses, given that the keywords we selected did not 
necessarily elicit different types of memories (e.g., phone 
call and SMS). We applied concept mapping [9], a mixed-
methods analysis technique, with six coders as a means of 
generating our categorizations. From the responses, we 
identified 9 distinct categorizations of everyday memory 
that were also capturable (see Table 1). The categories are 
neither mutually exclusive nor exhaustive, but they are the 
more salient types of capturable everyday memories.  

We also formulated a set of 50 questions distributed across 
these categories based on the questionnaire responses, 
which we used in our next study. 

Study 2: Can people answer autobiographical questions? 
Next, we wanted to gauge how well people believed they 
could answer the autobiographical questions that we 
formulated from the first study. We asked these questions 
on MTurk before running a field study for three reasons: (1) 
to ask a relatively large sample of users a large set of 
questions to narrow down the list of possible questions to 
ask in the final application; (2) to ask questions that are not 
presently feasible to ask on smartphones, but might be 
asked given more complete data stores (e.g., “what did you 
eat for lunch yesterday?”); and, (3) to establish hypotheses 
to guide our analysis of the field study data. Example 
questions we asked include: Which wireless network did 
you connect to yesterday?, Name an article you read 
recently, and Who did you last SMS message? We omit the 
full list of 50 questions here for brevity.  

Participants had to answer five autobiographical questions. 
For each question, they were also asked how strongly they 
agreed with a set of prompts on a Likert-scale of 1 
(Strongly Disagree) to 7 (Strongly Agree). These prompts 
are listed in Table 2. The first three prompts are from 
previous work [13,16]. Rubin et al. [16] found that 
respondents’ answers to a set of Likert-scale questions were 
indicators of the accuracy of a memory. Consequently, we 
use a subset of these same questions as a rough surrogate 

for ground truth. The last prompt was of our own inclusion, 
presented to control for answer uniqueness on 
memorability. 

Results 
We gathered 632 question-answer responses from 145 
participants, ranging in age from 18 to 64 (mean: 33.7, s.d.: 
10.1). Eighty-three were female and 62 were male. 

We modeled the memorability of responses using a 
generalized linear mixed effects model [15] with the user as 
a random effect because we collect multiple responses from 
each user. Specifically, we utilize a random-intercepts 
model to allow different users to have different base 
memorability scores. The memorability score we model is 
the sum of the responses to the Likert-scale questions 
associated with each response that we borrowed from 
[13,16]. As there were three supplementary 7-point Likert-
scale questions, the range of the response varied from 3 to 
21, with a higher score indicating greater memorability. 

Table 3 shows the model coefficients. For numeric 
variables (i.e., age, time elapsed, uniqueness), the 
coefficient is the effect on memorability from a 1-unit 
increase in the variable, holding all other numeric variables 
at their mean and all other categorical variables at their 
baseline.  

The intercept in the model was high at 15.3 out of 21, 
suggesting that users generally believed they could answer 
these questions confidently. Furthermore, controlling for 
uniqueness, age, ethnicity, gender and time-elapsed since 
the event of the answer, users report relatively high scores 
for questions about the technology usage and 
scheduling/attending events memory categories, and low 
scores for questions about the technology failures, weather 
information, and content search categories. Note that the 
significance indicator for categorical variables in Table 5 is 
relative only to the baseline level. Thus, for categorical 
variables with more than two levels, like the MemCat 
(memory category) variable, the significance indicators in 
Table 5 are not too important. Overall, different memory 
categories did elicit statistically different scores, confirmed 
by a repeated measures ANOVA: F(8,106)=2.5, p=0.01. 
The coefficients in Table 5 estimate their relative effects. 

These findings tell us that users believe they can generally 
answer recent autobiographical questions confidently, but 
that the type of question matters. Questions about content 
search, for example, should be harder to answer. However, 
it is unclear how well these perceptions reflect reality. To 

Likert-scale prompts in Study 2. 
I can mentally relive the event in my answer. 
I actually remember the event in my answer, rather than just knowing 
they happened. 
I am confident in my answer. 
The event in my answer is a unique event in my life. 
Table 2. List of all Likert-scale prompts participants were 

asked to respond to with each question answered. 

Memory Category N Examples 
Communication 53 SMS, SNS usage, phone calls 
Content Consumption 30 Viewing photos, reading articles 
Tech Failures 27 Battery failures, connectivity failures 
Scheduling / Events 22 Scheduling & attending events 
Travel / Transportation 28 Driving, public transit, GPS navigation 
Internet Activity 24 General internet usage (browsing) 
Technology Usage 64 Using apps / software, or hardware 
Content Search 13 Searching on the net 
Weather 10 Memories about weather 

Table 1. Concept mapping response categorizations, along with 
representative examples. 

 



answer that question, we built an Android application to ask 
users questions for which we had ground-truth data. 

Field Study of Capturable Everyday Memory Questions 
We built myAuth, an application that asked users questions 
constructed from ground-truth data, on Android 2.3 (see 
Figure 1). While we wanted to ask as many questions from 
the second MTurk study as was feasible, technical barriers 
limited what data we could access. For example, there was 
no way to access calendar information natively on the 
phone in Android 2.3. Other questions were not possible to 
ask given incomplete data stores—for example, what the 
user ate for lunch yesterday. 

We indexed ground truth data about users’ phone usage, 
communications, and location traces. Location data was 
collected with every location update; communication data 
was updated twice daily; and, phone usage (e.g., which 
application was being used) data was collected every 30 
minutes, when possible. From these data, we were able to 
ask 13 questions, listed in Table 4. For quick identification, 
each question was also given an abbreviated “question 
type” value. The first eight questions listed were questions 
with one specific answer about a particular fact—fact-based 
questions. For example, “What application did you use on 
Thursday, March 14th at 2:53pm?” We also kept track of 
potential “near miss” answers to these questions—for 
example, if the user answered the app he or she used at 
3:30pm, instead. 

The last five questions—name-a questions—did not ask 
about any specific fact; rather, these questions asked the 
user to recall any fact in the past 24 hours of the sort 
queried by the question. Thus, these questions could have 
multiple correct answers. For example, for the question 
“Name an applicaion you used in the past 24 hours.”, if the 
user used the “Email” and “What’s App” apps in the past 
24 hours, both answers should be correct. 

We also varied the input method of the answer. For non-
location fact-based question, we presented the user with a 

set of 10 options to choose from (recognition) or an empty 
text-box (recall). We chose 10 options for the recognition 
question to make it sufficiently hard to guess randomly. The  
answer options comprised of the correct answer and up to 
three other “near-miss” answers, depending on how many 
near-miss answers were available. The remainder were 
drawn randomly from a list of plausible answers, which 
varied by question type. For example, for questions where 
the answer was a person, other “plausible” anwers included 
anyone in the user’s contact list. For recall questions, users 
had to enter an answer into a textbox. However, even the 
recall questions had an “auto-complete” option—included 
primarily because we wanted to avoid misspellings or non-
recorded aliases. For location questions, users were 
presented with a map and asked to pin their best-guess 
estimate of their location. 

When asking users questions, myAuth attempted to 
maximize the entropy of the questions asked and answer 
methods presented. In other words, myAuth would try and 
ensure users were asked the greatest variety of questions 
and answer methods in a single session, data permitting. 

Users were also provided with an option to skip any 
question they felt uncomfortable answering. Finally, with 
every question answered, users were asked to rate their 
agreement with three Likert-scale prompts on a scale from 
1 (Strongly Diasgree) to 5 (Strongly Agree). The prompts 
were: “I am confident in my answer.”, “It was easy for me 
to remember the answer to this question.”, and “No one else 
would know the answer to this question.” 

Study Design  
We recruited users who owned a phone running Android 
2.3 or higher to participate in a two-week long field study. 
Users were instructed to install myAuth and answer at least 
five questions every day for 14 days. Skipped questions 
were counted towards their daily totals. The app would 
remind users to complete this task every day at 8pm. We 
offered users a reward of $1.00 per day for every day they 
answered at least five questions. We offered users an 
additional $0.20 for every question answered correctly, up 

Feature Coefficient Baseline 
Intercept 15.31 *  
Age  0.04 *  
Ethnicity: Asian  0.58 White 
Ethnicity: Black  0.77 White 
Ethnicity: Other -0.82 White 
Ethnicity: Pacific Islander -2.55 White 
Gender: Male -0.48 Female 
Uniqueness  0.47 *  
Time Elapsed (hours) -0.006 *  
MemCat: Content Consumption  0.13 Communication 
MemCat: Content Search -1.25 Communication 
MemCat: Internet Activity  0.06 Communication 
MemCat: Scheduling Events  0.52 Communication 
MemCat: Technology Failures -1.52 * Communication 
MemCat: Technology Usage  0.28 Communication 
MemCat: Travel / Transportation  0.16 Communication 
MemCat: Weather -0.65 Communication 

Table 3. Coefficients for the HLM for Study 2. Significance 
is at p < 0.05, designated by a * next to the coefficient. 

 

QType Question text 
FBApp What application did you use on <time>? 
FBLoc Where were you on <time>? 
FBOCall Who did you call on <time>? 
FBInCall Who called you on <time>? 
FBOSMS Who did you SMS message on <time>? 
FBInSMS Who SMS messaged you on <time>? 
FBIntSrc What did you search the internet for on <time>? 
FBIntVis What website did you visit on <time>? 
NAOSMS Name someone you SMS messaged in the last 24 hours. 
NAInSMS Name someone who SMS messaged you in the last 24 

hours. NAOCall Name someone you called in the last 24 hours. 
NAInCall Name someone who called you in the last 24 hours. 
NAApp Name an application you used in the past 24 hours. 

Table 4. List of all questions asked by the myAuth app 
along with their corresponding question type (QType). 

QTypes starting with “FB” represent fact-based questions; 
those starting with “NA” represent name-a questions. 

 



to a total of an additional $6.00. Users were not made aware 
of whether their answer was correct till the end of the study, 
however. Finally, at the end of the 14 days, users were 
asked to complete an exit survey for an additional $5.00. 

Results  
We collected 2167 valid question-answer responses from 
24 users over 14 days. Users had an average age of 25 (s.d. 
6.25, range 18-43). Fourteen of the 24 were male (58%). 

Overall, 1381 out of the 2167 (~64%) questions were 
answered correctly. An additional 168 (~8%) responses 
were near misses. Users tended to be over-confident in their 
performance. Both the median and mode values of the 
responses to the prompts “I am confident in my answer” 
and “It was easy for me to remember the answer to this 
question” were the maximum agreement values of 5.  

We used a mixed-effects logistic regression [15] to model 
response correctness with features describing both users 
and responses. Once again, our model incorporated random 
intercepts: Each user had his or her own baseline likelihood 
to correctly answer a question. Table 5 lists the fixed-effect 
model coefficients.  

Coefficients represent a change in “log-odds”, or ln !
!!!

, 
where P represents the probability that a question is 
answered correctly. A positive coefficient implies that the 
log-odds ratio increases, or that the probability that the 
answer is answered correctly, P, increases. A negative 
coefficient implies the opposite, that 1 – P increases. As 
with the model for Study 2, coefficients for numeric 
features represent the change that would occur with a one 
unit increase in the feature, holding all other features at 
their mean. A categorical variable coefficient represents 
change relative to the baseline level of the variable. 

The Intercept suggests that, holding all numeric variables at 
their mean and categorical variables at their baseline, there 
is a !!.!"

!!!!.!"
= 67% chance that a response is correct. The 

standard deviation of the random effects intercept across all 
users was also fairly high at 0.47. Thus, there was a lot of 
variability between users.  

Unsurprisingly, recognition questions are answered 
correctly more often than recall questions. Also expectedly, 
the negative coefficient for age suggests that older users 
were less likely to answer questions correctly. This finding 
runs counter to the model from Study 2, however, 
suggesting that while older users do not perform as well, 
they are more confident in their responses. Gender had no 
significant effect in predicting response correctness. 

Many response specific attributes had no significant effect 
on the model’s outcome. Neither the amount of time a user 
took to answer the question, nor the time elapsed since the 
event of the correct answer appeared to affect response 
correctness. Part of the reason for the latter may be because 
we only asked questions of events within the past 24 hours. 

Performance was stable over time. Indeed, the insignificant 
“Day of Study” feature coefficient suggests that questions 
answered towards the end of the study were answered 
correctly at the same rate as those answered in the 
beginning. This finding was confirmed by comparing the 
relative rates of correctness for the first 20% and last 20% 
of responses for each user (60.3% vs. 61.7%, chi. sq. = 
0.13, df = 1, p = 0.72). In other words, users do not improve 
at answering questions over time. Similarly, the effect of 
response entropy—the Shannon entropy of the correct 
answers for a particular question type for a user—was also 
insignificant, though it was close (p=.07). The direction of 
the estimated effect was surprising nonetheless: Questions 
with more response entropy were answered more correctly.  

Feature Coefficient Baseline 
Intercept  0.71 *  
Answer Type: Recog  0.68 * Recall 
Age -0.04 *  
Gender: Male  0.01 Female 
Time to Answer (seconds) -0.004  
Time since Correct Answer -0.007  
Day of Study  0.01  
Correct Answer Entropy  0.15   
Answer Uniqueness -0.32 *  
Confidence  0.13  
Ease of Remembering Answer  0.31 *  
Difficulty of Others Guessing -0.04  
QType: FBApp -1.70 * FBOCall 
QType: FBLoc  0.66 * FBOCall 
QType: FBInCall  0.58 FBOCall 
QType: FBOSMS  0.55 * FBOCall 
QType: FBInSMS  0.52 FBOCall 
QType: FBIntSrc -1.75 * FBOCall 
QType: FBIntVis -1.32 * FBOCall 
QType: NAOSMS  0.02 FBOCall 
QType: NAInSMS  0.35 FBOCall 
QType: NAOCall  0.11 FBOCall 
QType: NAInCall -0.17 FBOCall 
QType: NAApp -1.60 * FBOCall 
Table 5. Coefficients for the mixed-effects model for the 
field study. Significance is at p < 0.05, designated by a * 
next to the coefficient. Features are described as they as 

discussed. 
 

 
Figure 1. myAuth Android Application Screenshots showing 

a recall question, recognition question and location entry 
question. Screenshots are blurred to preserve anonymity. 

 



The strong, significant effect of answer uniqueness is more 
puzzling. We quantified answer uniqueness as the inverse 
of the ratio of times a specific question’s correct answer 
was the correct answer to all questions of the same type for 
the responding user, in general. For example, if a user was 
asked a question 10 times and the correct answer was 
“Gmail” twice, the answer uniqueness of the response 
would be 1/(2/10)=10/2=5. Surprisingly, questions with 
more unique answers were more likely to be answered 
incorrectly. One explanation is that users did not remember 
answers rather, they just knew or could guess the answer. 
For example, a user may not remember text messaging a 
friend at 4:53pm, but may deduce that the answer is likely 
John. For more unique answers, these alternative pathways 
to an answer may be unavailable or misleading. 

Finally, question type does effect how likely a user is to 
answer a question correctly (chi. sq. = 384.78, df = 12, p = 
2.2e-16). Keep in mind that the significance values marked 
in Table 5 for QType, or “question type”, are in relation to 
the baseline—i.e., they denote if the coefficient for one 
question type significantly differs from the baseline, not 
from all other questions. The baseline was the question type 
with the median rate of correctness: the fact-based question 
about outgoing phonecalls. Recall that questions are listed 
in Table 4.  

Questions about phone usage, such as what apps a user used 
or which website a user visited, were far less likely to be 
answered correctly. On the other hand, questions about 
communication—phonecalls and sms messages—and 
location were far more likely to be answered correctly. 
Surprisingly, questions with a single answer at a specific 
time were answered correctly at the same rate as questions 
with several answers spanning the previous 24 hours. 
Indeed, there was no difference between the rates of success 
for fact-based and name-a questions (59% vs. 63%, chi. 
sq.=2.25, df=1, p = 0.13).  

In summary, users are decent at answering questions about 
capturable everyday memories. They are equally good at 
answering questions about specific events as they are about 
questions spanning the entire past 24 hours. Questions 
about social interactions and location are answered 
correctly more often than questions about smartphone 
usage, but questions with unique answers are more likely to 
be answered incorrectly. Also, users’ performances are 
stable over the short term, but older users, are less likely to 
answer questions correctly. 

MODELS FOR AUTOBIOGRAPHICAL AUTHENTICATION  
Given that only 64% of questions were answered correctly, 
it seems that the straightforward model of autobiographical 
authentication—relying on users to answer all challenges 
correctly—is insufficient. But there is another viable model: 
One that accounts for systematic response error.  

With the response error model, users need not answer all 
questions correctly, but consistently. For example, a user 

who answered application usage questions correctly and 
communication questions incorrectly in the past would be 
expected to repeat this pattern in future attempts. In other 
words, the intuition behind the response error model is to 
allow users to answer questions naturally, while forcing 
adversaries to both guess answers and replicate their 
intended victim’s error patterns.  

In fact, we did find evidence that users answer relatively 
consistently over time. As we saw from our empirical 
model, users’ overall rate of answering questions correctly 
was stable. Furthermore, users’ performance over time was 
roughly stable even within question types: For all users, 
comparing the first half of responses to a question type to 
the second half, the mean absolute change in response 
correctness was only around 15%. Consequently, we 
pursued the response error model for our evaluation. 

Autobiographical Response Error Model 
Let’s assume we have sufficient training data for a user to 
construct an empirical probability distribution that the user 
gets a question correct or incorrect given m response 
features: 𝑃!(𝑐𝑜𝑟𝑟(𝑟)|𝑓!,… , 𝑓!). Example response features 
include the question type, the answer type (recog vs. recall) 
and the amount of time it takes the user to answer the 
question. Let’s also assume that we have a sequence of n 
question-answer responses from an attempted 
authentication session, (r1,…,rn), where each response, ri, 
can be represented by the list of response features 
(f1,i,…,fm,i) along with whether or not the question in the 
response was answered correctly, corr(ri). From these data, 
we are trying to compute a confidence rating that the 
responses came from the user. 

It is simple to calculate P(r1,…rn | u)—the probability that 
we would observe this response sequence from the user. It 
is the cumulative product of the empirical probabilities that 
a response is correct or incorrect, given its features: 

1     𝑃 𝑟!,… , 𝑟! 𝑢 = 𝑃! 𝑐𝑜𝑟𝑟(𝑟!) 𝑓!,! ,… , 𝑓!,!     
!

!!!

 

However, we want the opposite: P(u | r1,…rn). Assuming 
independence between responses, apart from their common 
origin from the user, Bayes theorem tells us that: 

2   𝑃 𝑢 𝑟!,… , 𝑟! =   
𝑃 𝑟!,… , 𝑟! 𝑢 𝑃(𝑢)

𝑃(𝑟!,… , 𝑟!)
 

In the above equation above, P(u) represents the prior 
probability that the authenticator is the user. For personal 
devices like smartphones, we can treat this as a high 
constant—close, but not quite equal to 1. The denominator 
is tricky, representing the probability that we observe a 
given sequence of responses. We can break this value down 
into two components: 

3   𝑃 𝑟!,… , 𝑟! =   𝑃 𝑟!,… , 𝑟! 𝑢 + 𝑃(𝑟!,… , 𝑟!|𝑢) 



In other words, the probability that we observe a given 
sequence of responses is the sum of the probability that we 
observe the responses from the user and the probability that 
we observe the responses from a non-user—our modeled 
adversary. For simplicity, we consider this second term to 
be a specific adversary, though it should theoretically be all 
possible non-users. However, it is infeasible to enumerate 
and model all possible non-users. There are many possible 
adversary models we can adopt, which we will cover in the 
following section. Substituting (3) into the denominator of 
(2) and treating P(u) as a constant, k, we get: 

4   𝑃 𝑢 𝑟!,… , 𝑟!, 𝑢 =   
𝑘𝑃 𝑟!,… , 𝑟! 𝑢

𝑃 𝑟!,… , 𝑟! 𝑢 + 𝑃(𝑟!,… , 𝑟!|𝑢)
 

However, we are not yet done. As the equation stands, 
𝑃 𝑢 𝑟!,… , 𝑟!, 𝑢 , the probability that the authenticator is the 
user given the sequence of responses and an adversary 
model, is inversely proportional to 𝑃(𝑟!,… , 𝑟!|𝑢), the 
probability that we observe this sequence of responses from 
our modeled adversary. This property can be exploited by a 
cunning impersonator who knows the adversary model 
being used. In that case, as long as the impersonator 
answers to minimize 𝑃(𝑟!,… , 𝑟!|𝑢), even if 𝑃 𝑟!,… , 𝑟! 𝑢 , 
the probability that we observe a sequence of responses 
from the user, is low, 𝑃 𝑢 𝑟!,… , 𝑟!, 𝑢  will be high. In other 
words, using just equation (4) an impersonator need only 
act unlike the modeled adversary to achieve a high 
confidence rating, even if he acts nothing like the user. 

To avoid this exploit, we add an additional term to the 
model: the bit-string similarity of the actual answer 
correctness vector and the expected answer correctness: 

5   𝑆 𝑟!,… , 𝑟!|𝑢 =
𝑛 − |𝐸 𝑟!,… , 𝑟! 𝑢 − 𝑐𝑜𝑟𝑟 𝑟!,… , 𝑟! |

𝑛
 

The expected answer correctness vector is generated by 
thresholding the empirical probability distribution for the 
user for each response at 0.5. In other words, if the user is at 
least 50% likely to get a response with the given features 
correct, we expect the user to answer correctly. Otherwise, 
we expect the user to answer incorrectly. The bit-string 
similarity term, S(r1,…rn | u), will equal 1 if there is no 
difference between the expected correctness vector and the 
actual vector, and will equal 0 if there is no agreement 
between the two vectors (i.e., the actual response is 
incorrect whenever we expect it to be correct and vice 
versa). Multiplying (4) and (5), our final equation to 
calculate the confidence rating of an attempted 
authentication becomes: 

6   𝐶 𝑢|𝑟!,… , 𝑟!, 𝑢 = 𝑃 𝑢 𝑟!,… , 𝑟!, 𝑢 ∗ 𝑆 𝑟!,… , 𝑟!|𝑢  

In summary, equation (6) takes in a set of responses and an 
adversary model as input, and yields a high confidence 
rating only if the responses are unlikely to be observed 
given our adversary model and likely to be observed given 
our user model. The theoretical range of this rating spans 0 
to 100, but in practice a “high” confidence rating should be 

much lower than 100. Indeed, a rating of 100 requires that 
there should be a 0% chance that the response sequence 
comes from the adversary and a 100% similarity between 
the expected and actual correctness vectors—both possible, 
but unlikely in practice. 

Adversaries  
We simulated five different adversaries, each based on 
plausible real-life counterparts. 

Simple Adversaries 
The naive adversary guesses an answer at random from a 
set of 10 answers, one of which is correct. This adversary 
represents "chance" in a 10-answer recognition question. 
For recall questions, this adversary is an overestimate in the 
likely case where there are more than 10 possible answers. 

The observing adversary guesses an answer selected 
uniformly at random from all answers that were correct for 
the same question type in the past. In other words, the 
adversary has compiled a list of plausible answers to every 
question type, based on the target user’s previous responses. 
This adversary represents a close friend or family member 
who might know, for example, that the user only text 
messages one of a small set of people (e.g., her mother, her 
brother, and the friend himself), but not the exact answer to 
a specific question. 

As the name implies, the always-correct adversary always 
answers a challenge question correctly. This adversary 
could represent malware logging software that chronicles 
everything that the phone records. It could also model an 
adversary who steals the phone and can retrieve the 
knowledge base directly. 

Empirical Adversaries 
The empirical-observing adversary theorizes that user 
response patterns are more alike than different. She has 
collected question-answer responses for all question types 
from a separate population of users, from which she 
constructed an empirical probability distribution—the 
population mean—that captures the likelihood that the 
average user might get a response correct. Like the 
observing adversary, the empirical-observing adversary also 
has pre-compiled a list of plausible answers to every 
question for the victim user with one additional detail: she 
has the probability distributions of the answers, as well. 
Thus, she knows which of the plausible answers are more 
likely. To put this into context, consider the fact that a user 
might text his mother, girlfriend and brother, but that the 
rates at which he texts these contacts are likely different.  

The empirical-observing adversary might represent a 
technically proficient friend or stalker who knows the user's 
habits well enough to narrow down plausible answers and 
also tries to model the user's errors by generalizing from 
other users. However, emulating the population mean given 
a set of plausible answers can get complex: The adversary 
must be careful not to get the answer correct too often as to 
over-perform, and thus answers with their best guess 



selectively if their best guess might outperform the 
population mean. 

The empirical-knows-correct adversary is the strongest 
we consider, a combination of the empirical-observing and 
always-correct adversaries. The adversary has not only has 
access to an population mean, but also knows the correct 
answer to every question asked. The empirical-knows-
correct adversary might represent a strong cracker who not 
only has malware logging software on the user’s system, 
but also an empirical probability distribution modeling 
response error. This adversary intentionally answers 
questions correctly or incorrectly to best emulate the 
population mean. 

Evaluation   
We ran simulations using data we collected from our field 
study to observe how confidence ratings varied with the 
attempting authenticator and the modeled adversary. We 
simulated 6 attempting authenticators—the actual users and 
each of the five adversaries trying to impersonate the users. 
We calculated confidence estimates for responses within 
sessions—sequences of questions answered within a few 
minutes of each other. As a result of our study design, most 
sessions comprised of 5 questions answered, though some 
went as far as 13.  

We used two features in constructing the empirical 
probability that a user, Pu, or a population, Ppop, would 
answer a question correctly: the question type and the 
answer method. For example, the empirical probability that 
a user will get a fact-based recall question about app usage 
correct is the rate she got other fact-based recall questions 
about app usage correct in the training data.  

The training data used to construct the empirical probability 
for the user, Pu, included all of a user’s data excluding the 
data from the questions in the session being evaluated. For 
example, consider a user who recorded 24 question-answer 
response sessions over the course of the study. If we are 
calculating the confidence rating for session 1, we construct 
Pu from sessions 2-24 of the user’s data. Likewise, we use 
all of the user’s data but data from the present session to 
construct the list of plausible answers used by the observing 
and empirical-observing adversaries. The training data used 
to calculate the population mean, Ppop, that is used by the 
empirical-observing and empirical-knows-correct adversary 
is all of the data for every user but the victim. 

In Figure 2, we show how confidence rating varies with the 
number of questions answered when the attempting 
authenticator is the actual user. For example, if we modeled 
againt a naïve adversary, Figure 2 suggests that a user 
should generally obtain a confidence rating between 71 and 
75 after answering 5 questions. 

There are several encouraging points to glean from Figure 
2. No matter the adversary, the confidence rating increases 
with the number of questions answered. In other words, 
when the attempting authenticator is the user, himself, our 

framework becomes more confident that it is the user 
attempting to authenticate as more questions are answered. 

Expectedly, the confidence estimate varies with the 
modeled adversary. Our framework estimates the highest 
confidence rating for the user when modeling against a 
naïve, observing, or always-correct adversary, garnering 
ratings just over 70 after five questions. This result is 
encouraging, because these adversaries are by far the most 
likely. Users must answer many more questions to achieve 
a comparable confidence estimate when modeled against 
the empirical-observing adversary. Assuming an empirical-
knows-correct adversary, however, our model offers a 
much more conservative estimate—around 45 after 5 
questions—but still increases in confidence as more 
questions are answered. These results make sense: the 
empirical-observing and empirical-knows-correct 
adversaries have more resources than the others. 

We also simulated all of the adversaries trying to 
impersonate the user, plotting the results in Figure 3. For 
brevity, we only show the plots for three of the five 
adversaries modeled against. The results, again, are 
encouraging. Relative to impersonators, the user always 
obtains a comparatively high rating as the attempting 
authenticator, no matter the adversary. Furthermore, 
regardless of the modeled adversary, users were able to 
obtain higher ratings after answering more questions.  

Impersonators’ performances varied greatly depending on 
the adversary being modeled against. For example, the 
always-correct impersonator obtained high confidence 
estimates—often higher than the user—when modeled 
against any adversary except itself. When modeled against 
itself, however, an impersonating always-correct adversary 
obtains a confidence estimate close to 0. In fact, this pattern 

 
Figure 2. Confidence score estimates for users, aggregated 

across all sessions. Each line represents an adversary 
modeled against, and the translucent shades around the lines 

represent the 95% confidence intervals. 
 



is relatively constant across all impersonators: when 
correctly modeled against, the impersonator obtains much 
lower confidence estimates.  

The most likely adversaries—naïve and observing—do not 
perform well no matter the modeled adversary, with mean 
confidence ratings around 15 or lower after five questions. 
Even the more realistic of the empirical adversaries, the 
empirical-observing adversary, performs badly relative to 
the actual user, generally obtaining confidence ratings 
around 25-30 after five questions whereas the user obtains 
ratings closer to 70. The empirical-knows-correct proves 
more robust and effective, performing well no matter the 
modeled adversary—at times indistinguishably from the 
user. On the other hand, when modeled against itself, the 
empirical-knows-correct impersonator obtains increasingly 
lower confidence estimates as more questions are answered, 
while the user obtains increasingly higher estimates. 
Modeling against an empirical-knows-correct adversary, 
however, produces much more conservative ratings overall. 

These results are encouraging. Employing the correct 
adversary model is key to mitigating false positives, but we 
can see that no matter the modeled adversary, the actual 
users obtain high confidence ratings when authenticating. 
Furthermore, the most likely adversaries—the naïve, the 
observing and the always-correct—do not achieve very 
high confidence ratings in impersonating the user, or are 
easy to identify and model against. 

DISCUSSION  
In this paper, we explored the feasibility of a new type of 
authentication that leverages the unique context-sensing and 
logging affordances of smartphones [7]. We offered the 
first empirical model of capturable everyday memory and 
constructed a framework that estimates a continuous 
confidence rating that an attempting authenticator is the 
user based on his answers to a series of autobiographical 
questions. Our evaluation shows that autobiographical 
authentication shows promise: by accounting for systematic 

response error, our framework generally estimates high 
confidence ratings for actual users and low confidence 
ratings for even sophisticated impersonators. 

However, there is a lot to be done before autobiographical 
authentication is practical. The most glaring limitation is 
that autobiographical authentication is slow. On average, it 
took users 22 seconds to answer each question, even for 
recognition questions. Thus, a five-question session would 
take about a minute and a half—substantially more time 
than simply entering a password. One reason for the delay 
is the cognitive overhead involved with each question. With 
a password, the challenge and the response are known 
ahead of time, and procedural memory can help with its 
input. With autobiographical authentication, the question 
must be parsed and the answer recalled. Based on our exit 
survey, users were not thrilled with the idea of answering 
autobiographical questions instead of using a password. 
However, their sentiment rested on the assumption that they 
every question should be answered correctly. 

Another limitation is that autobiographical authentication 
requires constant device usage to replenish its knowledge 
base. Constant usage may be a reasonable assumption for 
smartphones, but not for other digital devices and services 
(e.g., a social networking site). One solution is to integrate 
the knowledge bases for all of a user’s devices on the cloud 
so that her laptop can use information from her phone for 
authentication. Future research will be needed to investigate 
this and other solutions to overcome this limitation. 

While perhaps not a replacement for passwords, 
autobiographical authentication can shine in risky situations 
or situations where safe use of passwords is unusable—for 
example, in accessing sensitive information from an 
unknown location. Furthermore, with the continuous 
confidence estimate, authentication can be tiered instead of 
binary. For example, read access to non-sensitive 
information could require a low score—perhaps 40—while 
write access to security settings should require a higher 

 
Figure 3. Each graph represents the mean confidence rating after answering 5 and 8 questions, aggregated across all users and all 
sessions. Confidence ratings are plotted for all six attempting authenticators—the user and the five impersonating adversaries—

modeled against the naïve, always correct and empirical-knows-correct adversaries. 95% confidence intervals are included. 



score—perhaps 70. In addition, autobiographical 
authentication can adopt different adversary models in 
different contexts [6]. For example, when at home, the most 
likely adversary is the observing adversary that represents a 
family member. If the phone is at an unknown location, we 
might adopt a stronger adversary model such as the 
empirical-knows-correct adversary.  

There remain a number of interesting, open questions. For 
example, it would be pertinent to find heuristics to detect 
which type of adversary we should model against. We 
should also explore other questions that can be answered 
correctly more often and those that one user answers 
differently than the general population. These are the 
questions that will stump the empirical adversaries. Finally, 
we should optimize the question generation algorithm to 
minimize the number of questions asked to achieve a  stable 
confidence estimate. 

CONCLUSION 
In summary, we made two contributions: (1) a model of 
capturable everyday memory—ephemeral, event-specific 
memories captured by smartphones and remembered by 
users; and, (2) a framework for and evaluation of 
autobiographical authentication—an authentication scheme 
based on users answering questions about capturable 
everyday memory. We found that users answer 
autobiographical questions predictably. By accounting for 
systematic response error in answering questions, we 
derived a formula for computing a confidence rating that 
the attempted authenticator is the user from a sequence of 
question-answer responses. We tested our formula against 
five simulated adversaries based on plausible real-life 
counterparts. Our simulations indicate that our model of 
autobiographical authentication performs well in assigning 
high confidence estimates to the user and low confidence 
estimates to impersonating adversaries. While at an early 
stage, this work represents an important step in enhancing 
traditional authentication for personal mobile devices. 
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